Please wait a minute...
干旱区科学
  Research Articles 本期目录 | 过刊浏览 | 高级检索 |
Magnetostratigraphy and provenance of the Qingzhou loess in Shandong province
ShuZhen PENG, LiJun ZHU, GuoQiao XIAO, YanSong QIAO, ZhiDong GAO, DongDong CHEN
1 Department of Tourism, Resources and Environment, Taishan University, Taian 271021, China; 2 College of Urban and Environment Sciences of Shanxi Normal University, Linfen 041000, China; 3 Key Laboratory of Biogeology and Environmental Geology of Ministry of Education, China University of Geosciences, Wuhan 430074, China; 4 Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
Magnetostratigraphy and provenance of the Qingzhou loess in Shandong province
ShuZhen PENG, LiJun ZHU, GuoQiao XIAO, YanSong QIAO, ZhiDong GAO, DongDong CHEN
1 Department of Tourism, Resources and Environment, Taishan University, Taian 271021, China; 2 College of Urban and Environment Sciences of Shanxi Normal University, Linfen 041000, China; 3 Key Laboratory of Biogeology and Environmental Geology of Ministry of Education, China University of Geosciences, Wuhan 430074, China; 4 Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
下载:  PDF (383KB) 
输出:  BibTeX | EndNote (RIS)      
摘要  Loess deposits with varying thickness are widely distributed on the intermontane valleys and piedmont zones on the northern side of the central Shandong mountainous regions. However, the basal ages and material resources of the loess deposits are not clear. The paper studied the Qingzhou loess profile in Shandong with magnetostratigraphic and optical stimulated luminescence (OSL) methods and further investigated its main provenances with the mineralogical methods. The magnetostratigraphic results showed that the Brunhes/Matuyama (B/M) reversal boundary was not recognized, suggesting a basal age younger than 0.78 Ma. Extrapolations by sedimentation rates, based on the upper part depositional rate from the OSL age, the basal age of the Qingzhou loess is about 0.5 Ma. Until now, older loess deposits have not been reported on the northern side of the central Shandong mountainous regions. The results of the paper indicate that the loess deposits in this area might have strated from the Middle Pleistocene. The basal age of Qingzhou loess is approximately synchronous with the Xiashu loess in the middle-lower reaches of Yangtze River. Major components of clay minerals in the Qingzhou profile are dominated by illite. Other clay mineral compositions are mainly smectite, chlorite and kaolinite, which are similar with the Xifeng loess in the Loess Plateau. However, the contents of smectite and the ratios of illite and kaolinte in the Qingzhou loess samples are higher than those in the Xifeng loess samples of the Loess Plateau, indicating that the loess in the northern side of the central Shandong mountainous regions has different sources from that of the loess deposits in the Loess Plateau. The clay mineral analysis further reinforces the earlier conclusion that the marine strata exposed in the Laizhou Bay and the fluvial plain of the lower reaches of Yellow River during the glacier periods are the main material sources for the Qingzhou loess deposits, which is an indicator to the local aridification of the lower reaches of the Yellow River. Loess deposition in the central Shandong mountainous regions started at around 0.5 Ma. The age of Qingzhou loess is approximately synchronous with the ongoing high-latitude cold since the Middle Pleistocene, which indicates that strengthened East Asian winter monsoon was sufficiently energetic to bring substantial quantities of material from the marine strata exposed in the Laizhou Bay and the fluvial plain of the lower reaches of the Yellow River to the central Shandong mountainous regions. The results therefore suggest that both regional geological process and global changes were responsible for the formation of Qingzhou loess since Middle Pleistocene.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
ShuZhen PENG
LiJun ZHU
GuoQiao XIAO
YanSong QIAO
ZhiDong GAO
DongDong CHEN
关键词:  Karlik Mountain to Naomaohu basin  vegetation  composition  distribution    
Abstract:  Loess deposits with varying thickness are widely distributed on the intermontane valleys and piedmont zones on the northern side of the central Shandong mountainous regions. However, the basal ages and material resources of the loess deposits are not clear. The paper studied the Qingzhou loess profile in Shandong with magnetostratigraphic and optical stimulated luminescence (OSL) methods and further investigated its main provenances with the mineralogical methods. The magnetostratigraphic results showed that the Brunhes/Matuyama (B/M) reversal boundary was not recognized, suggesting a basal age younger than 0.78 Ma. Extrapolations by sedimentation rates, based on the upper part depositional rate from the OSL age, the basal age of the Qingzhou loess is about 0.5 Ma. Until now, older loess deposits have not been reported on the northern side of the central Shandong mountainous regions. The results of the paper indicate that the loess deposits in this area might have strated from the Middle Pleistocene. The basal age of Qingzhou loess is approximately synchronous with the Xiashu loess in the middle-lower reaches of Yangtze River. Major components of clay minerals in the Qingzhou profile are dominated by illite. Other clay mineral compositions are mainly smectite, chlorite and kaolinite, which are similar with the Xifeng loess in the Loess Plateau. However, the contents of smectite and the ratios of illite and kaolinte in the Qingzhou loess samples are higher than those in the Xifeng loess samples of the Loess Plateau, indicating that the loess in the northern side of the central Shandong mountainous regions has different sources from that of the loess deposits in the Loess Plateau. The clay mineral analysis further reinforces the earlier conclusion that the marine strata exposed in the Laizhou Bay and the fluvial plain of the lower reaches of Yellow River during the glacier periods are the main material sources for the Qingzhou loess deposits, which is an indicator to the local aridification of the lower reaches of the Yellow River. Loess deposition in the central Shandong mountainous regions started at around 0.5 Ma. The age of Qingzhou loess is approximately synchronous with the ongoing high-latitude cold since the Middle Pleistocene, which indicates that strengthened East Asian winter monsoon was sufficiently energetic to bring substantial quantities of material from the marine strata exposed in the Laizhou Bay and the fluvial plain of the lower reaches of the Yellow River to the central Shandong mountainous regions. The results therefore suggest that both regional geological process and global changes were responsible for the formation of Qingzhou loess since Middle Pleistocene.
Key words:  Karlik Mountain to Naomaohu basin    vegetation    composition    distribution
     修回日期:  2011-03-31           出版日期:  2011-09-07      发布日期:  2011-09-07      期的出版日期:  2011-09-07
基金资助: National Natural Science Foundation of China (41072260 and 40402026)
通讯作者:  ShuZhen Peng    E-mail:  shuzhenpeng@sohu.com; pengsz@mail.iggcas.ac.cn
引用本文:    
ShuZhen PENG, LiJun ZHU, GuoQiao XIAO, YanSong QIAO, ZhiDong GAO, DongDong CHEN. Magnetostratigraphy and provenance of the Qingzhou loess in Shandong province[J]. 干旱区科学, 10.3724/SP.J.1227.2011.00184.
ShuZhen PENG, LiJun ZHU, GuoQiao XIAO, YanSong QIAO, ZhiDong GAO, DongDong CHEN. Magnetostratigraphy and provenance of the Qingzhou loess in Shandong province. Journal of Arid Land, 2011, 3(3): 184-190.
链接本文:  
http://jal.xjegi.com/CN/10.3724/SP.J.1227.2011.00184  或          http://jal.xjegi.com/CN/Y2011/V3/I3/184
[1] LI Sisi, WANG Quan, LI Lanhai. Interdecadal variations of pan-evaporation at the southern and northern slopes of the Tianshan Mountains, China[J]. 干旱区科学, 2016, 8(6): 832-845.
[2] ZHU Yangchun, ZHAO Xueyong, LIAN Jie, CHEN Min. Variation of Zn content in soils under different land-use types in the Hetao oasis, Inner Mongolia of China[J]. 干旱区科学, 2016, 8(6): 861-870.
[3] ZHU Lin, ZHANG Huili, GAO Xue, QI Yashu. Seasonal patterns in water uptake for Medicago sativa grown along an elevation gradient with shallow groundwater table in Yanchi county of Ningxia, Northwest China[J]. 干旱区科学, 2016, 8(6): 921-934.
[4] Naima KOULL, Abdelmadjid CHEHMA. Soil characteristics and plant distribution in saline wetlands of Oued Righ, northeastern Algerian Sahara[J]. 干旱区科学, 2016, 8(6): 948-959.
[5] ZHANG Feiyun, BAI Lei, LI Lanhai, WANG Quan. Sensitivity of runoff to climatic variability in the northern and southern slopes of the Middle Tianshan Mountains, China[J]. 干旱区科学, 2016, 8(5): 681-693.
[6] YANG Zhenjing, ZHANG Yun, REN Haibao, YAN Shun, KONG Zhaochen, MA Keping, NI Jia. Altitudinal changes of surface pollen and vegetation on the north slope of the Middle Tianshan Mountains, China[J]. 干旱区科学, 2016, 8(5): 799-810.
[7] NING Like, XIA Jun, ZHAN Chesheng, ZHANG Yongyong. Runoff of arid and semi-arid regions simulated and projected by CLM-DTVGM and its multi-scale fluctuations as revealed by EEMD analysis[J]. 干旱区科学, 2016, 8(4): 506-520.
[8] JIN Jia, WANG Quan. Assessing ecological vulnerability in western China based on Time-Integrated NDVI data[J]. 干旱区科学, 2016, 8(4): 533-545.
[9] REN Zongping, ZHU Liangjun, WANG Bing, CHENG Shengdong. Soil hydraulic conductivity as affected by vegetation restoration age on the Loess Plateau, China[J]. 干旱区科学, 2016, 8(4): 546-555.
[10] YANG Xuemei, LIU Shizeng, YANG Taibao, XU Xianying, KANG Caizhou, TANG Jinnian, . Spatial-temporal dynamics of desert vegetation and its responses to climatic variations over the last three decades: a case study of Hexi region in Northwest China[J]. 干旱区科学, 2016, 8(4): 556-568.
[11] LIU Rentao, ZHU Fan, Yosef STEINBERGER. Ground-active arthropod responses to rainfall-induced dune microhabitats in a desertified steppe ecosystem, China[J]. 干旱区科学, 2016, 8(4): 632-646.
[12] TIAN Zheng, WU Xiuqin, DAI Erfu, ZHAO Dongsheng. SOC storage and potential of grasslands from 2000 to 2012 in central and eastern Inner Mongolia, China[J]. 干旱区科学, 2016, 8(3): 364-374.
[13] YIN Gang, HU Zengyun, CHEN Xi, TIYIP Tashpolat. Vegetation dynamics and its response to climate change in Central Asia[J]. 干旱区科学, 2016, 8(3): 375-388.
[14] WANG Kaibo, DENG Lei, REN Zongping, SHI Weiyu, CHEN Yiping, SHANG-GUAN Zhouping. Dynamics of ecosystem carbon stocks during vegetation restoration on the Loess Plateau of China[J]. 干旱区科学, 2016, 8(2): 207-220.
[15] LIU Bingxia, SHAO Ming’an. Response of soil water dynamics to precipitation years under different vegetation types on the northern Loess Plateau, China[J]. 干旱区科学, 2016, 8(1): 47-59.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed