|
Forecasting land use changes in crop classification and drought using remote sensing
Mashael MAASHI, Nada ALZABEN, Noha NEGM, Venkatesan VEERAMANI, Sabarunisha Sheik BEGUM, Geetha PALANIAPPAN
Journal of Arid Land. 2025, 17 (5): 575-589.
DOI: 10.1007/s40333-025-0013-y
Challenges in land use and land cover (LULC) include rapid urbanization encroaching on agricultural land, leading to fragmentation and loss of natural habitats. However, the effects of urbanization on LULC of different crop types are less concerned. The study assessed the impacts of LULC changes on agriculture and drought vulnerability in the Aguascalientes region, Mexico, from 1994 to 2024, and predicted the LULC in 2034 using remote sensing data, with the goals of sustainable land management and climate resilience strategies. Despite increasing urbanization and drought, the integration of satellite imagery and machine learning models in LULC analysis has been underutilized in this region. Using Landsat imagery, we assessed crop attributes through indices such as normalized difference vegetation index (NDVI), normalized difference water index (NDWI), normalized difference moisture index (NDMI), and vegetation condition index (VCI), alongside watershed delineation and spectral features. The random forest model was applied to classify LULC, providing insights into both historical and future trends. Results indicated a significant decline in vegetation cover (109.13 km2) from 1994 to 2024, accompanied by an increase in built-up land (75.11 km2) and bare land (67.13 km2). Projections suggested a further decline in vegetation cover (41.51 km2) and continued urban land expansion by 2034. The study found that paddy crops exhibited the highest values, while common bean and maize performed poorly. Drought analysis revealed that mildly dry areas in 2004 became severely dry in 2024, highlighting the increasing vulnerability of agriculture to climate change. The study concludes that sustainable land management, improved water resource practices, and advanced monitoring techniques are essential to mitigate the adverse effects of LULC changes on agricultural productivity and drought resilience in the area. These findings contribute to the understanding of how remote sensing can be effectively used for long-term agricultural planning and environmental sustainability.
|
|
Non-stationary characteristics and causes of extreme precipitation in a desert steppe in Inner Mongolia, China
LI Wei, WANG Yixuan, DUAN Limin, TONG Xin, WU Yingjie, ZHAO Shuixia
Journal of Arid Land. 2025, 17 (5): 590-604.
DOI: 10.1007/s40333-025-0078-7
Recent years have witnessed increasingly frequent extreme precipitation events, especially in desert steppes in the semi-arid and arid transition zone. Focusing on a desert steppe in western-central Inner Mongolia Autonomous Region, China, this study aimed to determine the principle time-varying pattern of extreme precipitation and its dominant climate forcings during the period 1988-2017. Based on the generalized additive models for location, scale, and shape (GAMLSS) modeling framework, we developed the best time-dependent models for the extreme precipitation series at nine stations, as well as the optimized non-stationary models with large-scale climate indices (including the North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO), Southern Oscillation (SO), Pacific Decadal Oscillation (PDO), Arctic Oscillation (AO), and North Pacific Oscillation (NPO)) as covariates. The results indicated that extreme precipitation remained stationary at more than half of the stations (Hailisu, Wuyuan, Dengkou, Hanggin Rear Banner, Urad Front Banner, and Yikewusu), while linear and non-linear time-varying patterns were quantitatively identified at the other stations (Urad Middle Banner, Linhe, and Wuhai). These non-stationary behaviors of extreme precipitation were mainly reflected in the mean value of extreme precipitation. The optimized non-stationary models performed best, indicating the significant influences of large-scale climate indices on extreme precipitation. In particular, the NAO, NPO, SO, and AMO remained as covariates and significantly influenced the variations in the extreme precipitation regime. Our findings have important reference significance for gaining an in-depth understanding of the driving mechanism of the non-stationary behavior of extreme precipitation and enable advanced predictions of rainstorm risks.
|
|
Dynamic evolution of the NDVI and driving factors in the Mu Us Sandy Land of China from 2002 to 2021
CHAO Yan, ZHU Yonghua, WANG Xiaohan, LI Jiamin, LIANG Li'e
Journal of Arid Land. 2025, 17 (5): 605-623.
DOI: 10.1007/s40333-025-0052-4
Investigating the spatiotemporal evolution of vegetation and its response mechanisms to natural and anthropogenic elements is crucial for regional vegetation restoration and ecological preservation. The Mu Us Sandy Land (MUSL), which is situated in the semi-arid zone of northwestern China adjacent to the Loess Plateau, has been at the forefront of desertification and oasis formation over the past two millennia. This study is based on the synthesis of the Normalized Difference Vegetation Index (NDVI) data from MOD13A3 data in the MODIS (Moderate-Resolution Imaging Spectroradiometer) dataset (2002-2021) and climate data (temperature and precipitation) at annual and monthly scales from the National Earth System Science Data Center. A range of analytical methods, including univariate linear regression, Theil-Sen trend analysis and Mann-Kendall significance test, correlation analysis, residual analysis, and Hurst index, were used to explore the response mechanisms of the NDVI to climate change and human activities and to predict the future trends of the NDVI in the MUSL. The results showed that through the method of correlation analysis, in terms of both spatially averaged correlation coefficients and area proportion, the NDVI was positively correlated with temperature and precipitation in 97.59% and 96.51% of the study area, respectively, indicating that temperature has a greater impact on the NDVI than precipitation. Residual analysis quantified the contributions of climate change and human activities to the NDVI changes, revealing that climate change and human activities contribute up to 30.00% and 70.00%, respectively, suggesting that human activities predominantly affect the NDVI changes in the MUSL. The Hurst index was used to categorize the future trend of the NDVI into four main directions of development: continuous degradation (0.05% of the study area), degradation in the past but improvement in the future (54.45%), improvement in the past but degradation in the future (0.13%), and continuous improvement (45.36%). In more than 50.00% of the regions that have been degraded in the past but were expected to improve in the future, the NDVI was expected to exhibit a stable trend of anti-persistent improvement. These findings provide theoretical support for future ecological protection, planning, and the implementation of ecological engineering in the MUSL, and also offer a theoretical basis for the planning and execution of construction projects, environmental protection measures, and the sustainable development of vegetation.
|
|
Variations of soil moisture and its influencing factors in arid and semi-arid areas, China
NIU Jiqiang, LIU Zijian, CHEN Feiyan, LIU Gangjun, ZHOU Junli, ZHOU Peng, LI Hongrui, LI Mengyang
Journal of Arid Land. 2025, 17 (5): 624-643.
DOI: 10.1007/s40333-025-0014-x
Soil moisture (SM) is a critical variable in terrestrial ecosystems, especially in arid and semi-arid areas where water sources are limited. Despite its importance, understanding the spatiotemporal variations and influencing factors of SM in these areas remains insufficient. This study investigated the spatiotemporal variations and influencing factors of SM in arid and semi-arid areas of China by utilizing the extended triple collation (ETC), Mann-Kendall test, Theil-Sen estimator, ridge regression analysis, and other relevant methods. The following findings were obtained: (1) at the pixel scale, the long-term monthly SM data from the European Space Agency Climate Change Initiative (ESA CCI) exhibited the highest correlation coefficient of 0.794 and the lowest root mean square error (RMSE) of 0.014 m3/m3; (2) from 2000 to 2022, the study area experienced significant increase in annual average SM, with a rate of 0.408×10-3 m3/(m3•a). Moreover, higher altitudes showed a notable upward trend, with SM increasing rates at 0.210×10-3 m³/(m3•a) between 1000 and 2000 m, 0.530×10-3 m3/(m3•a) between 2000 and 4000 m, and 0.760×10-3 m3/(m3•a) at altitudes above 4000 m; (3) land surface temperature (LST), root zone soil moisture (RSM) (10-40 cm depth), and normalized difference vegetation index (NDVI) were identified as the primary factors influencing annual average SM, which accounted for 34.37%, 24.16%, and 22.64% relative contributions, respectively; and (4) absolute contribution of LST was more significant in subareas at higher altitudes, with average absolute contributions of 0.800×10-3 m3/(m3•a) between 2000 and 4000 m and 0.500×10-2 m3/(m3•a) above 4000 m. This study reveals the spatiotemporal variations and main influencing factors of SM in Chinese arid and semi-arid areas, highlighting the more pronounced absolute contribution of LST to SM in high-altitude areas, providing valuable insights for ecological research and water resource management in these areas.
|
|
Mechanical properties of surface soil in alpine meadow and its relationship with soil cracking in Qinghai Province, China
ZHANG Hailong, ZHU Haili, WU Yuechen, XU Pengkai, HONG Chenze, LIU Yabin, LI Guorong, HU Xiasong
Journal of Arid Land. 2025, 17 (5): 644-663.
DOI: 10.1007/s40333-025-0100-0
Surface soil cracking in alpine meadows signifies the transition of degradation from quantitative accumulation to qualitative deterioration. Quantitative research remains insufficient regarding changes in the mechanical properties of degraded meadow soils and the mechanical thresholds for cracking initiation. This study explored the relationships between surface cracking and the physical properties, tensile strength, and matrix suction of root-soil composites in alpine meadow sites with different stages of degradation (undegraded (UD), lightly degraded (LD), moderately degraded (MD), and heavily degraded (HD)) under different water gradients (high water content (HWC), medium water content (MWC), and low water content (LWC)) corresponding to different drying durations at a constant temperature of 40.0°C. The Huangcheng Mongolian Township in Menyuan Hui Autonomous County, Qinghai Province, China was chosen as the study area. The results indicated that as the degradation degree of alpine meadow intensified, both water content of root-soil composite and the fine grain content of soil decreased. In contrast, the root-soil mass ratio and root area ratio initially increased and then decreased with progressive degradation. Under a consistent water content, the tensile strength of root-soil composite followed a pattern of MD>HD>LD>UD. The peak displacement of tensile strength also decreased as the degradation degree of alpine meadow increased. Both the tensile strength and matrix suction of root-soil composite increased as root-soil water content decreased. A root-soil water content of 30.00%-40.00% was found to be the critical threshold for soil cracking in alpine meadows. Within this range, the matrix suction of root-soil composite ranged from 50.00 to 100.00 kPa, resulting in the formation of linear cracks in the surface soil. As the root-soil water content continued to decrease, liner cracks evolved into branch-like and polygonal patterns. The findings of this study provide essential data for improving the mechanical understanding of grassland cracking and its development process.
|
|
Improving the livelihoods of local communities in degraded desert regions through afforestation with Moringa peregrina trees to combat desertification
Ghasem GHOOHESTANI, Masoumeh SALEHI MOURKANI, Salman ZARE, Hamed RAFIE, Emad A FARAHAT, Farhad SARDARI, Ali ASADI
Journal of Arid Land. 2025, 17 (5): 664-679.
DOI: 10.1007/s40333-025-0079-6
Climate change and human activities have led to desertification and decreased land productivity, significantly affecting human livelihoods in desert regions. Identifying suitable areas for cultivating economic and native plants based on ecological capacity, biological restoration, and risk management can be valuable tools for combating desertification. In this study, we identified suitable areas for the growth of economic and medicinal Moringa peregrina trees in desert regions of Sistan and Baluchestan Province, southern Iran, using library research and field methods. We also assessed the economic involvement of local communities in areas under different topographic conditions (namely flat area, undulating area, rolling area, moderately sloping area, and steep area) in the study area. Financial indicators such as the net present value (NPV), benefit-cost ratio (BCR), internal rate of return (IRR), and return on investment (ROI) were calculated for areas under various topographic conditions in the study area. The rolling area with results of NPV (6142.75 USD), IRR (103.38), BCR (5.38), and ROI (in the 3rd year) was the best region for investing and cultivating M. peregrina. The minimum economic level varied from 0.80 hm2 in the flat area to 21.60 hm2 in the steep area. Also, approximately 5,314,629.51 hm2 of desert lands in the study area were deemed suitable for M. peregrina cultivation, benefiting around 1,743,246 households in the study area. Cultivating M. peregrina in southern Iran can positively affect local communities and help preserve land from erosion. Our study will provide theoretical support for planting native species in other degraded desert regions to enhance ecosystem services and the well-being of indigenous populations.
|
|
Effect of wood vinegar on the release of calcium, magnesium, and phosphorus from calcareous soils in different land uses
Soheila Sadat HASHEMI
Journal of Arid Land. 2025, 17 (5): 680-695.
DOI: 10.1007/s40333-025-0099-2
The release of essential nutrients from soil minerals for plant growth in calcareous soils, facilitated by organic extractants, is critical in semi-arid areas, particularly for elements affected by high soil pH. This study aims to investigate the release of calcium (Ca), magnesium (Mg), and phosphorus (P) through the application of wood vinegar extract in surface calcareous soils in Borojerd City, Lorestan Province, Iran. The experiment was conducted using a completely randomized design with three replications. The treatments included soils from three different land uses: vineyard, wheat field, and rangeland, each treated with 1.00% wood vinegar solution. Cumulative measurements of the specified elements were recorded over 10 consecutive 0.5 h intervals. The release data were analyzed using four various kinetic models (Elovich equation, parabolic diffusion law, power function equation, and zero-order kinetics). The highest concentrations recorded were for Ca (39,500.00 mg/kg), Mg (5880.00 mg/kg), and P (5.00 mg/kg) in grape cultivation. The findings revealed a significant difference in Ca release between grape cultivation and rangeland (P<0.01), while the Mg release showed a significant difference between both grape cultivation and rangeland and wheat cultivation (P<0.01). Additionally, the cumulative release of P showed significant differences between grape cultivation and both wheat and rangeland (P<0.01). The results indicated that the zero-order kinetics provided the best fit for the data (R2=0.99). The maximum initial release amount was observed in grape cultivation when applying the zero-order kinetics, while the highest release rate was achieved using the parabolic diffusion law across three applications. Wood vinegar had the capacity to degrade various clay minerals, including vermiculite, smectite, palygorskite, and, to some extent, illite, resulting in the release of associated elements. Consequently, it can be concluded that wood vinegar can be effectively utilized in grape cultivation as an agent for reducing soil acidity, thereby enhancing the availability of soil nutrients and decreasing reliance on chemical fertilizers.
|
|
Diversity and plant growth-promoting properties of culturable bacteria associated with three halophytes in an arid land, Northwest China
HUANG Yin, ZHANG Xiaoye, MA Jinbiao, JIAO Haocheng, Murad MUHAMMAD, Rashidin ABDUGHENI, Vyacheslav SHURIGIN, Dilfuza EGAMBERDIEVA, LI Li
Journal of Arid Land. 2025, 17 (5): 696-713.
DOI: 10.1007/s40333-025-0015-9
Salt-tolerant bacteria associated with halophytes enhance plant resistance and adaptation to environmental stress. The purpose of this study was to investigate the diversity and plant-beneficial traits of bacteria associated with three halophytes in an arid land, Northwest China. The bacterial strains were isolated from the roots, shoots, rhizosphere, and bulk soil of three halophytes, i.e., Salicornia europaea L., Kalidium foliatum (Pall.) Moq., and Suaeda aralocaspica (Bunge) Freitag & Schütze, collected from the saline soils near to the Wujiaqu City, Xinjiang, Northwest China. A total of 567 strains were isolated and identified from these three halophytes belonging to 4 phyla, 6 classes, 25 orders, 36 families, and 66 genera, including 147 potential novel species. A total of 213 strains exhibited one or more plant growth- promoting properties, while 20 strains demonstrated multiple in vitro plant growth-promoting activities, including phosphate solubilization, nitrogen fixation, siderophore production, and production of hydrolytic enzymes such as protease and cellulase. Our findings showed that halophytes in the arid land harbor diverse bacteria with the potential to enhance plant growth and adaptability under challenging environmental conditions.
|
|