Please wait a minute...
干旱区科学
  Research Articles 本期目录 | 过刊浏览 | 高级检索 |
Magnetic property of loess strata recorded by Kansu profile in Tianshan Mountains
Jia JIA, XianBin LIU, DunSheng XIA, HaiTao WEI, Bo WANG
1 Key Laboratory of West China’s Environmental Systems (Ministry of Education), College of Earth Sciences and Environments , Lanzhou University, Lanzhou 730000, China; 2 Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
Magnetic property of loess strata recorded by Kansu profile in Tianshan Mountains
Jia JIA, XianBin LIU, DunSheng XIA, HaiTao WEI, Bo WANG
1 Key Laboratory of West China’s Environmental Systems (Ministry of Education), College of Earth Sciences and Environments , Lanzhou University, Lanzhou 730000, China; 2 Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
下载:  PDF (406KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 Kansu (KS) profile is located in the east of Yili basin, western Xinjiang, where typical loess sediments are distributed. The magnetic parameters (such as IRM, SIRM SOFT, and M) and grain size in the KS profile were analyzed in the study. The results showed that the magnetic property of KS loess is dominated by ferrimagnetic minerals, such as magnetite and maghemite. Antiferromagnetic and superparamagnetic minerals also exist in the profile, but had less impact on magnetic susceptibility. Compared with the typical loess sediments of the central Loess Plateau in China, the strata of Kansu profile contained more magnetic minerals and hard magnetic minerals. The analysis of grain size for magnetic minerals indicated that the properties of loess and paleosol were respectively dominated by PSD/MD and coarse SSD magnetite. The research found that the contents of magnetic minerals in loess and paleosol sequences in Kansu profile were similar, but the proportion of fine grained magnetite and soft magnetic minerals were varying, which implies a positive relationship between the value of magnetic susceptibility and intensity of pedogenesis.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Jia JIA
XianBin LIU
DunSheng XIA
HaiTao WEI
Bo WANG
关键词:  NDVI  vegetation cover  climate change  human activity  northwest China    
Abstract: Kansu (KS) profile is located in the east of Yili basin, western Xinjiang, where typical loess sediments are distributed. The magnetic parameters (such as IRM, SIRM SOFT, and M) and grain size in the KS profile were analyzed in the study. The results showed that the magnetic property of KS loess is dominated by ferrimagnetic minerals, such as magnetite and maghemite. Antiferromagnetic and superparamagnetic minerals also exist in the profile, but had less impact on magnetic susceptibility. Compared with the typical loess sediments of the central Loess Plateau in China, the strata of Kansu profile contained more magnetic minerals and hard magnetic minerals. The analysis of grain size for magnetic minerals indicated that the properties of loess and paleosol were respectively dominated by PSD/MD and coarse SSD magnetite. The research found that the contents of magnetic minerals in loess and paleosol sequences in Kansu profile were similar, but the proportion of fine grained magnetite and soft magnetic minerals were varying, which implies a positive relationship between the value of magnetic susceptibility and intensity of pedogenesis.
Key words:  NDVI    vegetation cover    climate change    human activity    northwest China
     修回日期:  2011-04-09           出版日期:  2011-09-07      发布日期:  2011-09-07      期的出版日期:  2011-09-07
基金资助: National 973 Project (2009CB421308); Natural Science Foundation of China (40871080 and 90502008)
通讯作者:  DunSheng XIA    E-mail:  dsxia@lzu.edu.cn
引用本文:    
Jia JIA, XianBin LIU, DunSheng XIA, HaiTao WEI, Bo WANG. Magnetic property of loess strata recorded by Kansu profile in Tianshan Mountains[J]. 干旱区科学, 10.3724/SP.J.1227.2011.00191.
Jia JIA, XianBin LIU, DunSheng XIA, HaiTao WEI, Bo WANG. Magnetic property of loess strata recorded by Kansu profile in Tianshan Mountains. Journal of Arid Land, 2011, 3(3): 191-198.
链接本文:  
http://jal.xjegi.com/CN/10.3724/SP.J.1227.2011.00191  或          http://jal.xjegi.com/CN/Y2011/V3/I3/191
[1] WU Duo, CHEN Fahu, LI Kai, XIE Yaowen, ZHANG Jiawu, ZHOU Aifeng. Effects of climate change and human activity on lake shrinkage in Gonghe Basin of northeastern Tibetan Plateau during the past 60 years[J]. 干旱区科学, 2016, 8(4): 479-491.
[2] JIN Jia, WANG Quan. Assessing ecological vulnerability in western China based on Time-Integrated NDVI data[J]. 干旱区科学, 2016, 8(4): 533-545.
[3] YANG Xuemei, LIU Shizeng, YANG Taibao, XU Xianying, KANG Caizhou, TANG Jinnian, . Spatial-temporal dynamics of desert vegetation and its responses to climatic variations over the last three decades: a case study of Hexi region in Northwest China[J]. 干旱区科学, 2016, 8(4): 556-568.
[4] TIAN Zheng, WU Xiuqin, DAI Erfu, ZHAO Dongsheng. SOC storage and potential of grasslands from 2000 to 2012 in central and eastern Inner Mongolia, China[J]. 干旱区科学, 2016, 8(3): 364-374.
[5] YIN Gang, HU Zengyun, CHEN Xi, TIYIP Tashpolat. Vegetation dynamics and its response to climate change in Central Asia[J]. 干旱区科学, 2016, 8(3): 375-388.
[6] GUO Qun, LI Shenggong, HU Zhongmin, ZHAO Wei, YU Guirui, SUN Xiaomin, LI Linghao. Responses of gross primary productivity to different sizes of precipitation events in a temperate grassland ecosystem in Inner Mongolia, China[J]. 干旱区科学, 2016, 8(1): 36-46.
[7] ZHOU Lei, LYU Aifeng. Investigating natural drivers of vegetation coverage variation using MODIS imagery in Qinghai, China[J]. 干旱区科学, 2016, 8(1): 109-124.
[8] WANG Puyu, LI Zhongqin, HUAI Baojuan, WANG Wenbin, LI Huilin, WANG Lin. Spatial variability of glacial changes and their effects on water resources in the Chinese Tianshan Mountains during the last five decades[J]. 干旱区科学, 2015, 7(6): 717-727.
[9] Sumiya VANDANDORJ, Batdelger GANTSETSEG, Bazartseren BOLDGIV. Spatial and temporal variability in vegetation cover of Mongolia and its implications[J]. 干旱区科学, 2015, 7(4): 450-461.
[10] MA Changkun, SUN Lin, LIU Shiyin, SHAO Ming’an, LUO Yi. Impact of climate change on the streamflow in the glacierized Chu River Basin, Central Asia[J]. 干旱区科学, 2015, 7(4): 501-513.
[11] XiuFang ZHU, AnZhou ZHAO, YiZhan LI, XianFeng LIU. Agricultural irrigation requirements under future climate scenarios in China[J]. 干旱区科学, 2015, 7(2): 224-237.
[12] Hui CHEN, ZhongQin LI, PuYu WANG, ZhongPing LAI, RenSheng CHEN, BaoJuan HUAI. Five decades of glacier changes in the Hulugou Basin of central Qilian Mountains, Northwest China[J]. 干旱区科学, 2015, 7(2): 159-165.
[13] Zhi ZHANG, ZhiBao DONG, ChangZhen YAN, GuangYin HU. Change of lake area in the southeastern part of China’s Badain Jaran Sand Sea and its implications for recharge sources[J]. 干旱区科学, 2015, 7(1): 1-9.
[14] Long WAN, Jun XIA, HongMei BU, Si HONG, JunXu CHEN, LiKe NING. Sensitivity and vulnerability of water resources in the arid Shiyang River Basin of Northwest China[J]. 干旱区科学, 2014, 6(6): 656-667.
[15] Anya Catherine C ARGUELLES, MinJae JUNG, Kristine Joy B MALLARI, GiJung PAK, Haf. Evaluation of an erosion-sediment transport model for a hillslope using laboratory flume data[J]. 干旱区科学, 2014, 6(6): 647-655.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed