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Abstract: Net primary productivity (NPP), as an important variable and ecological indicator in grassland 
ecosystems, can reflect environmental change and the carbon budget level. The Ili River Valley is a 
wetland nestled in the hinterland of  the Eurasian continent, which responds sensitively to the global 
climate change. Understanding carbon budget and their responses to climate change in the ecosystem of  
Ili River Valley has a significant effect on the adaptability of  future climate change and sustainable 
development. In this study, we calculated the NPP and analyzed its spatio-temporal pattern of  the Ili River 
Valley during the period 2000–2014 using the normalized difference vegetation index (NDVI) and an 
improved Carnegie-Ames-Stanford (CASA) model. Results indicate that validation showed a good 
performance of  CASA over the study region, with an overall coefficient of  determination (R2) of  0.65 and 
root mean square error (RMSE) of  20.86 g C/(m2•a). Temporally, annual NPP of  the Ili River Valley was 
599.19 g C/(m2•a) and showed a decreasing trend from 2000 to 2014, with an annual decrease rate of  
–3.51 g C/(m2•a). However, the spatial variation was not consistent, in which 55.69% of  the areas showed 
a decreasing tendency, 12.60% of  the areas remained relatively stable and 31.71% appeared an increasing 
tendency. In addition, the decreasing trends in NPP were not continuous throughout the 15-year period, 
which was likely being caused by a shift in climate conditions. Precipitation was found to be the dominant 
climatic factor that controlled the inter-annual variability in NPP. Furthermore, the correlations between 
NPP and climate factors differed along the vertical zonal. In the medium-high altitudes of  the Ili River 
Valley, the NPP was positively correlated to precipitation and negatively correlated to temperature and net 
radiation. In the low-altitude valley and high-altitude mountain areas, the NPP showed a negative 
correlation with precipitation and a weakly positive correlation with temperature and net radiation. The 
results suggested that the vegetation of  the Ili River Valley degraded in recent years, and there was a more 
complex mechanism of  local hydrothermal redistribution that controlled the growth of  vegetation in this 
valley ecosystem. 

Keywords: net primary productivity; Carnegie-Ames-Stanford model; spatio-temporal pattern; climatic impacts; 
precipitation; normalized difference vegetation index 

Citation: JIAO Wei, CHEN Yaning, LI Weihong, ZHU Chenggang, LI Zhi. 2018. Estimation of net primary productivity 
and its driving factors in the Ili River Valley, China. Journal of Arid Land, 10(5): 781–793. 
https://doi.org/10.1007/s40333-018-0022-1 

1  Introduction 

Net primary productivity (NPP) is a reflection of the production and carbon (C) sink capacity of 
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an ecosystem and is recognized as a key topic in ecology (Pan et al., 2015; Li et al., 2016). With 
the development of global change research, the estimation of vegetation NPP has attracted 
increased attention from scholars. In fact, vegetation NPP has become an indispensable index and 
the core content in the study of the effects of climate change on terrestrial ecosystems (Li et al., 
2011; Li et al., 2016). It has even become an important index to assess national grain security (He 
et al., 2017). Scholars use a variety of methods to estimate vegetation NPP in different regions of 
the world as well as to analyze vegetation NPP from different angles (Liang et al., 2015). Recent 
findings from numerous studies suggest that vegetation NPP has experienced slight increases 
around the world due to global warming and the fertilizer utilization (Piao et al., 2011; Zhang et 
al., 2013; Li et al., 2016). Some scholars also assert that the phenomenon of vegetation 
degradation has appeared in parts of drought and cold regions under the impacts of changing 
climate and human activities (Zhao et al., 2010). However, the response of vegetation NPP in 
regions of complex terrain to changing climate is not yet well known. 

Grassland is the largest terrestrial ecosystem in the world. Moreover, it is highly sensitive and 
vulnerable to climate change (e.g., it can respond by experiencing prolonged growth periods), 
which makes it a preferred study subject for investigating global changes (Zhang et al., 2008; Fan 
et al., 2012; Mu et al., 2013; Zhou et al., 2014). Within the realm of grassland ecology, a 
long-term quantitative survey of grassland biomass and dynamic monitoring of vegetation NPP 
could provide a strong support for evaluating the productivity of grassland ecosystems and also 
help to realize the sustainable development of grassland ecosystems (Wang et al., 2011). With 
recent developments in the study of vegetation NPP in grassland ecosystems, the estimation 
model of NPP has become more mature, from traditional estimation method (including 
actual-measurement method, climate related statistical model and the ecological process model) 
to the light energy utilization model based on remote sensing technology (Gang et al., 2015; 
Liang et al., 2015). At present, some researchers used the light energy utilization model to 
estimate vegetation NPP, which makes it possible to obtain real-time observation data at a large 
scale (Liang et al., 2015; Cui et al., 2018). Carnegie-Ames-Stanford (CASA), which is a 
representative model based on remote sensing data, can estimate vegetation NPP at different 
scales. And its accuracy has been verified in several studies (Zhu et al., 2005). 
  The Ili River Valley, which is located in the western border of China, is a wetland nestled in the 
hinterland of the Eurasian continent. A grassland ecosystem dominates the main portion of the 
valley, covering an area of 3.4×106 hm2. This region is an important production base for 
agriculture and animal husbandry of Xinjiang. The responsible use of grassland resources and the 
sustainable development of the ecological environment both play important roles in promoting the 
target of ''Belt and Road Initiatives'' and in maintaining local socioeconomic stability. In recent 
years, research focusing on the ecological environment of the Ili River Valley has been intensified 
(Chen et al., 2010; Zhang et al., 2012), with most studies investigating the vegetation index (Yan 
et al., 2013; Chen et al., 2016), soil and water conservation in the hillside (Chen et al., 2012; Li et 
al., 2016), and the physical and chemical characteristics of the soil (Sun et al., 2016; Zhou et al., 
2016). While all of these studies laid a solid foundation for further explorations of the changing 
characteristics and sustainable development of the ecological environment in valley, research on 
the changing characteristics of grassland ecosystems from the perspective of NPP is still lacking. 

In order to accurately reflect the temporal and spatial pattern of vegetation NPP in the Ili River 
Valley, we used the MODIS NDVI and meteorological station data during the period 2000–2014, 
combined with a remote sensing-based carbon model (i.e., CASA) and measured data to estimate 
vegetation NPP. Meanwhile, correlation between NPP and major climate factors were analyzed. 
The findings can provide a scientific basis for restoration and the sustainable utilization of 
grassland ecosystems in this region. 

2  Materials and methods 

2.1  Study area 

The Ili River Valley (42°14′16″–45°50′30″N, 80°09′42″–84°56′50″E), located in the western 



 JIAO Wei et al.: Estimation of net primary productivity and its driving factors in the Ili River… 783 

 

 

Tianshan Mountains of China, belongs to the hinterland of the Eurasian continent. The region is a 
depression basin approximately 55.3×103 km2 that serves as a separation zone between the 
northern and southern Tianshan Mountains. The basin features a typical temperate continental 
climate, with precipitation gradually increasing from west to east. The annual mean temperature is 
10.4°C and annual sunshine is approximately 2898.4 h (Sun et al., 2010; Yang et al., 2010). 
Annual precipitation in the basin is around 417.6 mm, which makes the area rich in waterpower 
and natural grassland resources. The valley area of the basin is also known for its well-established 
agricultural and animal husbandry industries. 

2.2  Data sources and pretreatment 

2.2.1  Data 
The MODIS datasets used in the model were derived from National Aeronautics and Space 
Administration (NASA) series satellites. Specifically, data of 1-km resolution MOD13 (NDVI) 
and MOD12 (land use and land cover data) were used (https://ladsweb.nascom.nasa.gov/data/ 
order.html). The MODIS NDVI dataset was the 16-day composite of daily remotely sensed data 
with a data range from 2000 to 2014. The data range for the MOD12 dataset is from 2000 to 2014 
and the time resolution was one year. The topography information of this region was obtained 
from the United States Geological Survey (USGS)-produced digital elevation model (DEM), with 
a 90-km resolution.  
  Daily meteorological data recorded from 9 meteorological stations across the Ili River Valley 
during the period 2000–2014 were obtained from the Climate Database of the China 
Meteorological Administration (http://cdc.cma.gov.cn/home.do). The data include daily 
precipitation, temperature, wind velocity, vapor pressure, relative humidity, sunshine percentage, 
relative humidity, and daily order. 
2.2.2  Data pretreatment 
To begin the process of pretreatment, we used the MODIS Reprojection Tool (MRT) to splice, 
project and format the conversions. We converted the images from HDF to Tiff formats, and 
configured the coordinate system to WGS84/Geographic. The maximum value composite (MVC) 
method was used to reduce the noise (i.e., disturbance from clouds, atmosphere, and changes in 
solar altitude angles) in NDVI data and to generate a monthly NDVI series. We clipped the 
images according to the boundary map, and the ArcGIS10.2 converted DN values into standard 
ones. 
  We generated the gridded meteorological data (at 0.01°×0.01° spatial resolution), which 
included air temperature, precipitation, wind velocity, vapor pressure, relative humidity, sunshine 
percentage and relative humidity, from meteorological stations across the Ili River Valley based 
on the Kriging interpolation technique. The processed NDVI and land cover data were further 
resampled to a 0.01°×0.01° spatial resolution. In addition, the DEM data were used to revise the 
temperature data. 

2.3  Methods 

2.3.1  NPP algorithm 
We used the CASA model to estimate NPP as a product of the amount of absorbed photosynthetic 
active radiation (APAR, MJ/m2) and light use efficiency (ε, g C/MJ) (Potter et al., 1993; Field et 
al., 1995). For a given geographic coordinate (x) at month t, NPP is calculated as: 

NPP(x,t)=APAR(x,t)×ε(x,t),                          (1) 
where t is the period that NPP is cumulated; and x is the pixel in a remote sensing image.  
  The two parameters are calculated as: 

APAR(x,t)=SOL(x,t)×FPAR(x,t)×0.5,                       (2) 
ε(x,t)=Tε1(x,t)×Tε2(x,t)×Wε (x,t)×εmax,                        (3) 

where SOL(x,t) is the surface total radiation (MJ/m2); FPAR(x,t) is the absorption ratio of 
photosynthetic active radiation; Tε1(x,t) and Tε2(x,t) are the limiting effects of low temperature 
and high temperature on the utilization of light energy, respectively; Wε(x,t) is the water stress 
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coefficient; and εmax is the maximum utilization of light energy under ideal condition (g C/MJ).  
  The relationship between FPAR and NDVI and simple ration (SR) has been near-linear in some 
studies (Hatfield et al., 1984; Ruimy and Saugier, 1994). Furthermore, the SR can be calculated 
by the NDVI (Eq. 6). The relationships between FPAR and NDVI and SR are given by:  
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NDVI( ,max) MDVI( ,min)

x t i
x t

i i

−= × − +
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where FPARmin=0.001, and FPARmax=0.095. At the same time, the values of NDVI(i,min) and 
NDVI(i,max) correspond to 95% and 5% of the NDVI values of vegetation type i, respectively. 
The land cover-type-dependent NDVI values for 95% and 5% different vegetation populations are 
shown in Table 1. A comparison between the two indices indicates a large bias in the estimate of 
FPAR from NDVI and a small bias in the estimate of FPAR from SR, respectively. Based on the 
example of a previous study, we used the mean value as the FPAR (Zhu et al., 2006). 
  The calculation methods of some parameters in the model were improved. We calculated the 
SOL by using the experienced coefficient from Hou et al. (1993) and also introduced land use 
data to estimate the light energy utilization ratio of different vegetation types and to realize 
parameter localization. The maximum utilization of light energy (εmax) is shown in Table 2. These 
data come from a previous study (Feng et al., 2014), which are calculated by the observed data. 
More details about the CASA model, including descriptions of calibration and data processing, 
can be found in Zhu et al. (2007). 

Table 1  NDVImax, NDVImin, SRmax and SRmin of typical vegetation types in Northwest China 

Code Vegetation type NDVImax NDVImin SRmax SRmin 

 0 Water body 0.241    –0.300  1.635 0.538 

 1 Evergreen needle-leaf forest 0.757  0.143  7.230 1.334 

 2 Evergreen broadleaf forest 0.334  0.023  2.003 1.047 

 3 Deciduous needle-leaf forest 0.803  0.003  9.152 1.006 

 4 Deciduous broadleaf forest 0.872  0.083 14.625 1.181 

 5 Mixed forest 0.842  0.130 11.658 1.299 

 6 Closed shrub land 0.564  0.107  3.587 1.240 

 7 Opened shrub land 0.427  0.079  2.490 1.172 

 8 Multi-tree grassland 0.816  0.023  9.870 1.047 

 9 Savanna 0.788  0.011  8.434 1.022 

10 Grassland 0.633  0.028  4.450 1.058 

11 Permanent wetland 0.789  0.001  8.479 1.002 

12 Farmland 0.763  0.133  7.439 1.307 

13 City 0.653  0.077  4.764 1.167 

14 Mixed land with crop and natural vegetation 0.838  0.227 11.346 1.587 

15 Snow and ice 0.077 –0.056  1.167 0.894 

16 Bare or poor vegetation cover land 0.134  0.037  1.309 1.077 

Note: NDVImax and NDVImin indicate the maximum and minimum normalized difference vegetation indices, respectively. SRmax 

and SRmin indicate the maximum and minimum simple rations, respectively. Data are calculated from MODIS data by the 
MATLAB. 

2.3.2  Sample collection of model verification 
We used the actual value of vegetation NPP to verify the model. Based on changes in natural 
vegetation belt in the Ili River Valley, we uniformly arranged 18 quadrates and determined 
location information through GPS. Then, based on the representative principle, we randomly 
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selected 5 quadrates in each site at the length, width, and depth of 30 cm. 

Table 2  Maximum light use efficiency (εmax) of typical vegetation types 

Land use type  εmax (g C/MJ) Land use type  εmax (g C/MJ) 

Forest 0.774 Wetland 0.357 

Farmland 0.604 City 0.202 

Grassland 0.380 Bare land 0.258 

Water body 0.296 Shrub 0.380 

Note: Data are referenced from Feng et al. (2014).  

  We proceeded to harvest and transport the aboveground vegetation from the quadrates and the 
plants were dried to calculate their weight in the laboratory. Next, we removed the underground 
roots from the soil and transported them to the lab. After rinsing them thoroughly with water, the 
roots were placed in an incubator for 48 h at a temperature of 70°C. Next, we tested their weight 
in the laboratory. According to previous studies, the coefficient of carbon conversion was 0.45 
(Tang et al., 2014). Then, we calculated the value of NPP in the quadrates. Finally, based on 
latitude and longitude information of the sites, we spatially extracted and analyzed experimental 
and simulated data. 
2.3.3  Trend and partial correlation analysis  
(1)   Trend analysis 
To further discern the trend of annual NPP, we examined linear trend estimations on a per-pixel 
basis to establish a linear regression relationship between NPP and time. The method we chose for 
this process is Sen's slope. Additional details about this approach can be found in Wang et al. 
(2013). The slope is calculated as: 

Median( )  ,j ix x
j i

j i
β

−
= ∀ >

−
                           (7) 

where β is the average change rate of this sequence (g C/(m2•a)). Here, β>0 was considered an 
increasing trend and β<0 a decreasing one, while median is the median function. 
(2)  Stability analysis 
In order to analyze the stability of NPP in the Ili River Valley, we used standard deviation to 
reflect the traits of volatility. Standard deviation is calculated as: 

2

1

1
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where Stdev is the standard deviation; NPP  is the annual NPP; and NPPi is the value of NPP at 
the ith year. Using the natural fracture method, the vegetation NPP standard deviation was divided 
into the following five categories: higher volatility, high volatility, middle volatility, low volatility, 
and lower volatility, with the points of 29.95, 17.36, 10.89, 5.79, and 0.00, respectively. We then 
analyzed the stability of the vegetation NPP in the study area during the period 2000–2014. 
(3)  Correlation analysis 
To further discern the correlations of annual NPP and driven factors, we calculated the correlation 
on a per-pixel basis to establish the relationship between variables and NPP. 
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where Rxy is the correlation between X and Y; Xi and Yi are the values of variables at the ith year; 

and X and Y are the annual values. 
(4)  Calculation of contribution rate 
The effects of climate factors on NPP changes were analyzed by multiple regression analysis. The 
relative contribution rate of climate factors to NPP changes was also calculated. In order to 
determine the relative contribution rate of climate factors to NPP changes, we standardized the 
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data. Next, the regression equation of the standardized data sequence was obtained by regression 
analysis using the software SPSS. We calculated the contribution rate as follows: 

  Ys=aX1s+bX2s+cX3s…,                           (10) 

   1 ,
...

a

a b c
η =

+ + +
                            (11) 

where Ys is the standardized value of a dependent variable; X1s, X2s, X3s… are the standardized 
values of independent variables; η1 is the contribution rate; and a, b and c are the regression 
coefficients of the regression equation of the standardized data sequence. 

3  Results and discussion  

3.1  Model calibration and uncertainty analysis 

Verifying the accuracy of the model is a key challenge in NPP research (Gao et al., 2007). Two 
methods are usually used for the validation. The first approach is to compare the values between 
estimated NPP and observed NPP, while the second method applies comparison to validate the 
model by using former research production. 
  We show comparisons between the mean annual NPP during the period 2000–2014 from the 
CASA model and from observations at 18 sites across the Ili River Valley (Fig. 1a). In general, 
the CASA model performed fairly well in observed NPP, showing a correlation coefficient (R2) of 
0.65 (P<0.01), a root mean square error (RMSE) of 20.86 g C/(m2

•a), and precipitation of 61.04%. 
Overall, the good performance, as indicated by relatively high R2 and lower RMSE and mean bias, 
suggests that the CASA model has a good potential to be used for estimating NPP in the Ili River 
Valley.  

 
Fig. 1  Validation of the Carnegie-Ames-Stanford CASA model. (a) comparison between estimated net primary 
productivity (NPP) and observed NPP; (b) inter-annual variations of estimated NPP (CASA model) and MOD17 data. 

  In this paper, we compared and analyzed the spatial and temporal distribution pattern of NPP as 
estimated by CASA model and the MOD17 data (Fig. 1b). On the whole, the temporal and spatial 
distribution of the CASA model agrees well with the MOD17 data. By comparing the inter-annual 
variation trend of the two estimation results (Fig. 1b), we can see that the changing trend of the 
two estimated results is accordant. The rate of the NPP estimated by the CASA model was –3.51g 
C/(m2

•a), while it was –1.16 g C/(m2
•a) by the MOD17 data. The largest discrepancy between the 

two methods is that the estimated results of the CASA model were higher than those of the 
MOD17 data, which was consistent with previous research (Lei et al., 2014). Many researchers 
found that MOD17 products underestimated the productivity of the bush, grassland, and desert, 
but fit very well to temperate and broad leaf forest (Turner et al., 2005). This result emphasizes 
the importance of the data source and model mechanism in estimating vegetation NPP.  

3.2  Spatial pattern of NPP 

The spatial pattern of mean annual NPP during the period 2010–2014 is shown in Figures 2a and 
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b, representing that NPP distribution differs among different zones. Overall, annual NPP of the Ili 
River Valley was 599.19 g C/(m2

•a). In the southeastern and eastern Ili River Valley, NPP was 
higher than in its southern fringe and the whole valley. Annual NPP was generally higher than 
1000 g C/(m2

•a) in large expanses of the eastern and southeastern Ili River Basin while being 
lower than 200 g C/(m2

•a) in the Ili River Valley and its southern fringe. 

 
Fig. 2  Spatial distributions of mean annual net primary productivity (NPP) estimated by CASA model (a) and 
BIOME-BGC model (b). Changes in NPP along with altitude (c), longitude (d), and latitude (e). 

  Furthermore, by analyzing vegetation NPP at different altitudes in the study area, we can see 
that annual NPP varied according to altitude (Fig. 2c). Annual NPP ranged from 400 to 600 g 
C/(m2

•a) at low altitude, whereas it was generally higher than 800 g C/(m2
•a) at middle to high 

altitudes (about 2000 m), where productive mountain meadow and steppe meadow are extensively 
distributed. For altitudes above 3000 m, simulated NPP showed the gradients decreasing as the 
altitude increases. The annual NPP was generally about 50 g C/(m2

•a) in the southern fringe of the 
Ili River Valley. 
  Longitudinally, changes in NPP remained relatively stable in west of 82.5°E, being a value of 
about 500 g C/(m2

•a) (Fig. 2d). In areas located between 82.0°E and 85.0°E, the simulated NPP 
trend was ''increasing-steady-decreasing'' as the longitude increases. The maximum value was 850 
g C/(m2

•a) in the areas stretching from 83.5°E to 84.0°E. According to latitude, annual NPP trends 
prove to be significantly different, showing a "decreasing-increasing'' trend in areas located south 
of 43.7°N and an ''increasing-decreasing" trend in areas located north of 43.7°N (Fig. 2e).  

The changing trends of the two sides of the valley may be related to the changes of 
hydrothermal conditions as well as land cover changes from the valley to the top of the mountains 
(Yu et al., 2009). Topographic factors play an important role to the vegetation growth by affecting 
the reallocation of the hydrothermal combination (Du et al., 2018). In the mountains, the 
precipitation showed earlier increase and later decreases trend and the temperature gradually 
decreased with the increase in elevations. Therefore, in a certain elevation range, the 
hydrothermal conditions are suitable for vegetation growth. At high altitudes, the vegetation 
growth environment was poor due to the lower air temperature and less precipitation in the 
direction of longitude, the altitude of the Ili River Valley was gradually increasing as the 
longitude rises. In the latitude direction, the altitude of the Ili River Valley showed earlier increase 
and later decreases trend. That is why the spatial pattern of vegetation NPP had a close 
relationship with the elevation in Figure 2.  
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3.3  Temporal variations of NPP 

The inter-annual variation in total terrestrial NPP over the Ili River Valley from 2000 to 2014 is 
shown in Figure 3. The NPP in the Ili River Valley experienced a slight decreasing trend from 
2000 to 2014, with an annual decrease rate of –3.51 g C/(m2

•a). The mean annual NPP was about 
581.5 g C/(m2

•a) in 2000 and 481.1 g C/(m2
•a) in 2014, and its declining percent was 1.15%. 

However, annual NPP trends for different elevation zones were significantly different (Fig. 3d). 
Specifically, annual NPP experienced a slight increasing trend in areas below 1000 m and above 
3000 m, while the NPP rate in the low-altitude valley (6.34 g C/(m2

•a)) was higher than that in the 
high-altitude mountain (2.19 g C/(m2

•a)). This may be related to the human activity of sloping 
cropland reclamation. 

 
Fig. 3  Temporal variation of net primary productivity (NPP) in the Ili River Valley from 2000 to 2014. (a) NPP 
trends from 2000 to 2014; (b) standard deviation of NPP; (c) inter-annual variations of mean annual NPP; and (d) 
inter-annual variations of mean annual NPP at different altitudes. 

  The annual NPP in areas with altitudes ranging from 1000 to 3000 m showed a decreasing 
trend (Fig. 3d). The decrease of annual NPP in altitude ranging from 1500 to 2000 m (12.5 g 
C/(m2

•a)) was greater than in altitude ranging from 2000 to 2500 m (9.63 g C/(m2
•a)). In areas 

featuring altitude from 2500 to 3000 m, the decreasing trend appeared to slow, being an annual 
decrease rate of only 2.77 g C/(m2

•a). 
  According to our calculations, vegetation NPP in 55.69% of the areas showed a decreasing 
tendency, while 12.60% of the areas remained relatively stable and 31.71% appeared an 
increasing tendency. Vegetation NPP indicated an increasing trend in both high-altitude areas with 
low vegetation ratio and in low-altitude areas. In middle elevation zones on both sides of the 
valley, NPP showed a decreasing trend. 
  In analyzing the stability of NPP variations (Fig. 3b), we can see that it differed across regions. 
As a whole, NPP was stable in the Ili River Valley, showing the greatest stability in the 
low-altitude valley and high-altitude areas with the low vegetation ratio, which accounted for 48% 
of the study area. Fluctuation was mainly distributed at altitudes from 1000 to 3000 m on both sides 
of the valley. High fluctuation, which accounted for only 12%, was mainly scattered across central 
Nilka County, the Kalajun grassland, and the Narat grassland. 



 JIAO Wei et al.: Estimation of net primary productivity and its driving factors in the Ili River… 789 

 

 

Using MATLAB, we analyzed the NPP inter-annual variation trends for different types of 
vegetation (Fig. 4). The change trends of most vegetation types were consistent with NPP trends 
for the entire study area. Except for water body and wetland, and unused land types, the annual 
NPP indicated a decreasing trend. The change rates differed across vegetation types, with the 
largest decreasing trend found in forest (at a rate of 4.79 g C/(m2

•a)), followed by grassland (at a 
rate of 4.64 g C/(m2

•a)), shrub (at a rate of 4.25 g C/(m2
•a)) and farmland (at a rate of 1.92 g 

C/(m2
•a)). As shown in Figures 4a and b, the vegetation NPP of sloping cropland significantly 

increased and the standard deviation was small, which means the changes of the vegetation NPP 
of sloping cropland were stable. The presumed main reason for these phenomena was that human 
activities have depressed the effects of natural factors. With the development of the 
agro-technological level and the disaster resistance ability of human, discover of mechanization, 
high-quality seeds, better techniques of irrigation and pest control have weakened the impact of 
natural factors on crop productivity. 

 
Fig. 4  Vegetation type (a) and inter-annual trends in net primary productivity (NPP) in different biomes (b) over 
the Ili River Valley from 2000 to 2014  

3.4  Controlling factors for NPP variations 

In order to understand the relationship between environmental change and vegetation NPP, 
scholars have found that temperature, precipitation, and solar radiation are the main climatic 
factors affecting the growth of terrestrial vegetation (Nemani et al., 2003; Zhao et al., 2010). In 
our study, regions that featured water resources as a major limiting factor accounted for 40% of 
the total vegetation coverage, while regions with temperature as the main control factor accounted 
for 33% and those with solar radiation accounted for 27% (Nemani et al., 2003). 
  By performing a comparative analysis of temperature, precipitation, and net radiation data from 
the past 15 years (Fig. 5), we can draw the conclusion that NPP in the Ili River Valley was 
sensitive to climate change. In fact, NPP had a significant positive correlation and a consistent 
trend with precipitation, while there was no obvious or only a weak correlation with temperature 
and solar net radiation. Vegetation NPP and annual accumulated precipitation revealed a positive 
correlation in 90.18% of the study area that was mainly distributed in the medium-high altitudes 
of the Ili River Valley. The remaining 9.82% of the vegetated land in the Ili River Valley showed a 
negative correlation between NPP and precipitation and was primarily situated in high-altitude 
mountain areas and low-altitude valley areas. A weak positive correlation appeared in the lower 
valley regions, including the southern Yining and in high-altitude areas such as northern Nilka 
County, Zhaosu County, and southern Tekes County, accounting for 29.65% of the total area. A 
negative correlation appeared on both sides of most parts of the middle elevation region in the Ili 
River Valley, accounting for 70.35% of the total area. A weak positive correlation between NPP 
and solar net radiation appeared in the high-altitude areas of the basin as well as in the low 
altitude areas of the valley, accounting for 26.91% of the total area. The weak negative correlation 
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distributed on both sides of most parts of the middle elevation region in the valley accounted for 
73.09% of the total area. 
  The results of multiple linear regressions indicate the contribution rate of precipitation was the 
highest (69.26%), followed by net radiation (28.42%), while temperature had the lowest 
contribution rate (2.33%). These data clearly indicate that precipitation was the main limiting 
factor for NPP. 
  It is worth noting that the change in NPP was not continuous throughout the 15-year period 
(Fig. 5d), but instead showed a downward trend up to 2008 and a slope of –7.40 g C/(m2

•a). At 
higher temperature levels, the NPP significantly decreased along with the decreased precipitation 
up to 2008. After 2008, however, the NPP showed an increasing trend, with increasing 
precipitation and a slope of 3.21 g C/(m2

•a), except for 2014, when the NPP abruptly decreased 
due to the sharp increases in temperature and the reductions in precipitation.     
  In recent years, the annual precipitation of the study area ranged from 100 to 400 mm and 
experienced significant fluctuations. Furthermore, the annual mean temperature was 10.4°C and 
varied with altitude. Under such hydrothermal conditions, the NPP would rise in proportion to 
increases in precipitation, while the increases in temperature and radiation would accelerate the 
process of soil moisture loss (Jobbagy et al., 2002; Chen et al., 2014), thus limiting the growth of 
vegetation (Chen et al., 2012; Li et al., 2012; Yang et al., 2014). 
  The total annual amount of NPP on both natural and artificial vegetation was also compared 
and analyzed from 2000 to 2014 (Fig. 5e). We can see that the slope (at a rate of –0.190 g 
C/(m2

•a)) of total NPP for natural vegetation was notably higher than that for artificial vegetation 
(at a rate of –0.028 g C/(m2

•a)). The reason of this result is that agricultural technologies depress 
the climate effects on artificial vegetation (Li et al., 2014). Moreover, according to the Xinjiang 
Statistical Yearbook Data from 2010 to 2014, the crop area shows a rising trend and an increased 
rate of 92.4 km2/a (Statistic Bureau of Xinjiang Uygur Autonomous Region, 2010–2014). 

 
Fig. 5  Spatial distribution of correlation coefficients between annual net primary productivity (NPP) and 
temperature (a), precipitation (b), and net radiation (c). Trend analysis of climate factors from 2000 to 2014 (d). 
Inter-annual variations of annual NPP in artificial vegetation and natural vegetation across the Ili River Valley from 
2000 to 2014 (e). 

4  Conclusions 

For the Ili River Valley, the spatio-temporal pattern of NPP and their relationship with climate 
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from 2000 to 2014 were analyzed using the CASA model in combination with climatic factors. 
We found that the CASA model performed well in the study area. Validation results showed that 
CASA could explain 61.04% of variation in observed NPP and the RMSE was 20.86 g C/(m2

•a). 
Temporally, the annual NPP of the Ili River Valley was 599.19 g C/(m2

•a), and showed a  
decreasing trend during the entire study period. Spatially, its distribution was affected by the 
vertical zonality of the valley. The annual NPP experienced a modest increasing trend in areas 
situated below 1000 m and above 3000 m, while annual NPP in areas situated between 1000 and 
3000 m showed a decreasing trend. Our calculations revealed that vegetation NPP in 55.69% of 
the areas appeared to decrease, while 12.60% of the areas remained relatively stable and 31.71% 
showed increasing tendencies. Precipitation was found to be the dominant climatic factor that 
controlled the distribution of vegetation NPP in the study area and the correlations between NPP 
and climate factors differed along the vertical zones. Vegetation NPP and annual accumulated 
precipitation experienced a positive correlation in 90.18% of the area, with NPP trending higher 
in years with greater precipitation. A comprehensive understanding of the combined 
environmental control on ecosystem productivity remains a great challenge for further studies. 
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