Please wait a minute...
干旱区科学  2016, Vol. 8 Issue (6): 973-985    DOI: 10.1007/s40333-016-0091-y
  学术论文 本期目录 | 过刊浏览 | 高级检索 |
The distribution of isotopes and chemicals in precipitation in Shule River Basin, northwestern China: an implication for water cycle and groundwater recharge
ZHAO Wei, MA Jinzhu*, GU Chunjie, QI Shi, ZHU Gaofeng, HE Jiahua
Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth Environmental Sciences, Lanzhou University, Lanzhou 730000, China
The distribution of isotopes and chemicals in precipitation in Shule River Basin, northwestern China: an implication for water cycle and groundwater recharge
ZHAO Wei, MA Jinzhu*, GU Chunjie, QI Shi, ZHU Gaofeng, HE Jiahua
Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth Environmental Sciences, Lanzhou University, Lanzhou 730000, China
下载:  PDF (435KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 The distribution of stable isotopes and ions in precipitation in the Shule River Basin, northwestern China, were investigated to understand the regional water cycle and precipitation input to groundwater recharge. The study found that the mean annual concentrations of Ca2+, Na+, SO42–, Cl, Mg2+, NO3, and K+ in the basin were lower than those in other arid areas of northwestern China. The average concentrations of ions in the lower reaches of the Shule River were higher than those in the upper reaches. The results showed that the main ionic concentrations decreased with the increase of precipitation amount, indicating that heavy precipitation cannot only wash crustal aerosols out of the atmosphere, but also create a dilution effect. Cl– and Na+ in precipitation had a strong and positive correlation, suggesting a common origin for the two ions. However, the excess of Na+, combined with non-marine SO42– and NO3, indicated that some ions were contributed by terrestrial origins. In the extremely arid regions of northwestern China, the evaporation process obviously changes the original relationship between δ2H and δ18O in precipitation, and leads to d-excess values <8‰. δ18O and temperature were significantly correlated, suggested that temperature strongly affected the characteristics of isotopes in the study area. The δ18O value indicates a dominant effect of westerly air masses and southwest monsoon in warm months, and the integrated influence of westerly and Siberian-Mongolian polar air masses in cold months. The d-excess values were generally lower in warm months than those in cold months, indicating that post-condensation processes played a significant role in the water cycle. The results provide reliable precipitation input information that can be used in future groundwater recharge calculations in the study area.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
ZHAO Wei
MA Jinzhu
GU Chunjie
QI Shi
ZHU Gaofeng
HE Jiahua
关键词:  carbon storage  biomass  coniferous  deciduous  central Iran    
Abstract: The distribution of stable isotopes and ions in precipitation in the Shule River Basin, northwestern China, were investigated to understand the regional water cycle and precipitation input to groundwater recharge. The study found that the mean annual concentrations of Ca2+, Na+, SO42–, Cl, Mg2+, NO3, and K+ in the basin were lower than those in other arid areas of northwestern China. The average concentrations of ions in the lower reaches of the Shule River were higher than those in the upper reaches. The results showed that the main ionic concentrations decreased with the increase of precipitation amount, indicating that heavy precipitation cannot only wash crustal aerosols out of the atmosphere, but also create a dilution effect. Cl– and Na+ in precipitation had a strong and positive correlation, suggesting a common origin for the two ions. However, the excess of Na+, combined with non-marine SO42– and NO3, indicated that some ions were contributed by terrestrial origins. In the extremely arid regions of northwestern China, the evaporation process obviously changes the original relationship between δ2H and δ18O in precipitation, and leads to d-excess values <8‰. δ18O and temperature were significantly correlated, suggested that temperature strongly affected the characteristics of isotopes in the study area. The δ18O value indicates a dominant effect of westerly air masses and southwest monsoon in warm months, and the integrated influence of westerly and Siberian-Mongolian polar air masses in cold months. The d-excess values were generally lower in warm months than those in cold months, indicating that post-condensation processes played a significant role in the water cycle. The results provide reliable precipitation input information that can be used in future groundwater recharge calculations in the study area.
Key words:  carbon storage    biomass    coniferous    deciduous    central Iran
收稿日期:  2015-10-15      修回日期:  2016-02-17           出版日期:  2016-12-01      发布日期:  2016-12-01      期的出版日期:  2016-12-01
基金资助: 

This work was supported by the National Natural Science Foundation of China (41271039), the Open Foundation of Key Laboratory of Western China’s Environmental System (Ministry of Education), Lanzhou University and the Fundamental Research Funds for the Central Universities (lzujbky-2015-bt01).

通讯作者:  MA Jinzhu    E-mail:  jzma@lzu.edu.cn
引用本文:    
ZHAO Wei, MA Jinzhu, GU Chunjie, QI Shi, ZHU Gaofeng, HE Jiahua. The distribution of isotopes and chemicals in precipitation in Shule River Basin, northwestern China: an implication for water cycle and groundwater recharge[J]. 干旱区科学, 2016, 8(6): 973-985.
ZHAO Wei, MA Jinzhu, GU Chunjie, QI Shi, ZHU Gaofeng, HE Jiahua. The distribution of isotopes and chemicals in precipitation in Shule River Basin, northwestern China: an implication for water cycle and groundwater recharge. Journal of Arid Land, 2016, 8(6): 973-985.
链接本文:  
http://jal.xjegi.com/CN/10.1007/s40333-016-0091-y  或          http://jal.xjegi.com/CN/Y2016/V8/I6/973
Allison G B, Barnes C J, Hughes M W, et al. 1983. The effect of climate and vegetation on oxygen-18 and deuterium profiles in soils. In: Proceedings of the International Symposium on Isotope Hydrology in Water Resources Development. Vienna: IESA, 105–125.

Balestrini R, Galli L, Tartari G. 2000. Wet and dry atmospheric deposition at prealpine and alpine sites in northern Italy. Atmospheric Environment, 34(9): 1455–1470.

Celle-Jeanton H, Travi Y, Loye-Pilot M D, et al. 2008. Rainwater chemistry at a Mediterranean inland station (Avignon, France): local contribution versus long-range supply. Atmospheric Research, 91(1): 118–126.

Clark I D, Fritz P. 1997. Environmental Isotopes in Hydrogeology. Boca Raton, FL: CRC Press, 328.

Craig H. 1961. Isotopic variations in meteoric waters. Science, 133(3465): 1702–1703.

Demirak A, Balci A, Karao?lu H, et al. 2006. Chemical characteristics of rain water at an urban site of south western Turkey. Environmental Monitoring and Assessment, 123(1–3): 271–283.

Dutton A, Wilkinson B H, Welker J M, et al. 2005. Spatial distribution and seasonal variation in 18O/16O of modern precipitation and river water across the conterminous USA. Hydrological Processes, 19(20): 4121–4146.

Feng Q, Liu W, Su Y H, et al. 2004. Distribution and evolution of water chemistry in Heihe River basin. Environmental Geology, 45(7): 947–956.

Feng X H, Faiia A M, Posmentier E S. 2009. Seasonality of isotopes in precipitation: a global perspective. Journal of Geophysical Research, 114(D8): D08116, doi: 101029/2008JD011279.

Freeze R A, Cherry J A. 1979. Groundwater. Englewood Cliffs NJ: Prentice Hall, 48–66.

Froehlich K, Kralik M, Papesch W, et al. 2008. Deuterium excess in precipitation of Alpine regions-moisture recycling. Isotopes in Environmental and Health Studies, 44(1): 61–70.

Gao X, Zhang S Q, Ye B S, et al. 2011. Recent changes of glacier runoff in the Hexi Inland river basin. Advances in Water Science, 22(3): 344–350. (in Chinese)

Guo X Y, Feng Q, Wei Y P, et al. 2014. An overview of precipitation isotopes over the extensive Hexi Region in NW China. Arabian Journal of Geosciences, 8(7): 4365–4378, doi: 101007/s12517-014-1521-9.

Hren M T, Bookhagen B, Blisniuk P M, et al. 2009. δ18O and δD of stream waters across the Himalaya and Tibetan Plateau: implications for moisture sources and paleoelevation reconstructions. Earth and Planetary Science Letters, 288(1–2): 20–32.

Huang T M, Nie Z Q, Yuan L J. 2008. Temperature and geographical effects of hydrogen and oxygen isotopes in precipitation in West of China. Journal of Arid Land Resources and Environment, 22(8): 76–81. (in Chinese)

Huang T M, Pang Z H. 2010. Changes in groundwater induced by water diversion in the Lower Tarim River, Xinjiang Uygur, NW China: evidence from environmental isotopes and water chemistry. Journal of Hydrology, 387(3–4): 188–201.

Huang T M, Pang Z H. 2012. The role of deuterium excess in determining the water salinisation mechanism: a case study of the arid Tarim River Basin, NW China. Applied Geochemistry, 27(12): 2382–2388.

Jeelani G, Kumar U S, Kumar B. 2013. Variation of δ18O and δD in precipitation and stream waters across the Kashmir Himalaya (India) to distinguish and estimate the seasonal sources of stream flow. Journal of Hydrology, 481: 157–165.

Ji X B, Kang E, Chen R S, et al. 2006. The impact of the development of water resources on environment in arid inland river basins of Hexi region, Northwestern China. Environmental Geology, 50(6): 793–801.

Jia W X, He Y Q, Li Z X, et al. 2008. Spatio-temporal distribution characteristics of climate change in Qilian Mountains and Hexi Corridor. Journal of Desert Research, 28(6): 1151–1155. (in Chinese)

Johnsen S J, Dansgaard W, White J W C. 1989. The origin of Arctic precipitation under present and glacial conditions. Tellus Series B Chemical and Physical Meteorology, 41B(4): 452–468.

Keene W C, Pszenny A A P, Galloway J N, et al. 1986. Sea-salt corrections and interpretation of constituent ratios in marine precipitation. Journal of Geophysical Research, 91(D6): 6647–6658.

Kulshrestha U C, Kulshrestha M J, Sekar R, et al. 2003. Chemical characteristics of rainwater at an urban site of south-central India. Atmospheric Environment, 37(21): 3019–3026.

Li Z J, Li Z X, Tian Q, et al. 2014. Environmental significance of wet deposition composition in the central Qilian Mountains, China. Environmental Science, 35(12): 4465–4474. (in Chinese)

Li Z X, Feng Q, Liu W, et al. 2014. Study on the contribution of cryosphere to runoff in the cold alpine basin: a case study of Hulugou River Basin in the Qilian Mountains. Global and Planetary Change, 122: 345–361.

Ma J Z, Wang X S, Edmunds W M. 2005. The characteristics of ground-water resources and their changes under the impacts of human activity in the arid Northwest China—a case study of the Shiyang River Basin. Journal of Arid Environments, 61(2): 277–295.

Ma J Z, Ding Z Y, Edmunds W M, et al. 2009. Limits to recharge of groundwater from Tibetan plateau to the Gobi desert, implications for water management in the mountain front. Journal of Hydrology, 364(1–2): 128–141.

Ma J Z, Zhang P, Zhu G F, et al. 2012. The composition and distribution of chemicals and isotopes in precipitation in the Shiyang River system, northwestern China. Journal of Hydrology, 436–437: 92–101.

Merlivat L, Jouzel J. 1979. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. Journal of Geophysical Research, 84(C8): 5029–5033.

Okay C, Akkoyunlu B O, Tayanç M. 2002. Composition of wet deposition in Kaynarca, Turkey. Environmental Pollution, 118(3): 401–410.

Pang Z H, Kong Y L, Froehlich K, et al. 2011. Processes affecting isotopes in precipitation of an arid region. Tellus Series B Chemical and Physical Meteorology, 63(3): 352–359.

Prathibha P, Kothai P, Saradhi I V, et al. 2010. Chemical characterization of precipitation at a coastal site in Trombay, Mumbai, India. Environmental Monitoring and Assessment, 168(1–4): 45–53.

Siegenthaler U, Oeschger H. 1980. Correlation of 18O in precipitation with temperature and altitude. Nature, 285(5763): 314–317.

Singer A, Shamay Y, Fried M. 1993. Acid rain on Mt Carmel, Israel. Atmospheric Environment. Part A. General Topics, 27(15): 2287–2293.

Taylor S R. 1964. Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta, 28(8): 1273–1285.

Tian L D, Yao T D, Numaguti A, et al. 2001. Relation between stable isotope in monsoon precipitation in southern Tibetan Plateau and moisture transport history. Science in China Series D: Earth Sciences, 44(suppl.): 267–274.

Ulrich E, Lelong N, Lanier M, et al. 1998. Regional differences in the relation between monthly precipitation and bulk concentration in France (Renecofor). Water, Air, and Soil Pollution, 102(3–4): 239–257.

Wu J K, Ding Y J, Ye B, et al. 2010. Spatio-temporal variation of stable isotopes in precipitation in the Heihe River Basin, Northwestern China. Environmental Earth Sciences, 61(6): 1123–1134.

Yamanaka T, Tsujimura M, Oyunbaatar D, et al. 2007. Isotopic variation of precipitation over eastern Mongolia and its implication for the atmospheric water cycle. Journal of Hydrology, 333(1): 21–34.

Yurtsever Y, Gat J R. 1981. Atmospheric waters. In: Gat J R, Gonfiantini R Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle. Vienna: IAEA, 103-142.

Zhang M Y, Wang S J, Wu F C, et al. 2007. Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China. Atmospheric Research, 84(4): 311–322.

Zhang X M, Jiang Z H, Liu X D, et al. 2009. Comparison of atmospheric moisture transport between strong and weak transport years over East Asia. Acta Meteorologica Sinica, 67(4): 561-568. (in Chinese)

Zhang X P, Liu J M, Tian L D, et al. 2004. Variations of δ18O in precipitation along vapor transport paths. Advances in Atmospheric Sciences, 21(4): 562–572.

Zhao L J, Yin L, Xiao H L, et al. 2011. Isotopic evidence for the moisture origin and composition of surface runoff in the headwaters of the Heihe River basin. Chinese Science Bulletin, 56(4–5): 406–415.

Zhou S Q, Nakawo M, Sakai A, et al. 2007. Water isotope variations in the snow pack and summer precipitation at July 1 Glacier, Qilian Mountains in northwest China. Chinese Science Bulletin, 52(21): 2963–2972.
[1] WANG Haiming, SUN Jian, LI Weipeng, WU Jianbo, CHEN Youjun, LIU Wenhui. Effects of soil nutrients and climate factors on belowground biomass in an alpine meadow in the source region of the Yangtze-Yellow rivers, Tibetan Plateau of China[J]. 干旱区科学, 2016, 8(6): 881-889.
[2] YANG Zhaoping, GAO Jixi, YANG Meng, SUN Zhizhong. Effects of freezing intensity on soil solution nitrogen and microbial biomass nitrogen in an alpine grassland ecosystem on the Tibetan Plateau, China[J]. 干旱区科学, 2016, 8(5): 749-759.
[3] XU Manhou, LIU Min, XUE Xian, ZHAI Datong. Warming effects on plant biomass allocation and correlations with the soil environment in an alpine meadow, China[J]. 干旱区科学, 2016, 8(5): 773-786.
[4] TIAN Zheng, WU Xiuqin, DAI Erfu, ZHAO Dongsheng. SOC storage and potential of grasslands from 2000 to 2012 in central and eastern Inner Mongolia, China[J]. 干旱区科学, 2016, 8(3): 364-374.
[5] YUE Xiangfei, ZHANG Tonghui, ZHAO Xueyong, LIU Xinping, MA Yunhua. Effects of rainfall patterns on annual plants in Horqin Sandy Land, Inner Mongolia of China[J]. 干旱区科学, 2016, 8(3): 389-398.
[6] Hormoz SOHRABI, Siavash BAKHTIARVAND-BAKHTIARI, Kourosh AHMADI. Above- and below-ground biomass and carbon stocks of different tree plantations in central Iran[J]. 干旱区科学, 2016, 8(1): 138-145.
[7] ZhengYang YAO, JianJun LIU, XiaoWen ZHAO, DongFeng LONG, Li WANG. Spatial dynamics of aboveground carbon stock in urban green space: a case study of Xi’an, China[J]. 干旱区科学, 2015, 7(3): 350-360.
[8] YuQiang LI, XueYong ZHAO, FengXia ZHANG, Tala AWADA, ShaoKun WANG, HaLin ZHAO, T. Accumulation of soil organic carbon during natural restoration of desertified grassland in China's Horqin Sandy Land[J]. 干旱区科学, 2015, 7(3): 328-340.
[9] Yang QIU, ZhongKui XIE, YaJun WANG, Sukhdev S MALHI, JiLong REN. Long-term effects of gravel―sand mulch on soil orga¬nic carbon and nitrogen in the Loess Plateau of northwestern China[J]. 干旱区科学, 2015, 7(1): 46-53.
[10] FeiLong HU, WenKai SHOU, Bo LIU, ZhiMin LIU, Carlos A BUSSO. Species composition and diversity, and carbon stock in a dune ecosystem in the Horqin Sandy Land of northern China[J]. 干旱区科学, 2015, 7(1): 82-93.
[11] BingChang ZHANG, XiaoBing ZHOU, YuanMing ZHANG. Responses of microbial activities and soil physical-chemical properties to the successional process of biological soil crusts in the Gurbantunggut Desert, Xinjiang[J]. 干旱区科学, 2015, 7(1): 101-109.
[12] GuiQing XU, DanDan YU, JiangBo XIE, LiSong TANG, Yan LI. What makes Haloxylon persicum grow on sand dunes while H. ammodendron grows on interdune lowlands: a proof from reciprocal transplant experiments[J]. 干旱区科学, 2014, 6(5): 581-591.
[13] Stephen M MUREITHI, Ann VERDOODT, Charles KK GACHENE, Jesse T NJOKA, Vivian O WA. Impact of enclosure management on soil properties and microbial biomass in a restored semi-arid rangeland, Kenya[J]. 干旱区科学, 2014, 6(5): 561-570.
[14] Feng YAN, Bo WU, YanJiao WANG. Estimating aboveground biomass in Mu Us Sandy Land using Landsat spectral derived vegetation indices over the past 30 years[J]. 干旱区科学, 2013, 5(4): 521-530.
[15] YuanRun ZHENG, LianHe JIANG, Yong GAO, Xi CHEN, GePing LUO, XianWei FENG, YunJia. Persistence of four dominant psammophyte species in central Inner Mongolia of China under continual drought[J]. 干旱区科学, 2013, 5(3): 331-339.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed