Please wait a minute...
干旱区科学  2012, Vol. 4 Issue (2): 180-190    DOI: 10.3724/SP.J.1227.2012.00180
  学术论文 本期目录 | 过刊浏览 | 高级检索 |
Molecular phylogeny of tribe Atraphaxideae (Polygonaceae) evidenced from five cpDNA genes
YanXia SUN1, MingLi ZHANG 1,2
1 Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
2 Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
Molecular phylogeny of tribe Atraphaxideae (Polygonaceae) evidenced from five cpDNA genes
YanXia SUN1, MingLi ZHANG 1,2
1 Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
2 Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
下载:  PDF (175KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 Traditionally, Atraphaxis, Calligonum, Pteropyrum and Parapteropyrum are included in the tribe Atraphxideae. Recently, sequence data has revealed that this tribe is not monophyletic. The structure of the tribe was examined by adding more taxa and sequences to clarify the congruence between morphology and molecular phylogeny, the systematic placements of four genera in Polygonaceae, as well as the infra-generic relationships of Atraphaxis and Calligonum within Atraphaxideae. Five chloroplast genes, atpB-rbcL, psbA-trnH, trnL–trnF, psbK-psbI, and rbcL of Atraphaxis, Calligonum, Pteropyrum, and Parapteropyrum were sequenced. The non-monophyly of Atraphaxideae was confirmed. Atraphaxis and Calligonum, respectively, formed a monophyletic group that was well supported. Calligonum is closely related to Pteropyrum; Atraphaxis is sister to Polygonum s. str.; and Parapteropyrum is allied with Fagopyrum. Although the morphology suggested the four genera should form a tribe, the molecular data indicated Atraphaxideae was not one monophyletic group. The clades identified within Atraphaxis corresponded well with the current sectional classification based on morphological features. As for Calligonum, Medusa was identified as a non-monophyletic section.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
YanXia SUN
MingLi ZHANG
关键词:  nitrogen addition  species richness  biomass  functional group  temperate steppe  Duolun, Inner Mongolia    
Abstract: Traditionally, Atraphaxis, Calligonum, Pteropyrum and Parapteropyrum are included in the tribe Atraphxideae. Recently, sequence data has revealed that this tribe is not monophyletic. The structure of the tribe was examined by adding more taxa and sequences to clarify the congruence between morphology and molecular phylogeny, the systematic placements of four genera in Polygonaceae, as well as the infra-generic relationships of Atraphaxis and Calligonum within Atraphaxideae. Five chloroplast genes, atpB-rbcL, psbA-trnH, trnL–trnF, psbK-psbI, and rbcL of Atraphaxis, Calligonum, Pteropyrum, and Parapteropyrum were sequenced. The non-monophyly of Atraphaxideae was confirmed. Atraphaxis and Calligonum, respectively, formed a monophyletic group that was well supported. Calligonum is closely related to Pteropyrum; Atraphaxis is sister to Polygonum s. str.; and Parapteropyrum is allied with Fagopyrum. Although the morphology suggested the four genera should form a tribe, the molecular data indicated Atraphaxideae was not one monophyletic group. The clades identified within Atraphaxis corresponded well with the current sectional classification based on morphological features. As for Calligonum, Medusa was identified as a non-monophyletic section
Key words:  nitrogen addition    species richness    biomass    functional group    temperate steppe    Duolun, Inner Mongolia
收稿日期:  2011-09-15      修回日期:  2012-01-28           出版日期:  2012-06-06      发布日期:  2012-06-06      期的出版日期:  2012-06-06
基金资助: 

Chinese Academy of Sciences Important Direction for Knowledge Innovation Project (KZCX2-EW-305), Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences.

通讯作者:  MingLi ZHANG    E-mail:  zhangml@ibcas.ac.cn
引用本文:    
YanXia SUN, MingLi ZHANG. Molecular phylogeny of tribe Atraphaxideae (Polygonaceae) evidenced from five cpDNA genes[J]. 干旱区科学, 2012, 4(2): 180-190.
YanXia SUN, MingLi ZHANG. Molecular phylogeny of tribe Atraphaxideae (Polygonaceae) evidenced from five cpDNA genes. Journal of Arid Land, 2012, 4(2): 180-190.
链接本文:  
http://jal.xjegi.com/CN/10.3724/SP.J.1227.2012.00180  或          http://jal.xjegi.com/CN/Y2012/V4/I2/180
Bao B J, Li A J. 1993. A study of the genus Atraphaxis in China and the system of Atraphaxideae (Polygonaceae). Acta Phytotaxonomica Sinica, 31: 127–139.

Brandbyge J. 1993. Polygonaceae. In: Kubitzki K, Bittich V. The Fami-lies and Genera of Vascular Plants. Berlin: Springer, 531–544.

Dammer U. 1893. Polygonaceae. In: Engler H G A, Prantl K A E. Die natürlichen P?anzenfamilie. Leipzig: Engelmann, 1–36.

Doyle J J, Doyle J L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochemical Bulletin, 19: 11–15.

Farris J S, Källersjö M, Kluge A G, et al. 1994. Testing significance of incongruence. Cladistics, 10: 315–319.

Farris J S, Källersjö M, Kluge A G, et al. 1995. Constructing a signifi-cance test for incongruence. Systmatic Biology, 44: 570–572.

Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39: 783–791.

Haraldson K. 1978. Anatomy and taxonomy in Polygonaceae subfam. Polygonoideae Meisn. emend. Jaretzky. Symbolae Botanicae Upsa-liensis, 22: 1–95.

Heywood V H, Brummitt P K, Culham A, et al. 2007. Flowering Plant Families of the World. London: Kew Publishing.

Hong S-P. 1995. Pollen morphology of Parapteropyrum and some putatively related genera (Polygonaceae-Atraphaxideae). Grana, 34: 153–159.

Huelsenbeck J P, Rannala B. 2004. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and com-plex substitution models. Systmatic Biology, 53: 904–913.

Huelsenbeck J P, Ronquist F. 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics, 17: 754–755.

Janssens S, Geuten K, Yuan Y M, et al. 2006. Phylogenetics of Impa-tiens and Hydrocera (Balsaminaceae) using chloroplast atpB-rbcL spacer sequences. Systmatic Botany, 33: 171–180.

Jaretzky R. 1925. Contributions to the systematics of the Polygonaceae with consideration of the oxymethyl-anthraquinone-occurrence. Feddes Repertorium, 22: 49–83.

Jaretzky R. 1928. Histological and karyological studies on Polygona-ceae. Jahrbuecher fur Wissenschaftliche Botanik, 69: 357–490.

Johnson L A, Soltis D E. 1995. Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. An-nals of the Missouri Botanical Garden, 82: 149–175.

Lamb-Frye A S, Kron K A. 2003. Phylogeny and character evolution in Polygonaceae. Systmatic Botany, 28: 326–332.

Li A J, Bao B J, Grabovskava-Borodina A E, et al. 2003. Polygonaceae. In: Wu Z Y, Raven P H. Flora of China. Beijing: Science Press and St. Louis: Missouri Botanical Garden Press, 5: 277–350.

Li A J, Kao Z T, Mao Z M, et al. 1998. Polygonaceae. In: Wu Z Y, Chen X Q. Flora Reipublicae Popularis Sinicae, vol. 25. Beijing: Science Press, 120–142.

Lovelius O L. 1978. Synopsis generis Atraphaxis L. (Polygonaceae). Novosti Sistematiki Vysshikh Rastenii, 15: 85–108.

Mabberley D J. 1990. The Plant Book. Cambridge: Cambridge Univer-sity Press.

Mao Z M, Yang G, Wang C G. 1983. Studies on chromosome numbers and anatomy of young branches of Calligonum of Xinjiang in rela-tion to the evolution of some species of the genus. Acta Phytotax-onomica Sinica, 21: 44–49.

Maekawa F. 1964. On the phylogeny in the Polygonaceae. Journal of Japanese Botany, 39: 14–18.

Nakai T. 1926. A new classification of Linnean Polygonum. Rigakkai, 24: 289–301.

Ohnishi O. 1998. Search for the wild ancestor of buckwheat I. description of new Fagopyrum (Polygonaceae) species and their distribution in China and the Himalayan hills. Fagopyrum, 15: 18–28.

Pavlov H B. 1936. Flora of USSR, vol 5. Moscow: Science Press.

Posada D, Crandall K A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14: 817–818.

Rechinger K H, Schiman-Czeika H. 1968. Polygonaceae. In: Rechinger. Flora Iranica. Graz: Akademische Druck-u Verlagsanstalt. 56.

Ronse Decraene L P, Akeroyd J R A. 1988. Generic limits in Poly-gonum and related genera (Polygonaceae) on the basis of floral characters. Botanical Journal of the Linnean Society, 98: 321–371.

Sanchez A, Kron K A. 2008. Phylogenetics of Polygonaceae with an em-phasis on the evolution of Eriogonoideae. Systmatic Botany, 33: 87–96.

Sanchez A, Kron K A. 2009. Phylogenetic relationships of Afrobrun-nichia Hutch. & Dalziel (Polygonaceae) based on three chloroplast genes and ITS. Taxon, 58: 781–792.

Sanchez A, Schuster T M, Kron K A. 2009. A large-scale phylogeny of Polygonaceae based on molecular data. International Journal of Plant Sciences, 170: 1044–1055.

Sanchez A, Schuster T M, Burke J M, et al. 2011. Taxonomy of Poly-gonoideae (Polygonaceae): a new tribal classification. Taxon, 60: 151–160.

Sang T, Crawford J, Stuessy T F. 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany, 84: 1120–1136.

Swofford D L. 2002. PAUP*: phylogenetic analysis using parsimony, v. 4.0b10. Sunderland: Sinauer Associates.

Taberlet P, Gielly L, Pautou G, et al. 1991. Universal primers for ampli-fication of three non-coding regions of chloroplast DNA. Plant Mo-lecular Biology, 17: 1105–1109.

Takhtajan A. 2009. Flowering Plants. Berlin: Springer.

Tate J A, Simpson B B. 2003. Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Systmatic Botany, 28: 723–737.

Tavakkoli S, Osaloo S K, Maassoumi A A. 2008. Morphological cladis-tic analysis of Calligonum and Pteropyrum (Polygonaceae) in Iran. Iran Journal of Botany, 14: 117–125.

Tavakkoli S, Kazempour Osaloo S, Maassoumi A A. 2010. The phy-logeny of Calligonum and Pteropyrum (Polygonaceae) based on nu-clear ribosomal DNA ITS and chloroplast trnL-F sequences. Iranian Journal of Biotechnology, 8: 1–15.

Thompson J D, Gibson T J, Plewniak F, et al. 1997. The clustal X windows interface: flexible strategies for multiple sequence align-ment aided by quality analysis tools. Nucleic Acids Research, 24: 4876–4882.

Tian X M, Liu R R, Tian B, et al. 2009. Karyological studies of Parap-teropyrum and Atraphaxis (Polygonaceae). Caryologia, 62: 261–266.
[1] WANG Haiming, SUN Jian, LI Weipeng, WU Jianbo, CHEN Youjun, LIU Wenhui. Effects of soil nutrients and climate factors on belowground biomass in an alpine meadow in the source region of the Yangtze-Yellow rivers, Tibetan Plateau of China[J]. 干旱区科学, 2016, 8(6): 881-889.
[2] TAO Ye, WU Ganlin, ZHANG Yuanming, ZHOU Xiaobing. Leaf N and P stoichiometry of 57 plant species in the Karamori Mountain Ungulate Nature Reserve, Xinjiang, China[J]. 干旱区科学, 2016, 8(6): 935-947.
[3] YANG Zhaoping, GAO Jixi, YANG Meng, SUN Zhizhong. Effects of freezing intensity on soil solution nitrogen and microbial biomass nitrogen in an alpine grassland ecosystem on the Tibetan Plateau, China[J]. 干旱区科学, 2016, 8(5): 749-759.
[4] XU Manhou, LIU Min, XUE Xian, ZHAI Datong. Warming effects on plant biomass allocation and correlations with the soil environment in an alpine meadow, China[J]. 干旱区科学, 2016, 8(5): 773-786.
[5] YUE Xiangfei, ZHANG Tonghui, ZHAO Xueyong, LIU Xinping, MA Yunhua. Effects of rainfall patterns on annual plants in Horqin Sandy Land, Inner Mongolia of China[J]. 干旱区科学, 2016, 8(3): 389-398.
[6] WU Jing, QIAN Jianqiang, HOU Xianzhang, Carlos A BUSSO, LIU Zhimin, Xing Baozhen. Spatial variation of plant species richness in a sand dune field of northeastern Inner Mongolia, China[J]. 干旱区科学, 2016, 8(3): 434-442.
[7] Hormoz SOHRABI, Siavash BAKHTIARVAND-BAKHTIARI, Kourosh AHMADI. Above- and below-ground biomass and carbon stocks of different tree plantations in central Iran[J]. 干旱区科学, 2016, 8(1): 138-145.
[8] XU Wenxuan, LIU Wei, YANG Weikang, WANG Muyang, XU Feng, David BLANK. Impact of great gerbils (Rhombomys opimus) on desert plant communities[J]. 干旱区科学, 2015, 7(6): 852-859.
[9] ZhengYang YAO, JianJun LIU, XiaoWen ZHAO, DongFeng LONG, Li WANG. Spatial dynamics of aboveground carbon stock in urban green space: a case study of Xi’an, China[J]. 干旱区科学, 2015, 7(3): 350-360.
[10] Yang QIU, ZhongKui XIE, YaJun WANG, Sukhdev S MALHI, JiLong REN. Long-term effects of gravel―sand mulch on soil orga¬nic carbon and nitrogen in the Loess Plateau of northwestern China[J]. 干旱区科学, 2015, 7(1): 46-53.
[11] BingChang ZHANG, XiaoBing ZHOU, YuanMing ZHANG. Responses of microbial activities and soil physical-chemical properties to the successional process of biological soil crusts in the Gurbantunggut Desert, Xinjiang[J]. 干旱区科学, 2015, 7(1): 101-109.
[12] GuiQing XU, DanDan YU, JiangBo XIE, LiSong TANG, Yan LI. What makes Haloxylon persicum grow on sand dunes while H. ammodendron grows on interdune lowlands: a proof from reciprocal transplant experiments[J]. 干旱区科学, 2014, 6(5): 581-591.
[13] Stephen M MUREITHI, Ann VERDOODT, Charles KK GACHENE, Jesse T NJOKA, Vivian O WA. Impact of enclosure management on soil properties and microbial biomass in a restored semi-arid rangeland, Kenya[J]. 干旱区科学, 2014, 6(5): 561-570.
[14] Silvia CLAVER, Susana L SILNIK, Florencia F CAMPóN. Response of ants to grazing disturbance at the central Monte Desert of Argentina: community descriptors and functional group scheme[J]. 干旱区科学, 2014, 6(1): 117-127.
[15] LianLian FAN, Yan LI, LiSong TANG, Jian MA. Combined effects of snow depth and nitrogen addition on ephemeral growth at the southern edge of the Gurbantunggut Desert, China[J]. 干旱区科学, 2013, 5(4): 500-510.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed