Please wait a minute...
干旱区科学  2015, Vol. 7 Issue (5): 579-589    DOI: 10.1007/s40333-015-0129-6
  学术论文 本期目录 | 过刊浏览 | 高级检索 |
Surface energy and water vapor fluxes observed on a megadune in the Badain Jaran Desert, China
HU Wenfeng1, WANG Nai’ang1,2, ZHAO Liqiang1, NING Kai1, ZHANG Xunhe1, SUN Jie1
1 Center for Climate Change and Hydrologic Cycle in Arid Region, College of Earth and Environmental Science, Lanzhou University, Lanzhou 730000, China;
2 College of Geographical Science and Tourism, Xinjiang Normal University, Urumqi 830054, China
Surface energy and water vapor fluxes observed on a megadune in the Badain Jaran Desert, China
HU Wenfeng1, WANG Nai’ang1,2, ZHAO Liqiang1, NING Kai1, ZHANG Xunhe1, SUN Jie1
1 Center for Climate Change and Hydrologic Cycle in Arid Region, College of Earth and Environmental Science, Lanzhou University, Lanzhou 730000, China;
2 College of Geographical Science and Tourism, Xinjiang Normal University, Urumqi 830054, China
下载:  PDF (496KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 The Badain Jaran Desert is the second-largest area of shifting sands in China. Our first measurements of the energy components and water vapor fluxes on a megadune using eddy covariance technology were taken from April 2012 to April 2013. The results indicate that the longwave and shortwave radiative fluxes exhibited large fluctuations and seasonal dynamics. The total radiative energy loss by longwave and shortwave radiation was greater on the megadune than from other underlying surfaces. The radiation partitioning was different in different seasons. The land-atmosphere interaction was primarily represented by the sensible heat flux. The average sensible heat flux (40.1 W/m2) was much larger than the average latent heat flux (14.5 W/m2). Soil heat flux played an important role in the energy balance. The mean actual evaporation was 0.41 mm/d, and the cumulative actual evaporation was approximately 150 mm/a. The water vapor would transport downwardly and appear as dew condensation water. The amount of precipitation determined the actual evaporation. The actual evaporation was supposed to be equal to the precipitation on the megadune and the precipitation was difficult to recharge the groundwater. Our study can provide a foundation for further research on land-atmosphere interactions in this area.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
WANG Nai’ang
HU Wenfeng
ZHAO Liqiang
NING Kai
ZHANG Xunhe
SUN Jie
关键词:  evapotranspiration  pan evaporation  water requirement  arid region  oasis-desert transition zone    
Abstract: The Badain Jaran Desert is the second-largest area of shifting sands in China. Our first measurements of the energy components and water vapor fluxes on a megadune using eddy covariance technology were taken from April 2012 to April 2013. The results indicate that the longwave and shortwave radiative fluxes exhibited large fluctuations and seasonal dynamics. The total radiative energy loss by longwave and shortwave radiation was greater on the megadune than from other underlying surfaces. The radiation partitioning was different in different seasons. The land-atmosphere interaction was primarily represented by the sensible heat flux. The average sensible heat flux (40.1 W/m2) was much larger than the average latent heat flux (14.5 W/m2). Soil heat flux played an important role in the energy balance. The mean actual evaporation was 0.41 mm/d, and the cumulative actual evaporation was approximately 150 mm/a. The water vapor would transport downwardly and appear as dew condensation water. The amount of precipitation determined the actual evaporation. The actual evaporation was supposed to be equal to the precipitation on the megadune and the precipitation was difficult to recharge the groundwater. Our study can provide a foundation for further research on land-atmosphere interactions in this area.
Key words:  evapotranspiration    pan evaporation    water requirement    arid region    oasis-desert transition zone
收稿日期:  2014-11-24      修回日期:  2015-02-15           出版日期:  2015-10-05      发布日期:  2015-06-23      期的出版日期:  2015-10-05
基金资助: 

Special Fund for National Environmental Protection Industry Scientific Research in the Public Welfare (201209034), the National Natural Science Foundation of China (41371114) and the Fundamental Research Funds for the Central Universities (lzujbky-2-14-275).

通讯作者:  WANG Nai’ang    E-mail:  wangna@lzu.edu.cn
引用本文:    
HU Wenfeng, WANG Nai’ang, ZHAO Liqiang, NING Kai, ZHANG Xunhe, SUN Jie. Surface energy and water vapor fluxes observed on a megadune in the Badain Jaran Desert, China[J]. 干旱区科学, 2015, 7(5): 579-589.
HU Wenfeng, WANG Nai’ang, ZHAO Liqiang, NING Kai, ZHANG Xunhe, SUN Jie. Surface energy and water vapor fluxes observed on a megadune in the Badain Jaran Desert, China. Journal of Arid Land, 2015, 7(5): 579-589.
链接本文:  
http://jal.xjegi.com/CN/10.1007/s40333-015-0129-6  或          http://jal.xjegi.com/CN/Y2015/V7/I5/579
Alongi D M, Sasekumar A, Chong V C, et al. 2004. Sediment accumulation and organic material flux in a managed mangrove ecosystem: estimates of land–ocean–atmosphere exchange in peninsular Malaysia. Marine Geology, 208(2–4): 383–402.

Arain M A, Black T A, Barr A G, et al. 2004. Year-round observations of the energy and water vapour fluxes above a boreal black spruce forest. Hydrological Processes, 17(18): 3581–3600.

Aubinet M, Grelle A, Ibrom A, et al. 1999. Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Advances in Ecological Research, 30: 113–175.

Baldocchi D, Kelliher F M, Black T A. 2000. Climate and vegetation controls on boreal zone energy exchange. Global Change Biology, 6(S1): 69–83.

Beringer J, Tapper N J. 2000. The influence of subtropical cold fronts on the surface energy balance of a semi-arid site. Journal of Arid Environments, 44(4): 437–450.

Bittelli M, Ventura F, Campbell G S, et al. 2008. Coupling of heat, water vapor, and liquid water fluxes to compute evaporation in bare soils. Journal of Hydrology, 362(3): 191–205.

Chen J, Zhao X, Sheng X, et al. 2006. Formation mechanisms of mega-dunes and lakes in the Badain Jaran Desert, Inner Mongolia. Chinese Science Bulletin, 51(24): 3026–3034.

Chen J S, Li L, Wang J Y, et al. 2004. Water resources: groundwater maintains dune landscape. Nature, 432(7016): 459–460.

Dong Z, Wang T, Wang X. 2004. Geomorphology of the mega-dunes in the Badain Jaran Desert. Geomorphology. 60(1): 191–203.

Dong Z B, Qian G Q, Luo W Y, et al. 2009. Geomorphological hierarchies for complex mega-dunes and their implications for mega-dune evolution in the Badain Jaran Desert. Geomorphology, 106(3): 180–185.

Gash J H C, Dolman A J. 2003. Sonic anemometer (co)sine response and flux measurement I. The potential for (co)sine error to affect sonic anemometer-based flux measurements. Agricultural and Forest Meteorology, 119(3): 195–207.

Gu S, Tang Y, Cui X, et al. 2005. Energy exchange between the atmosphere and a meadow ecosystem on the Qinghai–Tibetan Plateau. Agricultural and Forest Meteorology, 129(3): 175–185.

Gupta S K, Ritchey N A, Wilber A C, et al. 1999. A climatology of surface radiation budget derived from satellite data. Journal of Climate, 12(8): 2691–2710.

Hanks P J, Ashcroft G L. 1980. Applied Soil Physics: Soil Water and Temperature Applications. Berlin: Springer-Verlag, 159–160.

Huang R H, Chen W, Zhang Q, et al. 2011. Land-atmosphere Interactions in the Arid Northwest China and their Impacts on Climate Change in East Asia. Beijing: China Meteorological Press, 1–356. (in Chinese)

Hunt J E, Kelliher F M, McSeveny T M. 2002. Evaporation and carbon dioxide exchange between the atmosphere and a tussock grassland during a summer drought. Agricultural and Forest Meteorology, 111(1): 65–82.

IPCC. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA: Cambridge University Press.

Iziomon M G, Mayer H, Wicke W. 2001. Radiation balance over low-lying and mountainous areas in south-west Germany. Theoretical and Applied Climatology, 68(3–4): 219–231.

Iziomon M G, Mayer H, 2002. Characterisation of the shortwave radiation regime for locations at different altitudes in south-west Germany. Climate Research, 20(3): 203–209.

Kalthoff N, Fiebig-Wittmaack M, Meißner C, et al. 2006. The energy balance, evapo-transpiration and nocturnal dew deposition of an arid valley in the Andes. Journal of Arid Environments, 65(3): 420–443.

Kampf S K, Tyler S W, Ortiz C A, et al. 2005. Evaporation and land surface energy budget at the Salar de Atacama, Northern Chile. Journal of Hydrology, 310(1–4): 236–252.

Kellner E. 2001. Surface energy fluxes and control of evapotranspiration from a Swedish Sphagnum mire. Agricultural and Forest Meteorology, 110(2): 101–123.

Kustas W P, Prueger J H, Hatfield J L, et al. 2000. Variability in soil heat flux from a mesquite dune site. Agricultural and Forest Meteorology, 103(3): 249–264.

Ma N, Wang N A, Zhao L Q, et al. 2014. Observation of mega-dune evaporation after various rain events in the hinterland of Badain Jaran Desert. Chinese Science Bulletin, 59(2): 162–171.

Manabe S, Delworth T. 1990. The temporal variability of soil wetness and its impact on climate. Climatic Change, 16(2): 185–192.

Mohr K I, Tao W K, Chern J D, et al. 2013. The NASA-Goddard multi-scale modeling framework-land information system: global land/atmosphere interaction with resolved convection. Environmental Modelling & Software, 39: 103–115.

Moncrieff J, Clement R, Finnigan J, et al. 2005. Averaging, detrending, and filtering of eddy covariance time series. Atmospheric and Oceanographic Sciences Library, 29: 7–31.

Montgomery R B. 1948. Vertical eddy flux of heat in the atmosphere. Journal of Meteorology, 5(6): 265–274.

Nakai T, van der Molen M K, Gash J H C, et al. 2006. Correction of sonic anemometer angle of attack errors. Agricultural and Forest Meteorology, 136(1): 19–30.

Obukho A M. 1951. Charakteristiki mikrostruktury vetra v prizemnom sloje atmosfery (characteristic of the micro-structure of the wind in the surface layer of the atmosphere). Izvestia AN SSSR seria Geofizika, 3: 49–68.

Oliphant A, Zawar-Reza P, Azizi G, et al. 2011. Surface energy and water vapor fluxes observed in a desert plantation in central Iran. Journal of Arid Environments, 75(10): 926–935.

Prater M R, DeLucia E H. 2006. Non-native grasses alter evapotranspiration and energy balance in Great Basin sagebrush communities. Agricultural and Forest Meteorology, 139(1): 154–163.

Rosset M, Riedo M, Grub A, et al. 1997. Seasonal variation in radiation and energy balances of permanent pastures at different altitudes. Agricultural and Forest Meteorology, 86(3): 245–258.

Schwärzel K, Menzer A, Clausnitzer F, et al. 2009. Soil water content measurements deliver reliable estimates of water fluxes: a comparative study in a beech and a spruce stand in the Tharandt Forest (Saxony, Germany). Agricultural and Forest Meteorology, 149(11): 1994–2006.

Sturman A P, McGowan H A. 2009. Observations of dry season surface energy exchanges over a desert clay pan, Queensland, Australia. Journal of Arid Environments, 73(1): 74–81.

van der Molen M K, Gash J H C, Elbers J A. 2004. Sonic anemometer (co)sine response and flux measurement: II. The effect of introducing an angle of attack dependent calibration. Agricultural and Forest Meteorology, 122(1): 95–109.

van Dijk A, Moene A, de Bruin H. 2004. The Principles of Surface Flux Physics: Theory, Practice and Description of the ECPACK Library. Wageningen: University of Wageningen, 99–100.

Warner. 2004. Desert Meteorology. Cambridge, United Kingdom: the Press Syndicate of the University of Cambridge, 48–49.

Webb E K, Pearman G I, Leuning R. 1980. Correction of flux measurements for density effects due to heat and water-vapor transfer. Quarterly Journal of the Royal Meteorological Society, 106(447): 85–100.

Wever L A, Flanagan L B, Carlson P J. 2002. Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in a northern temperate grassland. Agricultural and Forest Meteorology, 112(1): 31–49.

Wilson K B, Baldocchi D D. 2000. Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agricultural and Forest Meteorology, 100(1): 1–18.

Yang X, Williams M A. 2003. The ion chemistry of lakes and late Holocene desiccation in the Badain Jaran Desert, Inner Mongolia, China. Catena, 51(1): 45–60.

Yang X P, Scuderi L, Liu T, et al. 2011. Formation of the highest sand dunes on Earth. Geomorphology, 135(1): 108–116.

Yeh T C, Wetherald R T, Manabe S. 1984. The effect of soil-moisture on the short-term climate and hydrology change—a numerical experiment. Monthly Weather Review, 112(3): 474–490.

Zhang Z Y, Wang N A, Ma N, et al. 2012. Lakes area change in Badain Juran Desert hinterland and Influence factors during the recent 40 years. Journal of Desert Research, 32(6): 1743–1749. (in Chinese)

Zhu J F. 2010. Monitoring of desertification on the edge of Badain Jaran Desert in recent 20 years based on remote sensing imagery. MSc Thesis. Lanzhou: Lanzhou University. (in Chinese)
[1] GONG Yanping, WANG Xusheng, HU B Xiao, ZHOU Yangxiao, HAO Chunbo, WAN Li. Groundwater contributions in water-salt balances of the lakes in the Badain Jaran Desert, China[J]. 干旱区科学, 2016, 8(5): 694-706.
[2] NING Like, XIA Jun, ZHAN Chesheng, ZHANG Yongyong. Runoff of arid and semi-arid regions simulated and projected by CLM-DTVGM and its multi-scale fluctuations as revealed by EEMD analysis[J]. 干旱区科学, 2016, 8(4): 506-520.
[3] GAO Guanlong, ZHANG Xiaoyou, YU Tengfei, LIU Bing. Comparison of three evapotranspiration models with eddy covariance measurements for a Populus euphratica Oliv. forest in an arid region of northwestern China[J]. 干旱区科学, 2016, 8(1): 146-156.
[4] QianQian GOU, JianJun QU, ZhiWen HAN. Microclimate and CO2 fluxes on continuous fine days in the Xihu desert wetland, China[J]. 干旱区科学, 2015, 7(3): 318-327.
[5] Li DAI, YiXing FENG, GePing LUO, YanZhong LI, WenQiang XU. The relationship between soil, climate and forest development in the mid-mountain zone of the Sangong River watershed in the northern Tianshan Mountains, China[J]. 干旱区科学, 2015, 7(1): 63-72.
[6] Antonia LONGOBARDI, Elina KHAERTDINOVA. Relating soil moisture and air temperature to evapotranspiration fluxes during inter-storm periods at a Mediterranean experimental site[J]. 干旱区科学, 2015, 7(1): 27-36.
[7] Abdallah ATIA, Mokded RABHI, Ahmed DEBEZ, Chedly ABDELLY, Houda GOUIA, Chiraz CH. Ecophysiological aspects in 105 plants species of saline and arid environments in Tunisia[J]. 干旱区科学, 2014, 6(6): 762-770.
[8] Flavia Alejandra FUNK, Alejandro LOYDI, Guadalupe PETER. Effects of biological soil crusts and drought on emergence and survival of a Patagonian perennial grass in the Monte of Argentina[J]. 干旱区科学, 2014, 6(6): 735-741.
[9] XiaoLi YANG, LiLiang REN, Yi LIU, DongLai JIAO, ShanHu JIANG. Hydrological response to land use and land cover changes in a sub-watershed of West Liaohe River Basin, China[J]. 干旱区科学, 2014, 6(6): 678-689.
[10] Long WAN, Jun XIA, HongMei BU, Si HONG, JunXu CHEN, LiKe NING. Sensitivity and vulnerability of water resources in the arid Shiyang River Basin of Northwest China[J]. 干旱区科学, 2014, 6(6): 656-667.
[11] HongZhong DANG, TianShan ZHA, JinSong ZHANG, Wei LI, ShiZeng LIU. Radial profile of sap flow velocity in mature Xinjiang poplar (Populus alba L. var. pyramidalis) in Northwest China[J]. 干旱区科学, 2014, 6(5): 612-627.
[12] LiWen ZHAO, WenZhi ZHA. Evapotranspiration of an oasis-desert transition zone in the middle stream of Heihe River, Northwest China[J]. 干旱区科学, 2014, 6(5): 529-539.
[13] QianBing ZHANG, Ling YANG, ZhenZhu XU, YaLi ZHANG, HongHai LUO, Jin WANG, WangFeng ZHANG. Effects of cotton field management practices on soil CO2 emission and C balance in an arid region of Northwest China[J]. 干旱区科学, 2014, 6(4): 468-477.
[14] Qiang LI, DaoWei ZHOU, YingHua JIN, MinLing WANG, YanTao SONG, GuangDi LI. Effects of fencing on vegetation and soil restoration in a degraded alkaline grassland in northeast China[J]. 干旱区科学, 2014, 6(4): 478-487.
[15] YanYun NIAN, Xin LI, Jian ZHOU, XiaoLi HU. Impact of land use change on water resource allocation in the middle reaches of the Heihe River Basin in northwestern China[J]. 干旱区科学, 2014, 6(3): 273-286.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed