Please wait a minute...
Journal of Arid Land  2016, Vol. 8 Issue (1): 60-76    DOI: 10.1007/s40333-015-0138-5
Research Articles     
Tree-ring-based reconstruction of temperature variability (1445–2011) for the upper reaches of the Heihe River Basin, Northwest China
WANG Yamin1,2*, FENG Qi1, KANG Xingcheng1
1 Alxa Desert Eco-hydrology Experimental Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Download:   PDF(475KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Long-term temperature variability has signi?cant effects on runoff into the upper reaches of inland rivers. This paper developed a tree-ring chronology of Qilian juniper (Sabina przewalskii Kom.) from the upper tree-line of the middle Qilian Mountains within the upper reaches of Heihe River Basin, Northwest China for a long-term reconstruction of temperature at the study site. In this paper, tree-ring chronology was used to examine climate-growth associations considering local climate data obtained from Qilian Meteorological Station. The results showed that temperatures correlated extremely well with standardized growth indices of trees (r=0.564, P<0.001). Tree-ring chronology was highest correlated with annual mean temperature (r=0.641, P<0.0001). Annual mean temperature which spans the period of 1445–2011 was reconstructed and explained 57.8% of the inter-annual to decadal temperature variance at the regional scale for the period 1961–2011. Spatial correlation patterns revealed that reconstructed temperature data and gridded temperature data had a significant correlation on a regional scale, indicating that the reconstruction represents climatic variations for an extended area surrounding the sampling sites. Analysis of the temperature reconstruction indicated that major cold periods occurred during the periods of 1450s–1480s, 1590s–1770s, 1810s–1890s, 1920s–1940s, and 1960s–1970s. Warm intervals occurred during 1490s–1580s, 1780s–1800s, 1900s–1910s, 1950s, and 1980s to present. The coldest 100-year and decadal periods occurred from 1490s–1580s and 1780s–1800s, respectively, while the warmest 100 years within the studied time period was the 20th century. Colder events and intervals coincided with wet or moist conditions in and near the study region. The reconstructed temperature agreed well with other temperature series reconstructed across the surrounding areas, demonstrating that this reconstructed temperature could be used to evaluate regional climate change. Compared to the tree-ring reconstructed temperature from nearby regions and records of glacier fluctuations from the surrounding high mountains, this reconstruction was reliable, and could aid in the evaluation of regional climate variability. Spectral analyses suggested that the reconstructed annual mean temperature variation may be related to large-scale atmospheric–oceanic variability such as the solar activity, Paci?c Decadal Oscillation (PDO) and El Niño–Southern Oscillation (ENSO).

Key wordsMalus sieversii      phylogeography      LEAFY gene intron 1      species distribution modeling      genetic diversity     
Received: 24 September 2014      Published: 10 February 2016

This study was supported by the National Natural Science Foundation of China (91025002, 30970492), the National Key Technology Research & Development Program (2012BAC08B05), and the Key Project of the Chinese Academy of Sciences (KZZD-EW-04-05).

Cite this article:

WANG Yamin, FENG Qi, KANG Xingcheng. Tree-ring-based reconstruction of temperature variability (1445–2011) for the upper reaches of the Heihe River Basin, Northwest China. Journal of Arid Land, 2016, 8(1): 60-76.

URL:     OR

Allan R J, Lindesay J, Parker D E. 1996. El Niño-Southern Oscillation and Climatic Variability. Collingwood, Australia: CSIRO, 118–126.

Biondi F, Waikul K. 2004. DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree ring chronologies. Computers & Geosciences, 30(3): 303–311.

Bradley R S. 1985. Quaternary Paleoclimatology: Methods of Paleoclimatic Reconstruction. Boston: Allen and Unwin, 472.

Bräuning A. 2001. Climate history of the Tibetan Plateau during the last 1000 years derived from a network of Juniper chronologies. Dendrochronologia, 19(1): 127–137.

Briffa K R, Jones P D. 1990. Basic chronology statistics and assessment. In: Cook E R, Kairiukstis L A. Methods of Dendrochronology: Applications in the Environmental Sciences. Dordrecht: Kluwer Academic Publishers, 137–152.

Cai Q F, Liu Y, Bao G, et al. 2010. Tree-ring-based May-July mean temperature history for Lüliang Mountains, China, since 1836. Chinese Science Bulletin, 55(26): 3008–3014.

Chen F, Yuan Y J, Wei W S. 2011. Climatic response of Picea crassifolia tree-ring parameters and precipitation reconstruction in the western Qilian Mountains, China. Journal of Arid Environments, 75(11): 1121–1128.

Chen Y N, Xu C C, Chen Y P, et al. 2010. Response of glacial-lake outburst floods to climate change in the Yarkant River basin on northern slope of Karakoram Mountains, China. Quaternary International, 226(1–2): 75–81.

Cook E R. 1985. A time series analysis approach to tree ring standardization. PhD Dissertation. Tucson: University of Arizona.

Cook E R, Kairiukstis L A. 1990. Methods of Dendrochronology: Applications in the Environmental Sciences. New York: Springer Science & Business Media, 23–283.

Cook E R, Briffa K R, Jones P D. 1994. Spatial regression methods in dendroclimatology: a review and comparison of two techniques. International Journal of Climatology, 14(4): 379–402.

Cook E R, Meko D M, Stahle D W, et al. 1999. Drought reconstructions for the continental United States. Journal of Climate, 12(4): 1145–1162.

Cook E R, Krusic P J, Jones P D. 2003. Dendroclimatic signals in long tree-ring chronologies from the Himalayas of Nepal. International Journal of Climatology, 23(7): 707–732.

Cook E R, Anchukaitis K J, Buckley B M, et al. 2010. Asian monsoon failure and megadrought during the last millennium. Science, 328(5977): 486–489.

D’Arrigo R, Buckley B, Kaplan S, et al. 2003. Interannual to multidecadal modes of Labrador climate variability inferred from tree rings. Climate Dynamics, 20(2–3): 219–228.

D’Arrigo R, Mashig E, Frank D, et al. 2005. Temperature variability over the past millennium inferred from Northwestern Alaska tree rings. Climate Dynamics, 24(2–3): 227–236.

D’Arrigo R, Wilson R, Jacoby G. 2006. On the long-term context for late twentieth century warming. Journal of Geophysical Research: Atmospheres (1984–2012), 111(D3): D03103.

Davi N, Jacoby G, Fang K Y, et al. 2010. Reconstructing drought variability for Mongolia based on a large-scale tree ring network: 1520–1993. Journal of Geophysical Research: Atmospheres (1984–2012), 115(D22): D22103.

Deslauriers A, Morin H, Begin Y. 2003. Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Canadian Journal of Forest Research, 33(2): 190–200.

Eddy J A. 1976. The Maunder minimum. Science, 192(4245): 1189–1202.

Fan Z X, Bräuning A, Yang B, et al. 2009. Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in Southern China. Global and Planetary Change, 65(1–2): 1–11.

Frank D, Esper J. 2005. Temperature reconstructions and comparisons with instrumental data from a tree-ring network for the European Alps. International Journal of Climatology, 25(11): 1437–1454.

Fritts H C. 1976. Tree Rings and Climate. San Francisco: Academic Press, 207–503.

Ge Q S, Zheng J Y, Fang X Q, et al. 2003. Winter half-year temperature reconstruction for the middle and lower reaches of the Yellow River and Yangtze River, China, during the past 2000 years. Holocene, 13(6): 933–940.

Glickman S T. 2000. Glossary of Meteorology (2nd ed.). Boston: American Meteorological Society, 139–174.

Gong D Y, Wang S W. 2000. Influence of atmospheric oscillations on northern hemispheric temperature. Geographical Research, 18(2): 31–38. (in Chinese)

Gordon G A. 1982. Verification of dendroclimatic reconstructions. In: Hughes M K, Kelly P M, Pilcher J R, et al. Climate from Tree Rings. Cambridge: Cambridge University Press, 115–132.

Gou X H, Chen F H, Yang M X, et al. 2005. Climatic response of thick leaf spruce (Picea crassifolia) tree-ring width at different elevations over Qilian Mountains, northwestern China. Journal of Arid Environments, 61(4): 513–524.

Gou X H, Chen F H, Jacoby G, et al. 2007. Rapid tree growth with respect to the last 400 years in response to climate warming, northeastern Tibetan Plateau. International Journal of Climatology, 27(11): 1497–1503.

Gou X H, Chen F H, Yang M X, et al. 2008. Asymmetric variability between maximum and minimum temperatures in Northeastern Tibetan Plateau: evidence from tree rings. Science in China Series D: Earth Sciences, 51(1): 41–55.

Groffman P M, Driscoll C T, Fahey T J, et al. 2001. Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry, 56(2): 135–150.

Gurskaya M A, Shiyatov S G. 2006. Distribution of frost injuries in the wood of conifers. Russian Journal of Ecology, 37(1): 7–12.

He M H, Yang B, Datsenko N M. 2013. A six hundred-year annual minimum temperature history for the central Tibetan Plateau derived from tree-ring width series. Climate Dynamics, 43(3–4): 641–655.

Holmes R L. 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43: 51–67.

Jacoby G, D’Arrigo R, Davaajamts T. 1996. Mongolian tree rings and 20th-century warming. Science, 273(5276): 771–773.

Jacoby G, Pederson N, D’Arrigo R. 2003. Temperature and precipitation in Mongolia based on dendroclimatic investigations. Chinese Science Bulletin, 48(14): 1474–1479.

Kang E S, Cheng G D, Lan Y C, et al. 1999. A model for simulating the response of runoff from the mountainous watersheds of inland river basins in the arid area of Northwest China to climatic changes. Science in China Series D: Earth Sciences, 29(Suppl. 1): 52–63.

Kang S C, Zhang Y J, Qin D H, et al. 2007. Recent temperature increase recorded in an ice core in the source region of Yangtze River. Chinese Science Bulletin, 52(6): 825–831.

Kang X C, Graumlich L J, Sheppard P. 1997. A 1835 a tree-ring chronology and its preliminary analyses in Dulan region, Qinghai. Chinese Science Bulletin, 42(13): 1122–1124.

Kang X C, Zhang Q H, Graumlich L J, et al. 2000. Reconstruction and variation of climate in Dulan region, Qinghai during last 2000 a. Advance in Earth Sciences, 15(2): 215–221. (in Chinese)

Kang X C, Chen G D, Kang E S, et al. 2002. Based tree rings data reconstruction over 1000-year streamflow of mountain pass in Heihe River. Science in China Series D: Earth Sciences, 32(8): 675–685.

Kang X C, Cheng G D, Chen F H, et al. 2003. A record of drought and flood series by tree-ring data in the middle section of Qilian Mountain since 904 A.D. Journal of Glaciology and Geocryology, 25(5): 518–525. (in Chinese)

Körner C. 1998. A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115(4): 445–459.

Kundzewicz Z W. 1997. Water resources for sustainable development. Hydrological Sciences Journal, 42(4): 467–480.

LaMarche V C Jr. 1974. Paleoclimatic inferences from long tree-ring records intersite comparison shows climatic anomalies that may be linked to features of the general circulation. Science, 183(4129): 1043–1048.

Lazarus B E, Schaberg P G, DeHayes D H, et al. 2004. Severe red spruce winter injury in 2003 creates unusual ecological event in the northeastern United States. Canadian Journal of Forest Research, 34(8): 1784–1788.

Li L, Wang Z Y, Wang Q C. 2006. Inflence of climatic change on flow over the upper reaches of Heihe River. Scientia Geographica Sinica, 26(1): 40–46. (in Chinese)

Li Z J, Li X B, Xu Z M. 2010. Impacts of water conservancy and soil conservation measures on annual runoff in the Chaohe River Basin during 1961–2005. Journal of Geographical Sciences, 20(6): 947–960.

Li Z S, Zhang Q B, Ma K P. 2012. Tree-ring reconstruction of summer temperature for A.D. 1475–2003 in the central Hengduan Mountains, Northwestern Yunnan, China. Climatic Change, 110(1–2): 455–467.

Liang E Y, Shao X M, Eckstein D, et al. 2006. Topography- and species-dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau. Forest Ecology and Management, 236(2–3): 268–277.

Liang E Y, Shao X M, Qin N S. 2008. Tree-ring based summer temperature reconstruction for the source region of the Yangtze River on the Tibetan Plateau. Global and Planetary Change, 61(3–4): 313–320.

Liang E Y, Shao X M, Liu X H. 2009. Annual precipitation variation inferred from tree rings since A.D. 1770 for the western Qilian Mts., northern Tibetan Plateau. Tree-Ring Research, 65(2): 95–103.

Liu L S, Shao X M, Liang E Y, et al. 2006. Tree-ring records of Qilian Juniper’s growth and regeneration patterns in the central Qilian Mountains. Geographical Research, 25(1): 53–61. (in Chinese)

Liu X H, Qin D H, Shao X M, et al. 2005. Temperature variations recovered from tree-rings in the middle Qilian Mountain over the last millennium. Science in China Series D: Earth Sciences, 48(4): 521–529.

Liu Y, Shi J F, Shishov V, et al. 2004. Reconstruction of May-July precipitation in the north Helan Mountain, Inner Mongolia since A.D. 1726 from tree-ring late-wood widths. Chinese Science Bulletin, 49(4): 405–409.

Liu Y, Linderholm H W, Song H M, et al. 2006. Temperature variations recorded in Pinus tabulaeformis tree rings from the southern and northern slopes of the central Qinling Mountains, central China. Boreas, 38(2): 285–291.

Liu Y, An Z S, Linderholm H W, et al. 2009. Annual temperatures during the last 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings. Science in China Series D: Earth Sciences, 52(3): 348–359.

Luckman B H, Wilson R J S. 2005. Summer temperatures in the Canadian Rockies during the last millennium: a revised record. Climate Dynamics, 24(2–3): 131–144.

Ma J Z, Wang X S, Edmunds W M. 2005. The characteristics of ground-water resources and their changes under the impacts of human activity in the arid northwest China—a case study of the Shiyang River Basin. Journal of Arid Environments, 61(2): 277–295.

Mann M E, Lees J M. 1996. Robust estimation of background noise and signal detection in climatic time series. Climatic Change, 33(3): 409–445.

Mann M E, Bradley R S, Hughes M K. 1999. Northern Hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophysical Research Letters, 26(6): 759–763.

Mann M E. 2002. Little ice age. In: MacCracken M C, Perry J S. Encyclopedia of Global Environmental Change. Oxford: Blackwell Science, 1: 504–509.

Mann M E, Zhang Z H, Rutherford S, et al. 2009. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science, 326(5957): 1256–1260.

Mantua N J, Hare S R, Zhang Y, et al. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78(6): 1069–1079.

Mantua N J, Hare S R. 2002. The Pacific decadal oscillation. Journal of Oceanography, 58(1): 35–44.

Michaelsen J. 1987. Cross-validation in statistical climate forecast models. Journal of Climate and Applied Meteorology, 26(11): 1589–1600.

Misson L, Rathgeber C, Guiot J. 2004. Dendroecological analysis of climatic effects on Quercus petraea and Pinus halepensis radial growth using the process-based MAIDEN model. Canadian Journal of Forest Research, 34(4): 888–898.

Mitchell T D, Jones P D. 2005. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 25(6): 693–712.

Pederson N, Jacoby G C, D’Arrigo R D, et al. 2001. Hydrometeorological reconstructions for Northeastern Mongolia derived from tree rings: 1651–1995. Journal of Climate, 14(5): 872–881.

Pederson N, Cook E R, Jacoby G C, et al. 2004. The influence of winter temperatures on the annual radial growth of six northern range margin tree species. Dendrochronologia, 22(1): 7–29.

Percival D B, Walden A T. 1993. Spectral Analysis for Physical Applications. Cambridge: Cambridge University Press, 583.

Qin C, Yang B, Bräuning A, et al. 2011. Regional extreme climate events on the northeastern Tibetan Plateau since AD 1450 inferred from tree rings. Global and Planetary Change, 75(3–4): 143–154.

Saenko O A. 2006. Influence of global warming on baroclinic rossby radius in the ocean: a model intercomparison. Journal of Climate, 19(7): 1354–1360.

Sano M, Furuta F, Sweda T. 2009. Tree-ring-width chronology of Larix gmelinii as an indicator of changes in early summer temperature in east-central Kamchatka. Journal of Forest Research, 14(3): 147–154.

Shao X M, Fan J M. 1999. Past climate on west Sichuan Plateau as reconstructed from ring-widths of dragon spruce. Quaternary Sciences, (1): 81–89. (in Chinese)

Shao X M, Huang L, Liu H B, et al. 2005. Reconstruction of precipitation variation from tree rings in recent 1000 years in Delingha, Qinghai. Science in China Series D: Earth Sciences, 48(7): 939–949.

Sheppard P R, Tarasov P E, Graumlich L J, et al. 2004. Annual precipitation since 515BC reconstructed from living and fossil juniper growth of Northeastern Qinghai Province, China. Climate Dynamics, 23(7–8): 869–881.

Shi Y F, Zhang X S. 1995. Influence and future trends of climate variation on water resources in the arid area in the northern China. Science in China Series B: Chemistry, 25(9): 968–977.

Shi Y F, Shen Y P, Hu R J. 2002. Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in northwest China. Journal of Glaciology and Geocryology, 24(3): 219–226. (in Chinese)

Stewart I T, Cayan D R, Dettinger M D. 2004. Changes in snowmelt runoff timing in western North America under a ‘business as usual’ climate change scenario. Climatic Change, 62(1–3): 217–232.

Stokes M A, Smiley T L. 1968. An Introduction to Tree-ring Dating. Chicago: University of Chicago Press, 21–60.

Tan M, Liu T S, Hou J Z, et al. 2003. Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature. Geophysical Research Letters, 30(12): 1617.

Tessier L, Guibal F, Schweingruber F H. 1997. Research strategies in dendroecology and dendroclimatology in mountain environments. Climatic Change, 36(3–4): 499–517.

Thompson L G, Mosley-Thompson E, Brecher H, et al. 2006. Abrupt tropical climate change: past and present. Proceedings of the National Academy of Sciences of the United States of America, 103(28): 10536–10543.

Tian Q H, Gou X H, Zhang Y, et al. 2007. Tree-ring based drought reconstruction (A.D. 1855–2001) for the Qilian Mountains, Northwestern China. Tree-Ring Research, 63(1): 27–36.

Wang H J. 2006. Linkage between the Northeast Mongolian precipitation and the northern hemisphere zonal circulation. Advances in Atmospheric Sciences, 23(5): 659–664.

Wang L L, Shao X M, Huang L, et al. 2005. Tree-ring characteristics of Larix gmelinii and Pinus sylvestris var. Mongolica and their response to climate in Mohe, China. Acta Phytoecologica Sinica, 29(3): 380–385. (in Chinese)

Wang N A, Zhao Q, Li J J, et al. 2003. The sand wedges of the last ice age in the Hexi Corridor, China: paleoclimatic interpretation. Geomorphology, 51(4): 313–320.

Wang S W, Zhu J H, Cai J N. 2004. Interdecadal variability of temperature and precipitation in China since 1880. Advances in Atmospheric Sciences, 21(3): 307–313.

Wang S W, Wen X Y, Lou Y, et al. 2007. Reconstruction of temperature series of China for the last 1000 years. Chinese Science Bulletin, 52(23): 3272–3280.

Wigley T M L, Briffa K R, Jones P D. 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Applied Meteorology, 23(2): 201–213.

Wilson R J S, Luckman B H. 2003. Dendroclimatic reconstruction of maximum summer temperatures from upper treeline sites in Interior British Columbia, Canada. The Holocene, 13(6): 851–861.

Wu X D, Shao X M. 1995. Status and prospects of dendrochronological study in Tibetan Plateau. Dendrochronologia, 13: 89–98.

Xu J H, Chen Y N, Lu F, et al. 2011. The nonlinear trend of runoff and its response to climate change in the Aksu River, western China. International Journal of Climatology, 31(5): 687–695.

Yadav R R, Park W K, Singh J, et al. 2004. Do the western Himalayas defy global warming? Geophysical Research Letters, 31(17): L17201.

Yang B, Braeuning A, Johnson K R, et al. 2002. General characteristics of temperature variation in China during the last two millennia. Geophysical Research Letters, 29(9): 38-1–38-4.

Yang B, Kang X C, Bräuning A, et al. 2010. A 622-year regional temperature history of southeast Tibet derived from tree rings. The Holocene, 20(2): 181–190.

Yang B, Qin C, Bräuning A, et al. 2011. Rainfall history for the Hexi Corridor in the arid northwest China during the past 620 years derived from tree rings. International Journal of Climatology, 31(8): 1166–1176.

Yao T D, Qin D H, Xu B Q, et al. 2006. Temperature change over the past millennium recorded in ice cores from the Tibetan Plateau. Advances in Climate Change Research, 2(3): 99–103. (in Chinese)

Yuan L. 1994. Disaster and famine history in northwest China. Lanzhou: Gansu People’s Publishing House, 243–320. (in Chinese)

Yuan Y J, Shao X M, Wei W S, et al. 2007. The potential to reconstruct Manasi River streamow in the northern Tien Shan Mountains (NW China). Tree-Ring Research, 63(2): 81–93.

Zhang Q B, Cheng G D, Yao T D, et al. 2003. A 2326-year tree-ring record of climate variability on the northeastern Qinghai-Tibetan Plateau. Geophysical Research Letters, 30(14): 1739.

Zhang Q B, Qiu H Y. 2007. A millennium-long tree-ring chronology of Sabina przewalskii on northeastern Qinghai-Tibetan Plateau. Dendrochronologia, 24(2–3): 91–95.

Zhang X L, He X Y, Li J B, et al. 2011. Temperature reconstruction (1750–2008) from Dahurian larch tree-rings in an area subject to permafrost in Inner Mongolia, Northeast China. Climate Research, 47(3): 151–159.

Zhang Y, Tian Q H, Gou X H, et al. 2011. Annual precipitation reconstruction since AD 775 based on tree rings from the Qilian Mountains, northwestern China. International Journal of Climatology, 31(3): 371–381.

Zhou S Q, Kang S C, Gao T G, et al. 2010. Response of Zhadang Glacier runoff in Nam Co Basin, Tibet, to changes in air temperature and precipitation form. Chinese Science Bulletin, 55(20): 2103–2110.

Zhu H F, Zheng Y H, Shao X M, et al. 2008. Millennial temperature reconstruction based on tree-ring widths of Qilian juniper from Wulan, Qinghai Province, China. Chinese Science Bulletin, 53(24): 3914–3920.

Zhu H F, Fang X Q, Shao X M, et al. 2009. Tree ring-based February-April temperature reconstruction for Changbai Mountain in Northeast China and its implication for East Asian winter monsoon. Climate of the Past, 5(4): 661–666.

Zhu H F, Shao X M, Yin Z Y, et al. 2011. Early summer temperature reconstruction in the eastern Tibetan Plateau since AD 1440 using tree-ring width of Sabina tibetica. Theoretical and Applied Climatology, 106(1–2): 45–53.
[1] Farzaneh KHAJOEI NASAB, Ahmadreza MEHRABIAN, Hossein MOSTAFAVI. Mapping the current and future distributions of Onosma species endemic to Iran[J]. Journal of Arid Land, 2020, 12(6): 1031-1045.
[2] HongXiang ZHANG, MingLi ZHANG, LiNa WANG. Genetic structure and historical demography of Malus sieversii in the Yili Valley and the western mountains of the Junggar Basin, Xinjiang, China[J]. Journal of Arid Land, 2015, 7(2): 264-271.
[3] Yan LIU, DaoYuan ZHANG, HongLan YANG, MeiYing LIU, Xiang SHI. Fine-scale genetic structure of Eremosparton songoricum and implication for conservation[J]. Journal of Arid Land, 2010, 2(1): 26-32.