Please wait a minute...
干旱区科学  2020, Vol. 12 Issue (5): 752-765    DOI: 10.1007/s40333-020-0022-9
  本期目录 | 过刊浏览 | 高级检索 |
Rapid loss of leguminous species in the semi-arid grasslands of northern China under climate change and mowing from 1982 to 2011
XU Bo, HUGJILTU Minggagud, BAOYIN Taogetao, ZHONG Yankai, BAO Qinghai, ZHOU Yanlin, LIU Zhiying*()
Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
下载:  HTML  PDF (530KB) 
输出:  BibTeX | EndNote (RIS)      
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract: 

Effects of mowing on the composition and diversity of grasslands varied with climate change (e.g., precipitation and temperature). However, the interactive effects of long-term mowing and climate change on the diversity and stability of leguminous and non-leguminous species in the semi-arid grasslands are largely unknown. Here, we used in situ monitoring data from 1982 to 2011 to examine the effects of continuous mowing and climate change on the plant biomass and diversity of leguminous and non-leguminous species, and soil total nitrogen in the typical semi-arid grasslands of northern China. Results showed that the biomass and diversity of leguminous species significantly decreased with the increasing in the biomass and diversity of non-leguminous species during the 30-a period. Variations in biomass were mainly affected by the long-term mowing, while variations in diversity were mainly explained by the climate change. Moreover, the normalized change rates of diversity in leguminous species were significantly higher than those in non-leguminous species. Mowing and temperature together contributed to the diversity changes of leguminous species, with mowing accounting for 50.0% and temperature 28.0%. Temporal stability of leguminous species was substantially lower than that of non-leguminous species. Consequently, soil total nitrogen decreased in the 2000s compared with the 1980s. These findings demonstrated that leguminous species were more sensitive to the long-term mowing and climate change than non-leguminous species in the semi-arid grasslands. Thus, reseeding appropriate leguminous plants when mowing in the semi-arid grasslands may be a better strategy to improve nitrogen levels of grassland ecosystems and maintain ecosystem biodiversity.

Key words:  climate change    diversity    legume    mowing    productivity    succession    temporal stability
收稿日期:  2020-03-09      修回日期:  2020-07-17      接受日期:  2020-08-13      出版日期:  2020-09-10      发布日期:  2020-09-10      期的出版日期:  2020-09-10
引用本文:    
. [J]. 干旱区科学, 2020, 12(5): 752-765.
XU Bo, HUGJILTU Minggagud, BAOYIN Taogetao, ZHONG Yankai, BAO Qinghai, ZHOU Yanlin, LIU Zhiying. Rapid loss of leguminous species in the semi-arid grasslands of northern China under climate change and mowing from 1982 to 2011. Journal of Arid Land, 2020, 12(5): 752-765.
链接本文:  
http://jal.xjegi.com/CN/10.1007/s40333-020-0022-9  或          http://jal.xjegi.com/CN/Y2020/V12/I5/752
  
  
  
  
  
  
Parameter Treatment Precipitation Temperature
Linear Nonlinear Linear Nonlinear
Biomass Control 0.05 0.34 -0.50* -0.50*
Mowing 0.14 0.30 -0.59** -0.60**
Relative biomass Control -0.03 0.42 -0.32 -0.33
Mowing 0.02 0.54* -0.57** -0.50*
Species diversity Control 0.25 0.31 -0.56** -0.58**
Mowing 0.09 0.44 -0.46* -0.64**
Relative species diversity Control 0.22 0.19 -0.39* -0.62**
Mowing 0.03 0.32 -0.38* -0.60**
  
  
  
  
  
  
  
[1] Baez S, Collins S L, Pockman W T, et al. 2013. Effects of experimental rainfall manipulations on Chihuahuan Desert grassland and shrubland plant communities. Oecologia, 172(4): 1117-1127.
doi: 10.1007/s00442-012-2552-0
[2] Bai Y F, Han X G, Wu J G, et al. 2004. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431(7005): 181-184.
doi: 10.1038/nature02850 pmid: 15356630
[3] Baoyin T G T, Li F Y H, Bao Q H, et al. 2014. Effects of mowing regimes and climate variability on hay production of Leymus chinensis (Trin.) Tzvelev grassland in northern China. Rangeland Journal, 36(6): 593-600.
doi: 10.1071/RJ13088
[4] Blessing C H, Mariette A, Kaloki P, et al. 2018. Profligate and conservative: water use strategies in grain legumes. Journal of Experimental Botany, 69(3): 349-369.
doi: 10.1093/jxb/erx415 pmid: 29370385
[5] Bulleri F, Bruno J F, Silliman B R, et al. 2016. Facilitation and the niche: implications for coexistence, range shifts and ecosystem functioning. Functional Ecology, 30(1): 70-78.
doi: 10.1111/fec.2016.30.issue-1
[6] Butterfield B J. 2015. Environmental filtering increases in intensity at both ends of climatic gradients, though driven by different factors, across woody vegetation types of the southwest USA. Oikos, 124(10): 1374-1382.
doi: 10.1111/oik.2015.v124.i10
[7] Butterfield B J, Munson S M. 2016. Temperature is better than precipitation as a predictor of plant community assembly across a dryland region. Journal of Vegetation Science, 27(5): 938-947.
doi: 10.1111/jvs.2016.27.issue-5
[8] Cardinale B J, Wright J P, Cadotte M W, et al. 2007. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences of the United States of America, 104(46): 18123-18128.
[9] Cardinale B J, Duffy J E, Gonzalez A, et al. 2012. Biodiversity loss and its impact on humanity. Nature, 486(7401): 59-67.
doi: 10.1038/nature11148
[10] Chen D M, Pan Q M, Bai Y F, et al. 2016. Effects of plant functional group loss on soil biota and net ecosystem exchange: a plant removal experiment in the Mongolian grassland. Journal of Ecology, 104(3): 734-743.
doi: 10.1111/1365-2745.12541
[11] Cowles J M, Wragg P D, Wright A J, et al. 2016. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity. Global Change Biology, 22(2): 741-749.
doi: 10.1111/gcb.13111 pmid: 26426698
[12] Downing A L, Brown B L, Leibold M A. 2014. Multiple diversity-stability mechanisms enhance population and community stability in aquatic food webs. Ecology, 95(1): 173-184.
doi: 10.1890/12-1406.1
[13] Finn J A, Kirwan L, Connolly J, et al. 2013. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: a 3-year continental-scale field experiment. Journal of Applied Ecology, 50(2): 365-375.
doi: 10.1111/1365-2664.12041
[14] Gao D D, Wang X L, Fu S L, et al. 2017. Legume plants enhance the resistance of soil to ecosystem disturbance. Frontiers in Plant Science, 8: 1295.
doi: 10.3389/fpls.2017.01295 pmid: 28785277
[15] Gherardi L A, Sala O E. 2015. Enhanced interannual precipitation variability increases plant functional diversity that in turn ameliorates negative impact on productivity. Ecology Letters, 18(12): 1293-1300.
doi: 10.1111/ele.12523 pmid: 26437913
[16] Grime J P, Fridley J D, Askew A P, et al. 2008. Long-term resistance to simulated climate change in an infertile grassland. Proceedings of the National Academy of Sciences of the United States of America, 105(29): 10028-10032.
[17] Hautier Y, Tilman D, Isbell F, et al. 2015. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science, 348(6232): 336-340.
doi: 10.1126/science.aaa1788 pmid: 25883357
[18] He L, Cheng L L, Hu L L, et al. 2016. Deviation from niche optima affects the nature of plant-plant interactions along a soil acidity gradient. Biology Letters, 12(1): 20150925, doi: 10.1098/rsbl.2015.0925.
doi: 10.1098/rsbl.2015.0925 pmid: 26740568
[19] Hobbie S E. 2015. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends in Ecology & Evolution, 30(6): 357-363.
doi: 10.1016/j.tree.2015.03.015 pmid: 25900044
[20] Hoover D L, Knapp A K, Smith M D. 2014. Resistance and resilience of a grassland ecosystem to climate extremes. Ecology, 95(9): 2646-2656.
[21] Isbell F I, Polley H W, Wilsey B J. 2009. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecology Letters, 12(5): 443-451.
doi: 10.1111/j.1461-0248.2009.01299.x pmid: 19379138
[22] Jensen E S, Hauggaard-Nielsen H. 2003. How can increased use of biological N2 fixation in agriculture benefit the environment? Plant and Soil, 252(1): 177-186.
doi: 10.1023/A:1024189029226
[23] Karhu K, Auffret M D, Dungait J A J, et al. 2014. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature, 513(7516): 81-84.
doi: 10.1038/nature13604
[24] Köhler B, Gigon A, Edwards P J, et al. 2005. Changes in the species composition and conservation value of limestone grasslands in Northern Switzerland after 22 years of contrasting managements. Perspectives in Plant Ecology Evolution and Systematics, 7(1): 51-67.
doi: 10.1016/j.ppees.2004.11.003
[25] Korell L, Schmidt R, Bruelheide H, et al. 2016. Mechanisms driving diversity-productivity relationships differ between exotic and native communities and are affected by gastropod herbivory. Oecologia, 180(4): 1025-1036.
doi: 10.1007/s00442-015-3395-2 pmid: 26235964
[26] Lavorel S, Mcintyre S, Landsberg J, et al. 1997. Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends in Ecology and Evolution, 12(12): 474-478.
doi: 10.1016/s0169-5347(97)01219-6 pmid: 21238163
[27] Li B, Li Y Y, Wu H M, et al. 2016. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America, 113(23): 6496-6501.
[28] Li X L, Liu Z Y, Wang Z, et al. 2015. Pathways of Leymus chinensis individual aboveground biomass decline in natural semiarid grassland induced by overgrazing: a study at the plant functional trait scale. PloS ONE, 10(5): e0124443.
doi: 10.1371/journal.pone.0124443 pmid: 25942588
[29] Lin D, Xia J Y, Wan S Q. 2010. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytologist, 188(1): 187-198.
doi: 10.1111/j.1469-8137.2010.03347.x pmid: 20609113
[30] Liu Y Z, Miao R H, Chen A Q, et al. 2017. Effects of nitrogen addition and mowing on reproductive phenology of three early-flowering forb species in a Tibetan alpine meadow. Ecological Engineering, 99: 119-125.
doi: 10.1016/j.ecoleng.2016.11.033
[31] Liu Y Z, Ma G G, Zan Z M, et al. 2018. Effects of nitrogen addition and mowing on rodent damage in an Inner Mongolian steppe. Ecology and Evolution, 8(8): 3919-3926.
doi: 10.1002/ece3.3949 pmid: 29721268
[32] Miko L, Storch D. 2015. Biodiversity conservation under energy limitation: Possible consequences of human productivity appropriation for species richness, ecosystem functioning, and food production. Ecosystem Services, 16: 146-149.
doi: 10.1016/j.ecoser.2015.05.003
[33] Miller A E, Schimel J P, Sickman J O, et al. 2007. Mineralization responses at near-zero temperatures in three alpine soils. Biogeochemistry, 84(3): 233-245.
doi: 10.1007/s10533-007-9112-4
[34] Moritz C, Agudo R. 2013. The future of species under climate change: resilience or decline? Science, 341(6145): 504-508.
doi: 10.1126/science.1237184
[35] Niu S L, Wan S Q. 2008. Warming changes plant competitive hierarchy in a temperate steppe in northern China. Journal of Plant Ecology, 1(2): 103-110.
doi: 10.1093/jpe/rtn003
[36] Peng H Y, Li X Y, Li G Y, et al. 2013. Shrub encroachment with increasing anthropogenic disturbance in the semiarid Inner Mongolian grasslands of China. CATENA, 109: 39-48.
doi: 10.1016/j.catena.2013.05.008
[37] Polley H W, Isbell F I, Wilsey B J. 2013. Plant functional traits improve diversity-based predictions of temporal stability of grassland productivity. Oikos, 122(9): 1275-1282.
doi: 10.1111/j.1600-0706.2013.00338.x
[38] Robson T M, Lavorel S, Clement J C, et al. 2007. Neglect of mowing and manuring leads to slower nitrogen cycling in subalpine grasslands. Soil Biology and Biochemistry, 39(4): 930-941.
doi: 10.1016/j.soilbio.2006.11.004
[39] Roscher C, Temperton V M, Scherer-Lorenzen M, et al. 2005. Overyielding in experimental grassland communities- irrespective of species pool or spatial scale. Ecology Letters, 8(4): 576-577.
[40] Rumpel C, Crème A, Ngo P T, et al. 2015. The impact of grassland management on biogeochemical cycles involving carbon, nitrogen and phosphorus. Journal of Soil Science and Plant Nutrition, 15(2): 353-371.
[41] Shao C, Chen J, Li L, et al. 2012. Ecosystem responses to mowing manipulations in an arid Inner Mongolia steppe: An energy perspective. Journal of Arid Environments, 82: 1-10.
doi: 10.1016/j.jaridenv.2012.02.019
[42] Shi Z, Sherry R, Xu X, et al. 2015. Evidence for long-term shift in plant community composition under decadal experimental warming. Journal of Ecology, 103(5): 1131-1140.
doi: 10.1111/1365-2745.12449
[43] Smith M D, Knapp A K, Collins S L. 2009. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology, 90(12): 3279-3289.
doi: 10.1890/08-1815.1 pmid: 20120798
[44] Suter M, Connolly J, Finn J A, et al. 2015. Nitrogen yield advantage from grass-legume mixtures is robust over a wide range of legume proportions and environmental conditions. Global Change Biology, 21(6): 2424-2438.
doi: 10.1111/gcb.12880 pmid: 25626994
[45] Talle M, Deak B, Poschlod P, et al. 2016. Grazing vs. mowing: A meta-analysis of biodiversity benefits for grassland management. Agriculture Ecosystems and Environment, 222: 200-212.
doi: 10.1016/j.agee.2016.02.008
[46] Tilman D. 1999. Diversity by default. Science, 283(5401): 495-496.
doi: 10.1126/science.283.5401.495
[47] Tilman D, Reich P B, Knops J M H. 2006. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 441(7093): 629-632.
doi: 10.1038/nature04742 pmid: 16738658
[48] Tracy B F, Sanderson M A. 2004. Forage productivity, species evenness and weed invasion in pasture communities. Agriculture Ecosystems and Environment, 102(2): 175-183.
doi: 10.1016/j.agee.2003.08.002
[49] Walker M D, Wahren C H, Hollister R D, et al. 2006. Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America, 103(5): 1342-1346.
[50] Wan S Q, Hui D F, Wallace L, et al. 2005. Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycles, 19(2): GB2014.
[51] Wu G L, Liu Y, Tian F P, et al. 2016. Legumes functional group promotes soil organic carbon and nitrogen storage by increasing plant diversity. Land Degradation and Development, 28(4): 1336-1344.
doi: 10.1002/ldr.v28.4
[52] Yang H J, Li Y, Wu M Y, et al. 2011. Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. Global Change Biology, 17(9): 2936-2944.
doi: 10.1111/j.1365-2486.2011.02423.x
[53] Yang H J, Jiang L, Li L H, et al. 2012. Diversity-dependent stability under mowing and nutrient addition: evidence from a 7-year grassland experiment. Ecology Letters, 15(6): 619-626.
doi: 10.1111/j.1461-0248.2012.01778.x
[54] Yang Z L, Jiang L, Su F L, et al. 2016. Nighttime warming enhances drought resistance of plant communities in a temperate steppe. Scientific Reports, 6(1): 23267.
doi: 10.1038/srep23267
[55] Yang Z L, Zhang Q, Su F L, et al. 2017. Daytime warming lowers community temporal stability by reducing the abundance of dominant, stable species. Global Chang Biology, 23(1): 154-163.
doi: 10.1111/gcb.13391
[56] Zahran H H. 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews, 63(4): 968-989.
pmid: 10585971
[57] Zhou Z, Sun O J, Huang J, et al. 2006. Land use affects the relationship between species diversity and productivity at the local scale in a semi-arid steppe ecosystem. Functional Ecology, 20(5): 753-762.
doi: 10.1111/j.1365-2435.2006.01175.x pmid: 32367902
No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed