Please wait a minute...
干旱区科学  2016, Vol. 8 Issue (5): 749-759    DOI: 10.1007/s40333-016-0012-0
  学术论文 本期目录 | 过刊浏览 | 高级检索 |
Effects of freezing intensity on soil solution nitrogen and microbial biomass nitrogen in an alpine grassland ecosystem on the Tibetan Plateau, China
YANG Zhaoping1, GAO Jixi2*, YANG Meng1, SUN Zhizhong3
1 Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of EnvironmentalScience and Engineering, Nanjing University of Information Science&Technology, Nanjing  210044, China;
2 Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China;
3 State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences, Lanzhou 730000, China
Effects of freezing intensity on soil solution nitrogen and microbial biomass nitrogen in an alpine grassland ecosystem on the Tibetan Plateau, China
YANG Zhaoping1, GAO Jixi2*, YANG Meng1, SUN Zhizhong3
1 Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of EnvironmentalScience and Engineering, Nanjing University of Information Science&Technology, Nanjing  210044, China;
2 Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China;
3 State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences, Lanzhou 730000, China
下载:  PDF (235KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 The change of freeze-thaw pattern of the Tibetan Plateau under climate warming is bound to have a profound impact on the soil process of alpine grassland ecosystem; however, the research on the impact of the freeze-thaw action on nitrogen processes of the alpine grassland ecosystem on the Tibetan Plateau has not yet attracted much attention. In this study, the impact of the freezing strength on the soil nitrogen components of alpine grassland on the Tibetan Plateau was studied through laboratory freeze-thaw simulation experiments. The 0–10 cm topsoil was collected from the alpine marsh meadow and alpine meadow in the permafrost region of Beilu River. In the experiment, the soil samples were cultivated at –10°C, –7°C, –5°C, –3°C and –1°C, respectively for three days and then thawed at 2°C for one day. The results showed that after the freeze-thaw process, the soil microbial biomass nitrogen significantly decreased while the dissolved organic nitrogen and inorganic nitrogen significantly increased. When the freezing temperature was below –7°C, there was no significant difference between the content of nitrogen components, which implied a change of each nitrogen component might have a response threshold toward the freezing temperature. As the freeze-thaw process can lead to the risk of nitrogen loss in the alpine grassland ecosystem, more attention should be paid to the response of the soil nitrogen cycle of alpine grasslands on the Tibetan Plateau to the freeze-thaw process.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
YANG Zhaoping
GAO Jixi
YANG Meng
SUN Zhizhong
关键词:  vertical profile  mass flux  aeolian sediment  wind erosion  Taklimakan Desert    
Abstract: The change of freeze-thaw pattern of the Tibetan Plateau under climate warming is bound to have a profound impact on the soil process of alpine grassland ecosystem; however, the research on the impact of the freeze-thaw action on nitrogen processes of the alpine grassland ecosystem on the Tibetan Plateau has not yet attracted much attention. In this study, the impact of the freezing strength on the soil nitrogen components of alpine grassland on the Tibetan Plateau was studied through laboratory freeze-thaw simulation experiments. The 0–10 cm topsoil was collected from the alpine marsh meadow and alpine meadow in the permafrost region of Beilu River. In the experiment, the soil samples were cultivated at –10°C, –7°C, –5°C, –3°C and –1°C, respectively for three days and then thawed at 2°C for one day. The results showed that after the freeze-thaw process, the soil microbial biomass nitrogen significantly decreased while the dissolved organic nitrogen and inorganic nitrogen significantly increased. When the freezing temperature was below –7°C, there was no significant difference between the content of nitrogen components, which implied a change of each nitrogen component might have a response threshold toward the freezing temperature. As the freeze-thaw process can lead to the risk of nitrogen loss in the alpine grassland ecosystem, more attention should be paid to the response of the soil nitrogen cycle of alpine grasslands on the Tibetan Plateau to the freeze-thaw process.
Key words:  vertical profile    mass flux    aeolian sediment    wind erosion    Taklimakan Desert
收稿日期:  2015-12-21      修回日期:  2016-04-08           出版日期:  2016-06-15      发布日期:  2016-04-21      期的出版日期:  2016-06-15
基金资助: 

This study was funded by the National Natural Science Foundation of China (31100337) and the Scientific Research Foundation of Nanjing University of Information Science & Technology (2243141301132).

通讯作者:  GAO Jixi    E-mail:  gjx@nies.org
引用本文:    
YANG Zhaoping, GAO Jixi, YANG Meng, SUN Zhizhong. Effects of freezing intensity on soil solution nitrogen and microbial biomass nitrogen in an alpine grassland ecosystem on the Tibetan Plateau, China[J]. 干旱区科学, 2016, 8(5): 749-759.
YANG Zhaoping, GAO Jixi, YANG Meng, SUN Zhizhong. Effects of freezing intensity on soil solution nitrogen and microbial biomass nitrogen in an alpine grassland ecosystem on the Tibetan Plateau, China. Journal of Arid Land, 2016, 8(5): 749-759.
链接本文:  
http://jal.xjegi.com/CN/10.1007/s40333-016-0012-0  或          http://jal.xjegi.com/CN/Y2016/V8/I5/749
Brookes P C, Landman A, Pruden G, et al. 1985. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17(6): 837–842.

Brooks P D, Williams M W. 1999. Snowpack controls on nitrogen cycling and export in seasonally snow-covered catchments. Hydrological Processes, 13(14–15): 2177–2190.

Campbell J L, Mitchell M J, Groffman P M, et al. 2005. Winter in northeastern North America: a critical period for ecological processes. Frontiers in Ecology and the Environment, 3(6): 314–322.

Chang C, Hao X. 2001. Source of N2O emission from a soil during freezing and thawing. Phyton (Austria), 41(3): 49–60.

Chen Y, Tessier S, MacKensie A F, et al. 1995. Nitrous oxide emission from an agricultural soil subjected to different freeze–thaw cycles. Agriculture, Ecosystems & Environment, 55(2): 123–128.

Cheng G D, Wu T H. 2007. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. Journal of Geophysical Research, 112(F2): F02S03, doi: 10.1029/2006JF000631.

DeLuca T H, Keeney D R, McCarty G W. 1992. Effect of freeze-thaw events on mineralization of soil nitrogen. Biology and Fertility of Soils, 14(2): 116–120.

Dong Z B, Hu G Y, Yan C Z, et al. 2010. Aeolian desertification and its causes in the Zoige Plateau of China’s Qinghai–Tibetan Plateau. Environmental Earth Sciences, 59(8): 1731–1740.

Easterling D R, Meehl G A, Parmesan C, et al. 2000. Climate extremes: observations, modeling, and impacts. Science, 289(5487): 2068–2074.

Edwards A C, Cresser M S. 1992. Freezing and its effect on chemical and biological properties of soil. In: Stewart B A. Advances in Soil Science. New York: Springer, 59–79.

Freppaz M, Williams B L, Edwards A C, et al. 2007. Simulating soil freeze/thaw cycles typical of winter alpine conditions: implications for N and P availability. Applied Soil Ecology, 35(1): 247–255.

Goldberg S D, Muhr J, Borken W, et al. 2008. Fluxes of climate-relevant trace gases between a Norway spruce forest soil and atmosphere during repeated freeze-thaw cycles in mesocosms. Journal of Plant Nutrition and Soil Science, 171(5): 729–739.

Grogan P, Jonasson S. 2003. Controls on annual nitrogen cycling in the understory of a subarctic birch forest. Ecology, 84(1): 202–218.

Grogan P, Michelsen A, Ambus P, et al. 2004. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms. Soil Biology and Biochemistry, 36(4): 641–654.

Henry H A L. 2008. Climate change and soil freezing dynamics: historical trends and projected changes. Climatic Change, 87(3–4): 421–434.

Hentschel K, Borken W, Matzner E. 2008. Repeated freeze-thaw events affect leaching losses of nitrogen and dissolved organic matter in a forest soil. Journal of Plant Nutrition and Soil Science, 171(5): 699–706.

Herrmann A, Witter E. 2002. Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils. Soil Biology and Biochemistry, 34(10): 1495–1505.

Hinman W C. 1970. Effects of freezing and thawing on some chemical properties of three soils. Canadian Journal of Soil Science, 50(2): 179–182.

IPCC. 2007. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC.

Isard S A, Schaetzl R J. 1998. Effects of winter weather conditions on soil freezing in southern Michigan. Physical Geography, 19(1): 71–94.

Kaste Ø, Austnes K, Vestgarden L S, et al. 2008. Manipulation of snow in small headwater catchments at Storgama, Norway: effects on leaching of inorganic nitrogen. AMBIO: A Journal of the Human Environment, 37(1): 29–37.

Kielland K, Olson K, Ruess R W, et al. 2006. Contribution of winter processes to soil nitrogen flux in taiga forest ecosystems. Biogeochemistry, 81(3): 349–360.

Kreyling J, Beierkuhnlein C, Pritsch K, et al. 2008. Recurrent soil freeze–thaw cycles enhance grassland productivity. New Phytologist, 177(4): 938–945.

Kreyling J, Beierkuhnlein C, Jentsch A. 2010. Effects of soil freeze–thaw cycles differ between experimental plant communities. Basic and Applied Ecology, 11(1): 65–75.

Lehrsch G A, Sojka R E, Carter D L, et al. 1991. Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter. Soil Science Society of America Journal, 55(5): 1401–1406.

Li N, Wang G X, Gao Y H, et al. 2010. Effects of simulated warming on soil nutrients and biological characteristics of alpine meadow soil in the headwaters region of the Yangtze River. Acta Pedologica Sinica, 47(6): 1214–1224. (in Chinese)

Li Y N, Guan D G, Zhao L, et al. 2005. Seasonal frozen soil and its effect on vegetation production in Haibei alpine meadow. Journal of Glaciology and Geocryology, 27(3): 311–319. (in Chinese)

Lipson D A, Schmidt S K. 2004. Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains. Applied and Environmental Microbiology, 70(5): 2867–2879.

Liu J Y, Xu X L, Shao Q Q. 2008. Grassland degradation in the “Three-River Headwaters” region, Qinghai Province. Journal of Geographical Sciences, 18(3): 259–273.

Liu X D, Chen B D. 2000. Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20(14): 1729–1742.

Mellander P E, Löfvenius M O, Laudon H. 2007. Climate change impact on snow and soil temperature in boreal Scots pine stands. Climatic Change, 85(1–2): 179–193.

Monson R K, Lipson D L, Burns S P, et al. 2006. Winter forest soil respiration controlled by climate and microbial community composition. Nature, 439(7077): 711–714.

Nielsen C B, Groffman P M, Hamburg S P, et al. 2001. Freezing effects on carbon and nitrogen cycling in northern hardwood forest Soils. Soil Science Society of America Journal, 65(6): 1723–1730.

Panikov N S, Flanagan P W, Oechel W C, et al. 2006. Microbial activity in soils frozen to below –39°C. Soil Biology and Biochemistry, 38(4): 785–794.

Ron Vaz M D, Edwards A C, Shand C A, et al. 1994. Changes in the chemistry of soil solution and acetic-acid extractable P following different types of freeze/thaw episodes. European Journal of Soil Science, 45(3): 353–359.

Schadt C W, Martin A P, Lipson D A, et al. 2003. Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science, 301(5638): 1359–1361.

Schimel J P, Clein J S. 1996. Microbial response to freeze-thaw cycles in tundra and taiga soils. Soil Biology and Biochemistry, 28(8): 1061–1066.

Six J, Bossuyt H, Degryze S, et al. 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79(1): 7–31.

Sjursen H, Michelsen A, Holmstrup M. 2005. Effects of freeze- thaw cycles and thawing on Microarthropods and nutrient availability in a sub-arctic soil. Applied Soil Ecology, 28(1): 79–93.

Smith C K, Munson A D, Coyea M R. 1998. Nitrogen and phosphorus release from humus and mineral soil under black spruce forests in central Quebec. Soil Biology and Biochemistry, 30(12): 1491–1500.

Walker V K, Palmer G R, Voordouw G. 2006. Freeze-thaw tolerance and clues to the winter survival of a soil community. Applied and Environmental Microbiology, 72(3): 1784–1792.

Wang F L, Bettany J R. 1993. Influence of freeze-thaw and flooding on the loss of soluble organic carbon and carbon dioxide from soil. Journal of Environmental Quality, 22(4): 709–714.

Wu Q H, Shi B, Liu Y Z. 2003. Interaction study of permafrost and highway along Qinghai-Xizang Highway. Science in China Series D: Earth Sciences, 46(2): 97–105.

Xu J J, Wu Y, Zhang X Q, et al. 2011. Effects of freezing and thawing cycles on microbial biomass nitrogen and organic nitrogen in alpine meadow soil. Chinese Journal of Applied & Environmental Biology, 17(1): 57–62. (in Chinese)

Yang R, Zhao M X, Zhou J B. 2005. Effects of different conditions on the determination of total nitrogen in solution by persulfate oxidation method. Journal of Northwest Science-Technology University of Agriculture and Forest (Nature Science Edition), 33(12): 107–111. (in Chinese)

Yang R, Yan D Y, Zhou J B, et al. 2007. Soluble organic nitrogen (SON) in different soils on the loess Plateau of China. Acta Ecologica Sinica, 27(4): 1397–1403. (in Chinese)

Zhong Z K, Makeschin F. 2003. Soluble organic nitrogen in temperate forest soils. Soil Biology and Biochemistry, 35(2): 333–338.
[1] JIA Wenru, ZHANG Chunlai, LI Shengyu, WANG Haifeng, MA Xuexi, WANG Ningbo. Grain size distribution at four developmental stages of crescent dunes in the hinterland of the Taklimakan Desert, China[J]. 干旱区科学, 2016, 8(5): 722-733.
[2] XUE Jie, LEI Jiaqiang, LI Shengyu, GUI Dongwei, MAO Donglei, ZHOU Jie. Re-evaluating the vertical mass-flux profiles of aeolian sediment at the southern fringe of the Taklimakan Desert, China[J]. 干旱区科学, 2015, 7(6): 765-777.
[3] CHENG Hong, HE Jiajia, XU Xingri, ZOU Xueyong, WU Yongqiu, LIU Chenchen, DONG Yi. Blown sand motion within the sand-control system in the southern section of the Taklimakan Desert Highway[J]. 干旱区科学, 2015, 7(5): 599-611.
[4] Yi ZHOU, Bing GUO, ShiXin WANG, HePing TAO. An estimation method of soil wind erosion in Inner Mongolia of China based on geographic information system and remote sensing[J]. 干旱区科学, 2015, 7(3): 304-317.
[5] XingHua YANG, Qing HE, Mamtimin ALI, Wen HUO XinChun LIU. Near-surface sand-dust horizontal flux in Tazhong—the hinterland of the Taklimakan Desert[J]. 干旱区科学, 2013, 5(2): 199-206.
[6] XingHua YANG, Ali MAMTIMIN, Qing HE, XinChun LIU, Wen HUO. Observation of saltation activity at Tazhong area in Taklimakan Desert, China[J]. 干旱区科学, 2013, 5(1): 32-41.
[7] MinZhong WANG, WenShou WEI, Qing HE, XinChun LIU, ZhongJie ZHAO. Application of wind profiler data to rainfall analyses in Tazhong Oilfield region, Xinjiang, China[J]. 干旱区科学, 2012, 4(4): 369-377.
[8] Li LI, XinWen XU, YongQiang SU, Wei HAN, PengFei TU. Effects of parasitic plant Cistanche deserticola on chlorophyll a fluorescence and nutrient accumulation of host plant Haloxylon ammodendron in the Taklimakan Desert[J]. 干旱区科学, 2012, 4(3): 342-348.
[9] ZhongGuo MA, Xi CHEN, Quan WANG, PingHeng LI, Guli Jiapaer. Retrieval of leaf biochemical properties by inversed PROSPECT model and hyperspectral indices: an application to Populus euphratica polymorphic leaves[J]. 干旱区科学, 2012, 4(1): 52-62.
[10] XingHua YANG, XiaoLiang XU, Qing HE, Ali Mamtimin, Bo YU, ShiHao TANG. Sand flux estimation during a sand-dust storm at Tazhong area of Taklimakan Desert, China[J]. 干旱区科学, 2011, 3(3): 199-205.
[11] Qing HE, XingHua YANG, Ali Mamtimin, ShiHao TANG. Impact factors of soil wind erosion in the center of Taklimakan Desert[J]. 干旱区科学, 2011, 3(1): 9-14.
[12] Jilili Abuduwaili, DongWei LIU, GuangYang WU. Saline dust storms and their ecological impacts in arid regions[J]. 干旱区科学, 2010, 2(2): 144-150.
[13] Masatoshi YOSHINO, Takashi ISHIYAMA, Jun SUZUKI. Local convergence zones or discontinuous lines in the Taklimakan Desert, Northwest China[J]. 干旱区科学, 2010, 2(2): 77-86.
[14] Kiyoshi TSUCHIYA, Tamotsu IGARSHI, Muhtar QONG. Land cover change detection based on satellite data for an arid area to the south of Aksu in Taklimakan desert[J]. 干旱区科学, 2010, 2(1): 14-19.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed