Please wait a minute...
干旱区科学  2013, Vol. 5 Issue (1): 51-59    DOI: 10.1007/s40333-013-0141-7
  学术论文 本期目录 | 过刊浏览 | 高级检索 |
Effects of emitter discharge rates on soil salinity distribution and cotton (Gossypium hirsutum L.) yield under drip irrigation with plastic mulch in an arid region of Northwest China
Sulitan DANIERHAN1, Abudu SHALAMU2, Hudan TUMAERBAI3, DongHai GUAN2
1 State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
2 Xinjiang Institute of Water Resources and Hydroelectric Sciences, Urumqi 830049, China;
3 College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China
Effects of emitter discharge rates on soil salinity distribution and cotton (Gossypium hirsutum L.) yield under drip irrigation with plastic mulch in an arid region of Northwest China
Sulitan DANIERHAN1, Abudu SHALAMU2, Hudan TUMAERBAI3, DongHai GUAN2
1 State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
2 Xinjiang Institute of Water Resources and Hydroelectric Sciences, Urumqi 830049, China;
3 College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China
下载:  PDF (661KB) 
输出:  BibTeX | EndNote (RIS)      
摘要  A field experiment was carried out to investigate the effects of different emitter discharge rates under drip irrigation on soil salinity distribution and cotton yield in an extreme arid region of Tarim River catchment in Northwest China. Four treatments of emitter discharge rates, i.e. 1.8, 2.2, 2.6 and 3.2 L/h, were designed under drip irrigation with plastic mulch in this paper. The salt distribution in the range of 70-cm horizontal distance and 100-cm vertical distance from the emitter was measured and analyzed during the cotton growing season. The soil salinity is expressed in terms of electrical conductivity (dS/m) of the saturated soil extract (ECe), which was measured using Time Domain Reflector (TDR) 20 times a year, including 5 irrigation events and 4 measured times before/after an irrigation event. All the treatments were repeated 3 times. The groundwater depth was observed by SEBA MDS Dipper 3 automatically at three experimental sites. The results showed that the order of reduction in averaged soil salinity was 2.6 L/h > 2.2 L/h > 1.8 L/h > 3.2 L/h after the completion of irrigation for the 3-year cotton growing season. Therefore, the choice of emitter discharge rate is considerably important in arid silt loam. Usually, the ideal emitter discharge rate is 2.4–3.0 L/h for soil desalinization with plastic mulch, which is advisable mainly because of the favorable salt leaching of silt loam and the climatic conditions in the studied arid area. Maximum cotton yield was achieved at the emitter discharge rate of 2.6 L/h under drip irrigation with plastic mulch in silty soil at the study site. Hence, the emitter discharge rate of 2.6 L/h is recommended for drip irrigation with plastic mulch applied in silty soil in arid regions.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Sulitan DANIERHAN
Abudu SHALAMU
Hudan TUMAERBAI
DongHai GUAN
关键词:  carbon sequestration  labile organic carbon  land use  cultivation  abandonment  Loess Plateau    
Abstract:  A field experiment was carried out to investigate the effects of different emitter discharge rates under drip irrigation on soil salinity distribution and cotton yield in an extreme arid region of Tarim River catchment in Northwest China. Four treatments of emitter discharge rates, i.e. 1.8, 2.2, 2.6 and 3.2 L/h, were designed under drip irrigation with plastic mulch in this paper. The salt distribution in the range of 70-cm horizontal distance and 100-cm vertical distance from the emitter was measured and analyzed during the cotton growing season. The soil salinity is expressed in terms of electrical conductivity (dS/m) of the saturated soil extract (ECe), which was measured using Time Domain Reflector (TDR) 20 times a year, including 5 irrigation events and 4 measured times before/after an irrigation event. All the treatments were repeated 3 times. The groundwater depth was observed by SEBA MDS Dipper 3 automatically at three experimental sites. The results showed that the order of reduction in averaged soil salinity was 2.6 L/h > 2.2 L/h > 1.8 L/h > 3.2 L/h after the completion of irrigation for the 3-year cotton growing season. Therefore, the choice of emitter discharge rate is considerably important in arid silt loam. Usually, the ideal emitter discharge rate is 2.4–3.0 L/h for soil desalinization with plastic mulch, which is advisable mainly because of the favorable salt leaching of silt loam and the climatic conditions in the studied arid area. Maximum cotton yield was achieved at the emitter discharge rate of 2.6 L/h under drip irrigation with plastic mulch in silty soil at the study site. Hence, the emitter discharge rate of 2.6 L/h is recommended for drip irrigation with plastic mulch applied in silty soil in arid regions.
Key words:  carbon sequestration    labile organic carbon    land use    cultivation    abandonment    Loess Plateau
收稿日期:  2012-04-13                出版日期:  2013-03-06      发布日期:  2013-03-06      期的出版日期:  2013-03-06
基金资助: 

The National Basic Research Program of China (2009CB421302) and the National Natural Science Foundation of China (41071026, 51069017).

通讯作者:  Abudu SHALAMU    E-mail:  shalamu@yahoo.cn
引用本文:    
Sulitan DANIERHAN, Abudu SHALAMU, Hudan TUMAERBAI, DongHai GUAN. Effects of emitter discharge rates on soil salinity distribution and cotton (Gossypium hirsutum L.) yield under drip irrigation with plastic mulch in an arid region of Northwest China[J]. 干旱区科学, 2013, 5(1): 51-59.
Sulitan DANIERHAN, Abudu SHALAMU, Hudan TUMAERBAI, DongHai GUAN. Effects of emitter discharge rates on soil salinity distribution and cotton (Gossypium hirsutum L.) yield under drip irrigation with plastic mulch in an arid region of Northwest China. Journal of Arid Land, 2013, 5(1): 51-59.
链接本文:  
http://jal.xjegi.com/CN/10.1007/s40333-013-0141-7  或          http://jal.xjegi.com/CN/Y2013/V5/I1/51
Amayreh J, Al-Abed N. 2005. Developing crop coefficients for field-grown tomato (Lycopersicon esculentum Mill.) under drip irrigation with black plastic mulch. Agricultural Water Management, 73(3): 247–254.

Chen W P, Hou Z N, Wu L S, et al. 2010. Evaluating salinity distribution in soil irrigated with saline water in arid regions. Agricultural Water Management, 97(12): 2001–2008.

Douaoui A E K, Nicolas H, Walter C. 2006. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma, 134(1–2): 217–230.

Gu L F. 2003. Formation and development of cotton drip irrigation under mulch in the Xinjiang Production and Construction Corps. Water Saving Irrigation, 28(1): 27–29.

Hanson B, May D. 2004. Effect of subsurface drip irrigation on processing tomato yield, water table depth, soil salinity, and profitability. Agricultural Water Management, 68(1): 1–17.

Hanson B R, Šim?nek J, Hopmans J W. 2006. Evaluation of urea–ammonium– nitrate fertigation with drip irrigation using numerical modeling. Agricultural Water Management, 86(1–2): 102–113.

Hou X Y, Wang F X, Han J J, et al. 2010. Duration of plastic mulch for potato growth under drip irrigation in an arid region of Northwest China. Agricultural and Forest Meteorology, 150(1): 115–121.

Hu X T, Chen H, Wang J, et al. 2009. Effects of soil water content on cotton root growth and distribution under mulched drip irrigation. Agricultural Sciences in China. 8(6): 709–716.

Jin Z M, Wang C H, Liu Z P, et al. 2007. Physiological and ecological characters studies on Aloe vera under soil salinity and seawater irrigation. Process Biochemistry, 42(4): 710–714.

Karuppan S, Minh-Long N. 2010. Extent, impact, and response to soil and water salinity in arid and semiarid regions. Advances in Agronomy, 109(1): 55–74.

Li Y Y, Pang H C, Chen F, et al. 2009. Effect of drip irrigation under plastic mulch on aeolian sandy soil salt dynamic and cotton yield. Journal of Soil and Water Conservation, 23(4): 96–100.

Ngouajio M, Wang G Y, Goldy R. 2007. Withholding of drip irrigation between transplanting and flowering increases the yield of field-grown tomato under plastic mulch. Agricultural Water Management, 87(3): 285–291.

Owojori O J, Reinecke A J, Voua-Otomo P, et al. 2009. Comparative study of the effects of salinity on life-cycle parameters of four soil-dwelling species (Folsomia candida, Enchytraeus doerjesi, Eisenia fetida and Aporrectodea caliginosa). Pedobiologia. 52(6): 351–360.

Palacios-Díaz M P, Mendoza-Grimón V, Fernández-Vera J R, et al. 2009. Subsurface drip irrigation and reclaimed water quality effects on phosphorus and salinity distribution and forage production. Agricultural Water Management, 96(11): 1659–1666.

Tashpolat T, Zhang F, Zhao R, et al. 2007. Selected methods and empirical analysis of extracting salinization information in the arid area of Xinjiang. Chinese Journal of Soil Science, 38(4): 625–630.

Tiwari K N, Singh A, Mal P K. 2003. Effects of drip irrigation on yield of cabbage (Brassica oleracea L. var. capitata) under mulch and non-mulch conditions. Agricultural Water Management, 58(1): 19–28.

Wang G Q, Jiang D H. 1991. Problem and game of salinization and desertification in land usage of oasis. China Land Science, 5(4): 24–28.

Wang Y G, Li Y, Xiao D N. 2009. Effects of land use type on soil salinization at northern slope of Tianshan Mountain. Journal of Soil and Water Conservation, 23(5): 179–183.

Xie Z K, Wang Y J, Wei X H, et al. 2006. Impacts of a gravel–sand mulch and supplemental drip irrigation on watermelon (Citrullus lanatus [Thunb.] Mats. & Nakai) root distribution and yield. Soil and Tillage Research, 89(1): 35–44.

Yin B, Liu Y T. 2009. Spatial distribution and accumulation pattern of soil salinity with long term drip irrigation under plastic mulching. Agricultural Research in the Arid Areas, 27(6): 228–231.

Yin C H, Feng G, Zhang F S, et al. 2010. Enrichment of soil fertility and salinity by tamarisk in saline soils on the northern edge of the Taklamakan Desert. Agricultural Water Management, 97(12): 1978–1986.

Yuan J F, Feng G, Ma H Y, et al. 2010. Effect of nitrate on root devel-opment and nitrogen uptake of suaeda physophora under NaCl sa-linity. Pedosphere, 20(4): 536–544.

Zhang F, Tashpolat T, Ding J L, et al. 2009. The effects of the chemical components of soil salinity on electrical conductivity in the region of the delta oasis of Weigan and Kuqa Rivers, China. Agricultural Sciences in China, 8(8): 985–993.

Zhang Q, Li G Y, Cai F J. 2004. Effect of mulched drip irrigation frequency on soil salt regime and cotton growth. Journal of Hydraulic Engineering. 35(9): 123–126.

Zhao C Y, Yan Y Y, Li J Y, et al. 2009. Distributed characteristics of soil water-salt of cotton field under drip irrigation under mulching in Tarim Irrigated Area. Arid Land Geography, 32(6): 892–898.

 
[1] . [J]. 干旱区科学, 2017, 9(4): 547-557.
[2] REN Zongping, ZHU Liangjun, WANG Bing, CHENG Shengdong. Soil hydraulic conductivity as affected by vegetation restoration age on the Loess Plateau, China[J]. 干旱区科学, 2016, 8(4): 546-555.
[3] DING Shaonan, XUE Sha, LIU Guobin. Effects of long-term fertilization on oxidizable organic carbon fractions on the Loess Plateau, China[J]. 干旱区科学, 2016, 8(4): 579-590.
[4] JIAO Lei, LU Nan, FU Bojie, GAO Guangyao, WANG Shuai, JIN Tiantian, ZHANG Liwei,. Comparison of transpiration between different aged black locust (Robinia pseudoacacia) trees on the semi-arid Loess Plateau, China[J]. 干旱区科学, 2016, 8(4): 604-617.
[5] WANG Junqiang, LIU Lichao, QIU Xiaoqing, WEI Yujie, LI Yanrong, SHI Zhiguo. Contents of soil organic carbon and nitrogen in water-stable aggregates in abandoned agricultural lands in an arid ecosystem of Northwest China[J]. 干旱区科学, 2016, 8(3): 350-363.
[6] TIAN Zheng, WU Xiuqin, DAI Erfu, ZHAO Dongsheng. SOC storage and potential of grasslands from 2000 to 2012 in central and eastern Inner Mongolia, China[J]. 干旱区科学, 2016, 8(3): 364-374.
[7] WANG Kaibo, DENG Lei, REN Zongping, SHI Weiyu, CHEN Yiping, SHANG-GUAN Zhouping. Dynamics of ecosystem carbon stocks during vegetation restoration on the Loess Plateau of China[J]. 干旱区科学, 2016, 8(2): 207-220.
[8] SUN Caili, XUE Sha, CHAI Zongzheng, ZHANG Chao, LIU Guobin. Effects of land-use types on the vertical distribution of fractions of oxidizable organic carbon on the Loess Plateau, China[J]. 干旱区科学, 2016, 8(2): 221-231.
[9] ZHOU Zhengchao, ZHANG Xiaoyan, GAN Zhuoting. Changes in soil organic carbon and nitrogen after 26 years of farmland management on the Loess Plateau of China[J]. 干旱区科学, 2015, 7(6): 806-813.
[10] HAN Huige, LI Xudong, NIU Decao, Sharon J HALL, GUO Ding, WAN Changgui, Jennifer. Conventional tillage improves the storage of soil organic carbon in heavy fractions in the Loess Plateau, China[J]. 干旱区科学, 2015, 7(5): 636-643.
[11] ZHANG Liqiong, WEI Xiaorong, HAO Mingde, ZHANG Meng. Changes in aggregate-associated organic carbon and nitrogen after 27 years of fertilization in a dryland alfalfa grassland on the Loess Plateau of China[J]. 干旱区科学, 2015, 7(4): 429-437.
[12] YuQiang LI, XueYong ZHAO, FengXia ZHANG, Tala AWADA, ShaoKun WANG, HaLin ZHAO, T. Accumulation of soil organic carbon during natural restoration of desertified grassland in China's Horqin Sandy Land[J]. 干旱区科学, 2015, 7(3): 328-340.
[13] XiaoLi YANG, LiLiang REN, Yi LIU, DongLai JIAO, ShanHu JIANG. Hydrological response to land use and land cover changes in a sub-watershed of West Liaohe River Basin, China[J]. 干旱区科学, 2014, 6(6): 678-689.
[14] Lie XIAO, Sha XUE, GuoBin LIU, Chao ZHANG. Fractal features of soil profiles under different land use patterns on the Loess Plateau, China[J]. 干旱区科学, 2014, 6(5): 550-560.
[15] ChaoBo ZHANG, LiHua CHEN, Jing JIANG. Vertical root distribution and root cohesion of typical tree species on the Loess Plateau, China[J]. 干旱区科学, 2014, 6(5): 601-611.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed