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Abstract: The three-river source region (TRSR, including Yangtze, Yellow and Lancang rivers), 
located in the Qinghai-Tibetan Plateau, China, is a typical alpine zone with apparent ecosystem 
vulnerability and sensitivity. In this paper, we introduced many interdisciplinary factors, such as 
landscape pattern indices (Shannon diversity index and Shannon evenness index) and extreme 
climate factors (number of extreme high temperature days, number of extreme low temperature 
days, and number of extreme precipitation days), to establish a new model for evaluating the 
spatial patterns of ecosystem vulnerability changes in the TRSR. The change intensity (CI) of 
ecosystem vulnerability was also analyzed. The results showed that the established evaluation 
model was effective and the ecosystem vulnerability in the whole study area was intensive. During 
the study period of 2001–2011, there was a slight degradation in the eco-environmental quality. 
The Yellow River source region had the best eco-environmental quality, while the Yangtze River 
source region had the worst one. In addition, the zones dominated by deserts were the most 
severely deteriorated areas and the eco-environmental quality of the zones occupied by 
evergreen coniferous forests showed a better change. Furthermore, the larger the change rates of 
the climate factors (accumulative temperature of ≥10°C and annual average precipitation) are, the 
more intensive the CI of ecosystem vulnerability is. This study would provide a scientific basis for 
the eco-environmental protection and restoration in the TRSR. 
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Ecosystem vulnerability has become a serious environmental problem throughout the world. 
Rapid industrialization and urbanization have largely contributed to the eco-environmental 
deterioration (Goetz et al., 2005). During the past decades, global warming has brought 
significant effects on terrestrial ecosystems, and these effects are projected to be greater in the 
future (Fu et al., 2007; IPCC, 2007). Moreover, global warming has modified the disturbance 
regimes, altering the frequency, duration and intensity of ecological disturbance processes 
(Chapin et al., 2000; Goetz et al., 2005; Westerling et al., 2011). Unfortunately, the increasing 
rate of temperature change in the three-river source region (TRSR) of the Qinghai-Tibetan 
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Plateau has obviously been greater than those in other regions of the world during the past 
decades (Li and Kang, 2006). Climate warming has brought large influence on soil quality and 
grassland productivity, and has resulted in some other serious desertification in the TRSR in 
recent decades (Liu et al., 2008). Furthermore, the alpine meadow grassland has suffered 
different degradation degrees in this region from both human beings and climate changes (Wang 
et al., 2011). Therefore, grassland degradation and land desertification have significantly altered 
the regional ecosystem and water cycle in the TRSR (Guo et al., 2002). 

Eco-environmental evaluation was developed in the 1960s as a means of quantitatively and 
qualitatively assessing the environmental situation (Eisele et al., 2003). Eco-environmental 
evaluation can provide basic data and information for sustainable development in typical zones 
(Popp et al., 2000; Linder et al., 2010), such as urban areas (Ng and Obbard, 2005) and mountain 
zones (Eisele et al., 2003; Isidori et al., 2004). In recent years, considerable interests have 
focused on identifying if, where and how ecosystem vulnerability is affected by human or 
natural disturbances (Linder et al., 2010; Chmura et al., 2011). However, subjective evaluation 
has been recognized to often overestimate or underestimate the environmental effects (Basso et 
al., 2000). In the past decades, many methods have been proposed to evaluate the 
eco-environmental effects, such as the fuzzy evaluation (Adriaenssens et al., 2004), 
comprehensive evaluation (Goda and Matsuoka, 1986) and artificial neural-network evaluation 
methods, along with the grey evaluation method (Hao and Zhou, 2002; Park et al., 2004). 
However, the variables used in the above-mentioned methods are not always easy to acquire 
(Beisner et al., 2003; Folke et al., 2004) and most related studies focused on small-scale regions. 
Furthermore, the methods developed for small spatial scales have been confronted with serious 
criticisms when used at a regional or much larger level (Suter, 1993; Tran et al., 2002). Hence, 
regional environmental vulnerability assessment still remains a great challenge (Boughton et al., 
1999). 

Recently, space technologies, such as remote sensing (RS) and satellites have provided a 
powerful tool for environmental assessment on a macroscopic scale (Beisner et al., 2003; 
Krivtsov, 2004). Integration of these space-based technologies can not only supply a platform to 
support multi-level analysis on resource and environment but also integrate the obtained 
information into a comparative theoretical ecosystem analysis (Li et al., 2006). 

The major objective of this study was to analyze the spatial patterns of ecosystem 
vulnerability changes in the TRSR of the Qinghai-Tibetan Plateau, China. We introduced many 
interdisciplinary factors, such as landscape pattern indices and extreme climate factors to 
establish a new evaluation system. This study integrated the analytic hierarchy process (AHP) 
and comprehensive index methods to build an ecosystem vulnerability index (ESVI) model for 
obtaining the vulnerability evaluation of the TRSR. Then, the spatial distributions of ecosystem 
vulnerability changes were analyzed, and the driving forces of the changes were discussed. The 
results can provide basic ecological and environmental background information for the 
environmental restoration and protection in the TRSR. 

1  Materials and methods 

1.1  Study area 

The three-river source region (TRSR; 31°39"–36°12"N, 89°45"–102°23"E), located in the west 
of China with a total area of 361,200 km2, refers to the source regions of the Yangtze, Yellow and 
Lancang rivers in the Qinghai-Tibetan Plateau (Fig. 1). Within the TRSR, the Yangtze, Yellow 
and Lancang rivers are 1,217, 1,959 and 448 km long, respectively. Most of the region are at 
least 4,000 m in altitude and are characterized by low temperature with the annual average 
temperature from −5.4°C to 4.2°C in different regions. The annual precipitation decreases from 
770 mm in the southeast to 260 mm in the northwest, with approximately 70% of the total 
precipitation occurring from June to September. The vegetation cover gradually decreases from 
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the southeast to the northwest. As a typical permafrost region, the TRSR is more sensitive to 
climatic warming and human disturbance (Wang et al., 2009). The major vegetation types in the 
TRSR are alpine grassland, alpine steppe, alpine shrubs and alpine forests. The combination of 
the above-mentioned features determines the facts that TRSR is a unique region, and evaluating 
its ecosystem vulnerability is urgent to protect the TRSR in the future. 
 

 
Fig. 1  Distribution of average normalised difference vegetation index (NDVI) in the growing seasons for 
2001–2011 and the locations of meteorological stations in the three-river source region (TRSR) 

1.2  Data collection and processing 

The data used in this study included: (1) RS data, including the normalized difference vegetation 
index (NDVI) of the Moderate Resolution Imaging Spectroradiometer (MOD13Q1; in July 2001 
and July 2011), net primary production (NPP) of MOD17A3 (in 2001 and 2011) and land cover 
type of MOD12Q1 (in 2001 and 2011); (2) data of soil type, obtained from the Institute of Soil 
Science, Chinese Academy of Sciences; (3) data of the 90-m Digital Elevation Model (available 
at http://datamirror.csdb.cn) obtained from the National Geospatial-Intelligence Agency and 
National Aeronautics and Space Administration; (4) meteorological data of water and heat (in 
2001 and 2011) obtained from the Chinese Environmental Background Database; (5) 
socio-economic data from the annual statistics of Qinghai province; (6) amount of water 
resources (AWR) data acquired from the Ministry of Environmental Protection of the People’s 
Republic of China; and (7) soil erosion and salinization data from the Institute of Remote Sensing 
and Digital Earth, Chinese Academy of Sciences.   

We adopted the next three steps to further process the source data. (1) The water channel density 
(WCD), biologic abundance index (BAI) and landscape pattern indices (Shannon diversity index 
(SHDI) and Shannon evenness index (SHEI)) were generated from the data of land cover type using 
the ArcGIS 10.1 and Fragstats 3.4 tools. Climate data included accumulated temperature of ≥10°C 
(AT (≥10°C)), average annual precipitation (AAP), air humidity (AH), and extreme climate data 
(number of extreme high temperature days (NEHTD), number of extreme low temperature days 
(NELTD) and number of extreme precipitation days (NEPD)); and anthropogenic factors included 
population density (PD), gross domestic product density (GDPD), Engle’s Coefficient (EC) and per 
capita net income of farmers and herdsmen (PCNIFH). (2) Unified the geo-reference of all factors. 
The coordinate system was the Albers Equal Area System with original longitude of 105°E, original 
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latitude of 0°N, double-standard parallel of 25°N and 47°N and D_Krasovsky_1940 datum. (3) 
Made a grid of the vector data. All the gridded images were at a spatial resolution of 1,000 m. 

1.3  Factors influencing the eco-environment 

Selection of the evaluation criteria is significantly important in a regional assessment. The 
selected evaluation factors should be indicative, operational and representative (Alewell and 
Manderscheid, 1998). Because of the high altitude and terrain features of the region, the mean 
air temperature is below −1°C and the annual precipitation is approximately 470 mm. 
Furthermore, the climate of the study region in winter is significantly affected by the cold 
current of the Mongolia–Siberian system. This region is characterized by loose soil surface, 
widely distributed deserts, strong wind and low vegetation cover. In recent decades, climate 
warming has modified the disturbance regimes of the ecosystem by altering the frequency, 
duration and intensity of extreme climate events. Along with the reduced precipitation and rising 
temperature, human activities such as deforestation and overgrazing have also exerted 
substantial influence on the eco-environment (Linder et al., 2010). These activities decreased the 
vegetation cover and destroyed the physical and chemical structures of the topsoil. Both natural 
and anthropogenic factors could exacerbate the ecosystem vulnerability of the TRSR. 

Based on the unique conditions and some previous qualitative analyses of the environmental 
features in the TRSR (Yang et al., 2004; Zhang and Wu, 2012), we considered all the possible 
environmental factors for the present evaluation. Then, we finally chose 16 factors to establish 
the evaluation index system by performing a covariance analysis among the factors (Table 1). 

Table 1  Factors used for assessing the ecosystem vulnerability in the TRSR 

Group Factor Definition and major impact on eco-environment Data acquisition 

AWR Interpreted from Landsat TM images Water 
resources 

WCD 

The rivers are impacted by human activities and 
then strongly influence the plant growth Observed and calculated data from 

hydrological stations 
Vegetation BAI Calculated data from land-use types 

 NPP 
Vegetation cover/biomass and biodiversity over 
land surfaces Data obtained from MOD17A3 

 SHEI Calculated data from land-use types 

 SHDI 

Landscape patterns can largely indicate the 
conditions of the ecosystem and are impacted by 
human disturbances Calculated data from land-use types 

Climate AAP 
Average annual precipitation can influence the 
spatial distribution of plants 

 
AT 

(≥10°C) 
Strongly influences plant growth 

 
NDWV 
(≥6 m/s) 

Number of days with wind velocity ≥6 m/s, which 
strongly influences soil erosion and moisture 

 AH Strongly influences plant growth and soil moisture 

 SH 
Sunshine hour can strongly influence the plant 
growth 

Observed and calculated data from 
meteorological stations 

 NEHTD 

 NELTD 

 NEPD 

Extreme climate events, which can significantly 
indicate the influence brought by the climate 
warming on the ecosystem 

Observed and calculated data from 
meteorological stations 

Soil SWE 

 SFTE 

 SSA 

These three factors can better reflect the 
relationship between natural and socio-economic 
systems 

Obtained data from the Institute of 
Remote Sensing and Digital Earth, 
Chinese Academy of Sciences 

PD 

GDPD 
These two factors can reflect the development 
intensity 

Obtained data from statistical data of 
provinces (Hao and Zhou, 2002) 

EC   

Human 
activities 

PCNIFH   

Note: AWR, amount of water resources; WCD, water channel density; BAI, biological abundance index; NPP, net primary production; 
SHEI, Shannon evenness index; SHDI, Shannon diversity index; AAP, average annual precipitation; AT (≥10°C), accumulative 
temperature of ≥10°C; NDWV (≥6 m/s), number of days with wind velocity ≥6 m/s; AH, air humidity; SH, sunshine hour; NEHTD,  
number of extreme high temperature days; NELTD, number of extreme low temperature days; NEPD, number of extreme precipitation 
days; SWE, soil water erosion; SFTE, soil freeze–thaw erosion; SSA, soil salinization; PD, population density; GDPD, gross domestic 
product density; EC, Engle’s Coefficient; PCNIFH, per capita net income of farmers and herdsmen. The meanings of the abbreviations 
are the same as in Table 4. 
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Because the factors were measured in different units of the measurement, standardization was 
needed to eliminate the unit difference among variables. The variables can be standardized using 
Eqs.1 and 2.  
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Where, Iij represents the standardized value of grid i in factor j; xij is the original value of grid i 
in factor j; and xmax, j and xmin, j 

represent the maximum and minimum values of factor j, 
respectively. 

1.4  Weights of factors 

Another important issue for the evaluation was to assign a weight to each factor according to its 
relative effects on the eco-environmental vulnerability. AHP (Suter, 1993) is an appropriate 
method to derive the weight of each factor. AHP has been widely applied in environmental 
evaluation and regional sustainable management (Bantayan and Bishop, 1998). In this study, the 
process of obtaining the weight of each factor is listed in Tables 2–4. 
 

Table 2  Scale of binary comparison 

Degree of importance Definition 

1 Equal importance of two elements 

3 Weak importance of an element compared with another one 

5 Strong importance of an element compared with another one 

7 Very strong importance of an element compared with another one 

9 Absolute importance of an element compared with another one 

2, 4, 6, 8 Intermediate values between two appreciations  

1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9 Reciprocal values of the previous appreciations 

 

Table 3  Relative weights of the second grade factors of vulnerability evaluation for analytic hierarchy process  

Evaluation index Water resources Vegetation Climate Soil Human activities 

Water resources 1     

Vegetation 1/2 1    

Climate 1 2 1   

Soil 2 3 1 1  

Human activities 1/2 1/2 1/3 1/3 1 

 

1.5  ESVI calculation 

The evaluation of ecosystem vulnerability requires the integration of multiple factors for 
obtaining a comprehensive evaluation index. Thus, we adopted the method of weighted linear 
combinations to calculate the ESVI (Eq. 3).  

                      )./()(ESVI
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Where, Wi is the weight of factor i and Ii is the value of factor i. 

1.6  Classification of ecosystem vulnerability 

The results obtained from the ESVI model were continuous values, which could be classified 
into different levels to represent the ecosystem vulnerability. Classification is very important in 
the evaluation of ecosystem vulnerability; therefore, it should be objective and logical.  

The natural break classification (NBC) method is a graphical tool to analyze and explore the 
statistical distribution of classes and clusters in an attribute space (Li et al., 2006). Because 
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different classes are based on inherent natural grouping, NBC can identify break points by 
picking the class breaks that group similar values and maximize the differences among classes. 
Finally, the continuous values were divided into different classes whose boundaries were set 
where relatively big lumps in the data values existed. 

Thus, we adopted the natural breaks of ArcGIS 10.1, which combined the histogram and 
cluster methods, to classify the ecosystem vulnerability into five levels. To confirm the objective 
of the threshold value for each vulnerability level, we then utilized the annual average NDVI to 
test and modify the threshold values. The five categories were defined as slight (ESVI<0.62), 
mild (0.62≤ESVI<0.73), moderate (0.73≤ESVI<0.80), intensive (0.80≤ESVI<0.95) and severe 
(ESVI≥0.95) vulnerabilities.  

Table 4  Weights of the factors for ecosystem vulnerability evaluation for ecosystem vulnerability index 
(ESVI) 

First grade Second grade Weight Third grade Weight 

Water resources 0.207 AWR 0.104 

  WCD 0.104 

Vegetation 0.258 BAI 0.122 

  NPP 0.107 

  SHEI 0.014 

  SHDI 0.014 

Climate 0.126 AAP 0.024 

  AT (≥10°C) 0.019 

  NDWV (≥6 m/s) 0.024 

  AH 0.019 

  NEHTD 0.007 

  NELTD 0.011 

  NEPD 0.011 

  SH 0.011 

Soil 0.321 SWE 0.064 

  SFTE 0.161 

  SSA 0.096 

Human activities 0.088 PD 0.033 

  GDPD 0.033 

ESVI 

  EC 0.011 

   PCNIFH 0.011 
 

1.7  Trend coefficients of climate factors 

Trend coefficient can demonstrate the change ratio and direction of the climate factors in a 
long-term period (Sun et al., 2007; Li and Zhang, 2011). An increasing trend occurs when the 
trend coefficient is positive; while a negative trend coefficient indicates a decreasing trend. 
Furthermore, the change ratios of the climate factors can be determined by the absolute value of 
the trend coefficient. The bigger the absolute value is, the larger is the change ratio of the climate 
factor. The absolute value of the trend coefficient can be expressed as Eq. 4.  

                        .
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Where, rxt is the absolute value of the trend coefficient; n refers to the number of years; xi is the 
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value of the climate factor in year i; x  refers to the average value of the climate factor; and t  
refers to the value of (n+1)/2. The larger rxt is, the more dramatic is the change intensity (CI) of 
the climate factor. 

2  Results 

2.1  Spatial patterns of ecosystem vulnerability in 2001 and 2011 

According to the standards mentioned above, we classified the evaluation indices of the 
comprehensive ecosystem vulnerability in 2001 and 2011 to generate the corresponding results 
(Fig. 2; Table 5). 

 

Fig. 2  Distributions of ecosystem vulnerability in 2001 (a) and 2011 (b) in the study area 

The vulnerable region was widely distributed in the TRSR (Fig. 2). The spatial disparities of 
the zones at different classifications differed significantly. The intensively and severely 
vulnerable zones were continuously distributed in the mid-western region, such as Zhidoi, 
Golmud, Zadoi and Qumarleb. The slightly and mildly vulnerable regions were discontinuously 
concentrated in the eastern part of the study area, including Baima, Henan, Gade and Zekog. 
From 2001 to 2011, the areas of intensive and severe ecosystem vulnerability increased by 5.21% 
and 2.05%, respectively. Correspondingly, the areas of moderate, mild and slight ecosystem 
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vulnerability decreased by 6.06%, 1.03% and 0.18%, respectively. The average values of ESVI 
in 2001 and 2011 over the whole study region were 4.21 and 4.28, respectively. Figure 2 and 
Table 5 further showed a slight deterioration trend in the eco-environmental quality during 
2001–2011, which was indicated by the enlarged zones of intensive and severe vulnerability. 

Table 5  Area and area percentage of each ecosystem vulnerability level in 2001 and 2011 in the TRSR 

2001 2011 
Vulnerability level 

Area (104 km2) Percentage (%) Area (104 km2) Percentage (%) 

Slight  1.79  5.14  1.72  4.96 

Mild  2.11  6.08  1.76  5.05 

Moderate 10.48 30.13  8.37 24.07 

Intensive 17.03 48.99 18.84 54.20 

Severe  3.35  9.65  4.07 11.72 

 

2.2  Ecosystem vulnerability of the TRSR 

The ecosystem vulnerability significantly differed in different parts of the TRSR. The bigger the 
value of ESVI, the more serious the eco-environmental vulnerability. In 2001, the average values 
of ESVI for the source regions of Yellow, Yangtze and Lancang rivers were 3.88, 4.42 and 4.15, 
respectively. In 2001, the intensively vulnerable zone in the Yangtze River source region was the 
largest (accounting for 65% of the total area of the Yangtze River source region), while the 
intensively vulnerable zone in the Yellow River source region was the smallest (Fig. 3). 
Therefore, the vulnerability of the Yangtze River source region was the heaviest, and the 
vulnerability of the Yellow river source region was relatively lighter. Similarly, in 2011, the 
ecosystem condition of the Yangtze River source region was the worst, with the mean ESVI of 
4.52; while the Yellow River source region had the best ecosystem quality, with the mean ESVI 
of 3.89. From 2001 to 2011, the area of moderately vulnerable zone in the Lancang River source 
region decreased by 10.04%, while the area of intensively vulnerable zone increased by 11.27%. 
Thus, the CI of the Lancang River source region was the largest during 2001–2011. 

 

Fig. 3  Area percentage of each ecosystem vulnerability level in the source regions of Yangtze, Yellow and 
Lancang rivers in 2001 and 2011 

2.3  Change trend of ecosystem vulnerability 

To better monitor the changes in the ecosystem vulnerability during the study period, we 
obtained the CI of ecosystem vulnerability from 2001 to 2011 by the subtraction method using 
the raster calculator of ArcGIS 10.1. 

According to the natural conditions of the study area, we divided the ESVI of the TRSR into 
five categories using the natural breaks of ArcGIS 10.1: severe decrease (CI<−0.5), mild 
decrease (−0.5≤CI<−0.25), stable (−0.25≤CI<0.25), mild increase (0.25≤CI<0.5) and severe 
increase (CI≥0.5). 

The distribution of different CI grades of ecosystem vulnerability in the TRSR is shown in Fig. 4, 
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which shows that the distinct spatial differentiation of ecosystem vulnerability exists for each CI 
grade during 2001–2011. The stable zone was most widely distributed, with an area of 23.09×104 
km2. The zone with severe increase was discontinuously distributed in Madoi, Chindu, Zadoi and 
Qumarleb, with an area of 4.24×104 km2, accounting for 12.19% of the whole study area. The 
zone with mild increase was mainly concentrated in the west of the study region, such as 
Golmud and southern Zhidoi. Furthermore, the zones with mild and severe decreases were 
mainly distributed in the northeastern Zhidoi, Zekog, Tongde, Baima and Nangqen, accounting 
for approximately 11.31% of the whole study area. Thus, we concluded that during the study 
period (2001–2011), the ecosystem vulnerability over the whole TRSR was slightly intensive. 

 

 

Fig. 4  Distribution of change intensity (CI) of ecosystem vulnerability from 2001 to 2011 in the TRSR 

3  Discussion 

3.1  Accuracy assessment of the evaluation 

In general, the ecosystem vulnerability in the study area is at an intensive level because the 
moderately and intensively vulnerable zones occupied most of the study region (accounting for 
78.27%), which agrees with the results obtained by Kang et al. (2010). The study area is 
characterized by semi-arid and arid continental plateau climate with cold, dry and larger diurnal 
variation in temperature. The average annual precipitation is approximately 470 mm. However, 
almost 70% of it occurs from June to September. Generally, soils are not developed well in this 
region, and the soil layer is thin with a depth of approximately 30–50 cm due to the effects of 
high elevation and cold weather (Liu et al., 2006). The water contention of soil during rainfall 
and snow melting periods in the TRSR has become larger with the exacerbation of global 
warming (Liu et al., 2009; Kang et al., 2010). The major vegetation types are alpine meadow and 
alpine grass. Thus, the vegetation cover is much lower. Moreover, climate change and human 
activities have resulted in the decrease in the grassland in some regions (Qian et al., 2010). 

3.2  Relationship between CI of ecosystem vulnerability and land-use types 

In this study, we chose seven typical land-use types (i.e. shrubs, deserts, steppe, water body, 
meadow, evergreen coniferous forests (ECF), and barren and sparse vegetation (BSV)) to 
analyze the correlation between the CI of ecosystem vulnerability and land-use types. A 
significant difference in CI of ecosystem vulnerability exists among all the land-use types (Fig. 
5). The region dominated by deserts had the largest increased insensitive vulnerability with a 
mean CI value of 0.312, which belongs to the grade of mild increase. This phenomenon resulted 
from the fact that the vegetation cover and gross primary productivity of the deserts were much 
lower; hence, the biodiversity was much smaller. Thus, the ecosystem of this region is more 
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sensitive to climate change. During the past decades, the accelerated global warming has resulted 
in the increased temperature and decreased precipitation, which brought negative influences on 
the vegetation productivity and soil moisture (Roerink et al., 2003). Subsequently, the decrease 
in vegetation cover and soil moisture led to the deterioration of eco-environmental quality. The 
ecosystem vulnerability of the ECF decreased during the study period (the mean CI value of 
−0.09), because the zones occupied by ECF were concentrated in the east of the study area with 
abundant precipitation and water resources (Liu et al., 2009; Kang et al., 2010). Meanwhile, the 
mean values of CI for the shrubs as well as barren and sparse vegetation were higher (0.089 and 
0.062, respectively), because this two land-use types were mainly distributed in the mid-western 
part with low vegetation cover and scarce precipitation. Along with the decreased precipitation 
and increased temperature, the human activities, including deforestation, overgrazing and 
large-scale construction, exerted great influences on the eco-environment (Zhang et al., 2007). 
Both natural and anthropogenic factors could exacerbate the ecosystem vulnerability. The 
vulnerability of zones dominated by steppe, meadow and water body were stable, with the mean 
CI values of 0.055, 0.056 and 0.054, respectively. These areas had abundant precipitation 
ranging from 300 to 600 mm, and the vegetation cover was also high. However, the fluctuation 
range of ecosystem vulnerability was largest in the steppe among the three land-use types due to 
its wide distribution, followed by the meadow and water body. The zones dominated by shrubs 
were mainly concentrated in the middle of the TRSR. The ecological and environmental 
conditions of these areas greatly changed. Thus, by comparing the mean values and fluctuation 
ranges of the CI among all the land-use types, we can determine that during the study period, the 
zones dominated by deserts were the most severely deteriorated areas, followed by those 
dominated by shrubs. Furthermore, ecosystem conditions of the zones occupied by ECF had a 
better change. 

 

 

Fig. 5  Change intensity (CI) of ecosystem vulnerability for different land-use types in 2010. The top line 
shows the maximum value of CI for each land-use type, whereas the bottom line shows the minimum value. The 
green square refers to the mean value of CI, and the blue square refers to the standard deviation of CI. BSV, 
barren and sparse vegetation; WB, water body; ECF, evergreen coniferous forests. 

3.3  Relationship between the change of ecosystem vulnerability and climate factors 

Results of the ecosystem vulnerability and its changes in the TRSR showed that there was a 
slight degradation in the eco-environmental quality for the whole study area. In some regions, 
the ecosystem conditions had become worse from 2001 to 2011. Among all the factors, 
precipitation and temperature played important roles in affecting the eco-environment (Zhou et 
al., 2007). During the past decades, the accumulative temperature of ≥10°C in the TRSR showed 
an increasing trend, whereas the annual precipitation presented a decreasing trend (Zhou et al., 
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2007). Vegetation cover showed a positive relationship with precipitation, while a negative 
correlation existed between the vegetation growth and accumulative temperature of ≥10°C (Zhou 
et al., 2007). Wang et al. (2009) pointed out that increases in air temperature and soil moisture 
would result in an increase in vegetation productivity, while decreases in air temperature and soil 
moisture would result in a decrease in vegetation productivity. Many studies found that 
ecosystem quality had a highly positive relationship with the NDVI and NPP (Isidori et al., 
2004). Therefore, a decrease in vegetation cover would certainly lead to the increase of 
ecosystem vulnerability. Furthermore, the rise in temperature would increase evapotranspiration 
and therefore increase the loss of soil water. Thus, temperature had a negative correlation with 
ecosystem quality. Moreover, the water content of topsoil layer would increase when the 
temperature rises. Subsequently, the process of soil freeze–thaw erosion would be exacerbated 
by the increased water content in the shallow soil layer during the thawing period in cold 
regions.  

To better understand how the change of ecosystem vulnerability was affected by the climate 
factors, we conducted an analysis on the relationship between CI and trend coefficients (Eq. 4) 
of annual precipitation and accumulative temperature of ≥10°C based on the data from 13 
meteorological stations. A negative relationship existed between CI and trend coefficient of 
annual precipitation until the coefficient reached 0.25 (Fig. 6). Similarly, the CI of ecosystem 
vulnerability had a negative correlation with the trend coefficient of accumulative temperature of 
≥10°C before the coefficient reached 0.7. We thus concluded that annual precipitation and 
accumulative temperature of ≥10°C had a negative influence on the CI of ecosystem 
vulnerability when the change rate was low. However, if the change rate of the above-mentioned 
climate factors exceeds a certain value, they would aggravate the CI of ecosystem vulnerability.  

   

 

Fig. 6  Relationships of the CI of ecosystem vulnerability with (a) trend coefficient of annual precipitation 
(TCAP) and (b) trend coefficient of accumulative temperature of ≥10°C (TCAT)  

4  Conclusions 

In this study, we introduced many indices (e.g. SHEI, SHDI, NEHTD, NELTD and NEPD) to 
establish a new evaluation model for the estimation of ecosystem vulnerability in the TRSR. 
From this study, we can draw the following conclusions. 

(1) This study demonstrated that the proposed model is an effective approach to estimate the 
ecosystem vulnerability with great applicability and practicability, because the obtained results 
reflect the reality of the eco-environmental vulnerability in the TRSR. 

(2) The ecosystem vulnerability in the whole study area was intensive. Moreover, a slight 
deterioration of environmental quality occurred from 2001 to 2011. Among the source regions of 
the three rivers (Yangtze, Yellow and Lancang rivers), the source region of Yangtze River had 
the worst eco-environmental quality, while the ecosystem condition of Yellow River was the 
best. Furthermore, during the study period, the zones dominated by deserts were the most 
severely deteriorated areas, followed by those dominated by shrubs. Moreover, the 
eco-environment quality of the zones occupied by ECF showed a better change. These results 
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suggested that specific environmental protection measures should be conducted in different 
regions with different ecosystem vulnerabilities. Furthermore, the larger the change rates of 
climate factors, the more intensive the CI of ecosystem vulnerability. 

However, the new ESVI model still requires development to further reduce subjectivity in 
judgments, and further studies should be conducted to clarify the driving force mechanisms of 
changes in ecosystem vulnerability. 
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