Most Read

Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: Toggle Thumbnails
Multi-scenario simulation of land use change and its impact on ecosystem services in the northeastern edge of the Qinghai-Xizang Plateau, China
ZHANG Xuebin, LIU Yanni, YIN Junfeng, SHI Peiji, FENG Haoyuan, SHI Jing
Journal of Arid Land    2025, 17 (2): 145-166.   DOI: 10.1007/s40333-025-0091-x
Abstract133)   HTML9)    PDF(pc) (3768KB)(85)       Save

The Qinghai-Xizang Plateau (QXP) serves as a crucial ecological barrier in China and Asia, exerting profound influences on global climate and biodiversity conservation. Gannan Tibetan Autonomous Prefecture (hereinafter referred as Gannan Prefecture), located on the northeastern edge of the QXP, represents a fragile alpine ecosystem in which land use change significantly impacts ecosystem services (ESs). This study established a comprehensive framework, utilizing the Patch-generating Land-Use Simulation (PLUS) model coupled with the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model to predict land use patterns under the natural development scenario, cultivated land protection scenario, and ecological protection scenario for Gannan Prefecture by 2030 and evaluated four critical ESs: habitat quality (HQ), water yield (WY), soil retention (SR), and carbon storage (CS). The primary aim is to elucidate the impacts of dynamic land use change on ESs. The results revealed that, from 2000 to 2020, HQ exhibited minimal variation, whereas CS experienced a slight decline. Conversely, WY and SR showed significant improvements. Under the natural development scenario, construction land was projected to increase by 4247.74 hm2, primarily at the expense of forest land. The cultivated land protection scenario anticipated an increase in farmland by 2634.36 hm2, which was crucial for maintaining food security. The ecological protection scenario predicted a notable expansion of forest land, accompanied by a restrained development rate of construction land. The ecological protection scenario also showed an increase in the ecosystem service index (ESI), encompassing 26.07% of the region. Forest land and grassland emerged as the primary contributors to ESs, while construction land substantially impacted WY. Water bodies exhibited minimal contribution to ESs. This study enhanced the understanding of land use change impacts on ESs in fragile and high-altitude ecosystems, offering essential theoretical frameworks and practical direction for forthcoming ecological policy and regional planning endeavors.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Impact of urban sprawl on land surface temperature in the Mashhad City, Iran: A deep learning and cloud- based remote sensing analysis
Komeh ZINAT, Hamzeh SAEID, Memarian HADI, Attarchi SARA, LU Linlin, Naboureh AMIN, Alavipanah KAZEM SEYED
Journal of Arid Land    2025, 17 (3): 285-303.   DOI: 10.1007/s40333-025-0009-7
Abstract110)   HTML5)    PDF(pc) (955KB)(51)       Save

The evolution of land use patterns and the emergence of urban heat islands (UHI) over time are critical issues in city development strategies. This study aims to establish a model that maps the correlation between changes in land use and land surface temperature (LST) in the Mashhad City, northeastern Iran. Employing the Google Earth Engine (GEE) platform, we calculated the LST and extracted land use maps from 1985 to 2020. The convolutional neural network (CNN) approach was utilized to deeply explore the relationship between the LST and land use. The obtained results were compared with the standard machine learning (ML) methods such as support vector machine (SVM), random forest (RF), and linear regression. The results revealed a 1.00°C-2.00°C increase in the LST across various land use categories. This variation in temperature increases across different land use types suggested that, in addition to global warming and climatic changes, temperature rise was strongly influenced by land use changes. The LST surge in built-up lands in the Mashhad City was estimated to be 1.75°C, while forest lands experienced the smallest increase of 1.19°C. The developed CNN demonstrated an overall prediction accuracy of 91.60%, significantly outperforming linear regression and standard ML methods, due to the ability to extract higher level features. Furthermore, the deep neural network (DNN) modeling indicated that the urban lands, comprising 69.57% and 71.34% of the studied area, were projected to experience extreme temperatures above 41.00°C and 42.00°C in the years 2025 and 2030, respectively. In conclusion, the LST predictioin framework, combining the GEE platform and CNN method, provided an effective approach to inform urban planning and to mitigate the impacts of UHI.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Runoff simulation and hydropower resource prediction of the Kaidu River Basin in the Tianshan Mountains, China
ZHANG Jing, XU Changchun, WANG Hongyu, WANG Yazhen, LONG Junchen
Journal of Arid Land    2025, 17 (1): 1-18.   DOI: 10.1007/s40333-025-0071-1
Abstract108)   HTML7)    PDF(pc) (2921KB)(54)       Save

The Tianshan Mountains of Central Asia, highly sensitive to climate change, has been comprehensively assessed for its ecosystem vulnerability across multiple aspects. However, studies on the region's main river systems and hydropower resources remain limited. Thus, examining the impact of climate change on the runoff and gross hydropower potential (GHP) of this region is essential for promoting sustainable development and effective management of water and hydropower resources. This study focused on the Kaidu River Basin that is situated above the Dashankou Hydropower Station on the southern slope of the Tianshan Mountains, China. By utilizing an ensemble of bias-corrected global climate models (GCMs) from Coupled Model Intercomparison Project Phase 6 (CMIP6) and the Variable Infiltration Capacity (VIC) model coupled with a glacier module (VIC-Glacier), we examined the variations in future runoff and GHP during 2017-2070 under four shared socio-economic pathway (SSP) scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) compared to the baseline period (1985-2016). The findings indicated that precipitation and temperature in the Kaidu River Basin exhibit a general upward trend under the four SSP scenarios, with the fastest rate of increase in precipitation under the SSP2-4.5 scenario and the most significant changes in mean, maximum, and minimum temperatures under the SSP5-8.5 scenario, compared to the baseline period (1980-2016). Future runoff in the basin is projected to decrease, with rates of decline under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios being 3.09, 3.42, 7.04, and 7.20 m³/s per decade, respectively. The trends in GHP are consistent with runoff, with rates of decline in GHP under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios at 507.74, 563.33, 1158.44, and 1184.52 MW/10a, respectively. Compared to the baseline period (1985-2016), the rates of change in GHP under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios are -20.66%, -20.93%, -18.91%, and -17.49%, respectively. The Kaidu River Basin will face significant challenges in water and hydropower resources in the future, underscoring the need to adjust water resource management and hydropower planning within the basin.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatiotemporal evolution of water conservation function and its driving factors in the Huangshui River Basin, China
YUAN Ximin, SU Zhiwei, TIAN Fuchang, WANG Pengquan
Journal of Arid Land    2024, 16 (11): 1484-1504.   DOI: 10.1007/s40333-024-0087-y
Abstract105)   HTML5)    PDF(pc) (2903KB)(86)       Save

The Grain for Green project has had a substantial influence on water conservation in the Huangshui River Basin, China through afforestation and grassland restoration over the past two decades. However, a comprehensive understanding of the spatiotemporal evolution of water conservation function and its driving factors remains incomplete in this basin. In this study, we utilized the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model to examine the spatiotemporal evolution of water conservation function in the Huangshui River Basin from 2000 to 2020. Additionally, we employed the random forest model, Pearson correlation analysis, and geographical detector (Geodetector) techniques to investigate the primary factors and factor interactions affecting the spatial differentiation of water conservation function. The findings revealed several key points. First, the high-latitude northern region of the study area experienced a significant increase in water conservation over the 21-a period. Second, the Grain for Green project has played a substantial role in improving water conservation function. Third, precipitation, plant available water content (PAWC), grassland, gross domestic product (GDP), and forest land were primary factors influencing the water conservation function. Finally, the spatial differentiation of water conservation function was determined by the interactions among geographical conditions, climatic factors, vegetation biophysical factors, and socio-economic factors. The findings have significant implications for advancing ecological protection and restoration initiatives, enhancing regional water supply capabilities, and safeguarding ecosystem health and stability in the Huangshui River Basin.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Influence of land use on spatial distribution of primary productivity in aquatic environment in the Weihe River Basin, China
ZHANG Haoying, LI Nan, SONG Jinxi, WANG Fei, TANG Bin, GUAN Mengdan, ZHANG Chaosong, ZHANG Yuchen
Journal of Arid Land    2025, 17 (3): 304-323.   DOI: 10.1007/s40333-025-0095-6
Abstract102)   HTML6)    PDF(pc) (896KB)(63)       Save

Increasing concerns regarding aquatic ecological health and eutrophication driven by urbanization and human activities have highlighted the need to understand primary productivity (PP) dynamics in aquatic ecosystems. This study investigated the spatial distribution of PP across the Weihe River Basin, China using inverse distance weighting and analyzed the influence of different land uses and water physical-chemical parameters on PP using Mantel test and Spearman analysis. Significantly spatial heterogeneity in PP concentrations, ranging from 0.458 to 3262.807 mg C/(m2•d), was observed with high-PP sites clustered in the middle-lower reaches dominated by farmland-construction land mosaics. Core drivers included light availability (Secchi depth and sunlight duration) and phytoplankton biomass (chlorophyll-a (Chl-a)), while water temperature exhibited threshold-dependent effects. Total organic carbon played dual roles, promoting PP concentrations in low-Chl-a regions, but suppressing it under high-Chl-a regions. Dual-scale buffer analysis (500 and 1000 m buffer zones) revealed PP heterogeneity stemed from interactive land use configurations, rather than isolated types. Balanced construction land-to-farmland ratio (0.467-2.890) elevated PP concentrations in human-dominated basins (the main stem of the Weihe River and Jinghe River), whereas excessive agricultural homogenization reduced PP likely due to fertilizer saturation and algal self-shading. Ecologically sensitive basins (the Beiluohe River Basin) demonstrated distinct patterns, in which PP concentration was regulated through natural-agricultural synergies. These results deepened the understanding of land use effects on aquatic PP, providing a theoretical basis for optimizing land use strategies to reconcile eutrophication control with ecological productivity in human-stressed basins.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Benefits and ecological restoration implications of hanging grass fences in Mongolian desert steppe
MIAO Jiamin, LI Shengyu, XU Xinwen, LIU Guojun, WANG Haifeng, FAN Jinglong, Khaulanbek AKHMADI
Journal of Arid Land    2024, 16 (11): 1541-1561.   DOI: 10.1007/s40333-024-0063-6
Abstract100)   HTML4)    PDF(pc) (2044KB)(43)       Save

Tumbleweeds participate in a common seasonal biological process in temperate grasslands, creating hanging grass fences during the grass-withering season that result in distinct ecological phenomena. In this study, we addressed the urgent need to understand and restore the degraded desert steppe in Central Mongolia, particularly considering the observed vegetation edge effects around hanging grass fences. Using field surveys conducted in 2019 and 2021 in the severely degraded desert steppe of Central Mongolia, we assessed vegetation parameters and soil physical and chemical properties influenced by hanging grass fences and identified the key environmental factors affecting vegetation changes. The results indicate that the edge effects of hanging grass fences led to changes in species distributions, resulting in significant differences in species composition between the desert steppe's interior and edge areas. Vegetation parameters and soil physical and chemical properties exhibited nonlinear responses to the edge effects of hanging grass fences, with changes in vegetation coverage, aboveground biomass, and soil sand content peaking at 26.5, 16.5, and 6.5 m on the leeward side of hanging grass fences, respectively. In the absence of sand dune formation, the accumulation of soil organic carbon and available potassium were identified as crucial factors driving species composition and increasing vegetation coverage. Changes in species composition and plant density were primarily influenced by soil sand content, electrical conductivity, and sand accumulation thickness. These findings suggest that hanging grass fences have the potential to alter vegetation habitats, promote vegetation growth, and control soil erosion in the degraded desert steppe of Central Mongolia. Therefore, in the degraded desert steppe, the restoration potential of hanging grass fences during the enclosure process should be fully considered.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Mechanisms of meteorological drought propagation to hydrological drought in the upper Shiyang River Basin, China
HUANG Peng, GUO Xi, YUE Yaojie
Journal of Arid Land    2025, 17 (8): 1027-1047.   DOI: 10.1007/s40333-025-0106-7
Abstract100)   HTML12)    PDF(pc) (2413KB)(66)       Save

Comprehensively revealing the intensity of drought propagation from meteorological to hydrological drought is crucial for effective drought monitoring and management. However, existing assessments often fail to integrate multiple drought characteristics, resulting in incomplete evaluations. To address this limitation, this study introduced the drought comprehensive propagation intensity (DCPI) index, a systematic tool that quantifies propagation intensity and incorporates five drought characteristic indicators (drought frequency, total duration, maximum duration, coverage, and degree) to assess the comprehensive drought intensity in the upper Shiyang River Basin, China from 1961 to 2023. The results indicated that pre-1980s drought propagation was relatively weak (DCPI<0.964), reflecting stable hydrological homeostasis. After the 1980s, the intensity significantly increased, peaking at 5.530 (rather strong drought) in the 2000s due to human-induced alterations in surface runoff and ecological changes. Spatially, the western tributaries (e.g., the Xida River Watershed) presented stronger hydrological drought intensity, whereas the eastern tributaries (e.g., the Huangyang, Gulang, and Dajing river watersheds) presented higher meteorological drought intensity. The DCPI values decreased from west to east, with near peer-to-peer propagation observed in the Dongda, Huangyang, and Jinta river watersheds, suggesting minimal human interference. A nonlinear relationship between meteorological and hydrological droughts was identified, with severe drought frequency and duration emerging as critical drivers of propagation intensity. Notably, trends of meteorological humidification coexist with hydrological aridification, highlighting systemic challenges for water resource management. The DCPI framework enhances the understanding of drought mechanisms by enabling a structured evaluation of drought impacts, which is essential for developing effective water resource strategies and ecological restoration efforts in arid areas. This study underscores the importance of integrating multi-dimensional drought characteristics to improve prediction accuracy and inform policy decisions.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Variations of soil moisture and its influencing factors in arid and semi-arid areas, China
NIU Jiqiang, LIU Zijian, CHEN Feiyan, LIU Gangjun, ZHOU Junli, ZHOU Peng, LI Hongrui, LI Mengyang
Journal of Arid Land    2025, 17 (5): 624-643.   DOI: 10.1007/s40333-025-0014-x
Abstract99)   HTML5)    PDF(pc) (4035KB)(32)       Save

Soil moisture (SM) is a critical variable in terrestrial ecosystems, especially in arid and semi-arid areas where water sources are limited. Despite its importance, understanding the spatiotemporal variations and influencing factors of SM in these areas remains insufficient. This study investigated the spatiotemporal variations and influencing factors of SM in arid and semi-arid areas of China by utilizing the extended triple collation (ETC), Mann-Kendall test, Theil-Sen estimator, ridge regression analysis, and other relevant methods. The following findings were obtained: (1) at the pixel scale, the long-term monthly SM data from the European Space Agency Climate Change Initiative (ESA CCI) exhibited the highest correlation coefficient of 0.794 and the lowest root mean square error (RMSE) of 0.014 m3/m3; (2) from 2000 to 2022, the study area experienced significant increase in annual average SM, with a rate of 0.408×10-3 m3/(m3•a). Moreover, higher altitudes showed a notable upward trend, with SM increasing rates at 0.210×10-3 m³/(m3•a) between 1000 and 2000 m, 0.530×10-3 m3/(m3•a) between 2000 and 4000 m, and 0.760×10-3 m3/(m3•a) at altitudes above 4000 m; (3) land surface temperature (LST), root zone soil moisture (RSM) (10-40 cm depth), and normalized difference vegetation index (NDVI) were identified as the primary factors influencing annual average SM, which accounted for 34.37%, 24.16%, and 22.64% relative contributions, respectively; and (4) absolute contribution of LST was more significant in subareas at higher altitudes, with average absolute contributions of 0.800×10-3 m3/(m3•a) between 2000 and 4000 m and 0.500×10-2 m3/(m3•a) above 4000 m. This study reveals the spatiotemporal variations and main influencing factors of SM in Chinese arid and semi-arid areas, highlighting the more pronounced absolute contribution of LST to SM in high-altitude areas, providing valuable insights for ecological research and water resource management in these areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Understanding and simulating of three-dimensional subsurface hydrological partitioning in an alpine mountainous area, China
ZHANG Lanhui, TU Jiahao, AN Qi, LIU Yu, XU Jiaxin, ZHANG Haixin
Journal of Arid Land    2024, 16 (11): 1463-1483.   DOI: 10.1007/s40333-024-0034-y
Abstract98)   HTML7)    PDF(pc) (3342KB)(120)       Save

Critical zone (CZ) plays a vital role in sustaining biodiversity and humanity. However, flux quantification within CZ, particularly in terms of subsurface hydrological partitioning, remains a significant challenge. This study focused on quantifying subsurface hydrological partitioning, specifically in an alpine mountainous area, and highlighted the important role of lateral flow during this process. Precipitation was usually classified as two parts into the soil: increased soil water content (SWC) and lateral flow out of the soil pit. It was found that 65%-88% precipitation contributed to lateral flow. The second common partitioning class showed an increase in SWC caused by both precipitation and lateral flow into the soil pit. In this case, lateral flow contributed to the SWC increase ranging from 43% to 74%, which was notably larger than the SWC increase caused by precipitation. On alpine meadows, lateral flow from the soil pit occurred when the shallow soil was wetter than the field capacity. This result highlighted the need for three-dimensional simulation between soil layers in Earth system models (ESMs). During evapotranspiration process, significant differences were observed in the classification of subsurface hydrological partitioning among different vegetation types. Due to tangled and aggregated fine roots in the surface soil on alpine meadows, the majority of subsurface responses involved lateral flow, which provided 98%-100% of evapotranspiration (ET). On grassland, there was a high probability (0.87), which ET was entirely provided by lateral flow. The main reason for underestimating transpiration through soil water dynamics in previous research was the neglect of lateral root water uptake. Furthermore, there was a probability of 0.12, which ET was entirely provided by SWC decrease on grassland. In this case, there was a high probability (0.98) that soil water responses only occurred at layer 2 (10-20 cm), because grass roots mainly distributed in this soil layer, and grasses often used their deep roots for water uptake during ET. To improve the estimation of soil water dynamics and ET, we established a random forest (RF) model to simulate lateral flow and then corrected the community land model (CLM). RF model demonstrated good performance and led to significant improvements in CLM simulation. These findings enhance our understanding of subsurface hydrological partitioning and emphasize the importance of considering lateral flow in ESMs and hydrological research.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Impact of land use change on carbon storage in the middle reaches of the Yellow River, China
SHI Xiaoliang, ZHANG Jie, LIU Simin, DING Hao, CHEN Xi, WANG Li, ZHANG Dan
Journal of Arid Land    2025, 17 (2): 167-181.   DOI: 10.1007/s40333-025-0007-9
Abstract96)   HTML6)    PDF(pc) (3818KB)(46)       Save

The implementation of long-term shelterbelt programs in the middle reaches of the Yellow River (MRYR), China not only has improved the overall ecological environment, but also has led to the changes of land use pattern, causing carbon storage exchanges. However, the relationship between carbon storage and land use change in the MRYR is not concerned, which results in the uncertainty in the simulation of carbon storage in this area. Land use changes directly affect the carbon storage capacity of ecosystems, and as an indicator reflecting the overall state of land use, land use degree has an important relationship with carbon storage. In this study, land use data and the integrated valuation of ecosystem services and trade-offs (InVEST) model were used to assess the trends in land use degree and carbon storage in the MRYR during 1980-2020. The potential impact index and the standard deviation ellipse (SDE) algorithm were applied to quantify and analyze the characteristics of the impact of land use changes on carbon storage. Subsequently, land use transitions that led to carbon storage variations and their spatial variations were determined. The results showed that: (1) the most significant periods of carbon storage changes and land use transitions were observed during 1990-1995 and 1995-2020, with the most changed areas locating in the east of Fenhe River and in northwestern Henan Province; (2) the positive impact of land use degree on carbon storage may be related to the environmental protection measures implemented along the Yellow River, while the negative impact may be associated with the expansion of construction land in plain areas; and (3) the conversion of other land use types to grassland was the primary factor affecting carbon storage changes during 1980-2020. In future land use planning, attention should be given to the direction of grassland conversion, and focus on reasonably limiting the development of construction land. To enhance carbon storage, it will be crucial to increase the area of high-carbon-density land types, such as forest land and grassland under the condition that the area of permanent farmland does not decrease.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Forecasting land use changes in crop classification and drought using remote sensing
Mashael MAASHI, Nada ALZABEN, Noha NEGM, Venkatesan VEERAMANI, Sabarunisha Sheik BEGUM, Geetha PALANIAPPAN
Journal of Arid Land    2025, 17 (5): 575-589.   DOI: 10.1007/s40333-025-0013-y
Abstract94)   HTML6)    PDF(pc) (2990KB)(66)       Save

Challenges in land use and land cover (LULC) include rapid urbanization encroaching on agricultural land, leading to fragmentation and loss of natural habitats. However, the effects of urbanization on LULC of different crop types are less concerned. The study assessed the impacts of LULC changes on agriculture and drought vulnerability in the Aguascalientes region, Mexico, from 1994 to 2024, and predicted the LULC in 2034 using remote sensing data, with the goals of sustainable land management and climate resilience strategies. Despite increasing urbanization and drought, the integration of satellite imagery and machine learning models in LULC analysis has been underutilized in this region. Using Landsat imagery, we assessed crop attributes through indices such as normalized difference vegetation index (NDVI), normalized difference water index (NDWI), normalized difference moisture index (NDMI), and vegetation condition index (VCI), alongside watershed delineation and spectral features. The random forest model was applied to classify LULC, providing insights into both historical and future trends. Results indicated a significant decline in vegetation cover (109.13 km2) from 1994 to 2024, accompanied by an increase in built-up land (75.11 km2) and bare land (67.13 km2). Projections suggested a further decline in vegetation cover (41.51 km2) and continued urban land expansion by 2034. The study found that paddy crops exhibited the highest values, while common bean and maize performed poorly. Drought analysis revealed that mildly dry areas in 2004 became severely dry in 2024, highlighting the increasing vulnerability of agriculture to climate change. The study concludes that sustainable land management, improved water resource practices, and advanced monitoring techniques are essential to mitigate the adverse effects of LULC changes on agricultural productivity and drought resilience in the area. These findings contribute to the understanding of how remote sensing can be effectively used for long-term agricultural planning and environmental sustainability.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Hydrochemistry and environmental implications in the western alpine region of China
ZHAO Yue, LI Zongxing, LI Zhongping, AOBULI Gulihumaer, NIMA Zhaxi, WANG Dong
Journal of Arid Land    2025, 17 (4): 411-439.   DOI: 10.1007/s40333-025-0072-0
Abstract94)   HTML12)    PDF(pc) (3917KB)(60)       Save

The western alpine region is an important freshwater supply and water conservation area for China and its surrounding areas. As ecological civilization construction progresses, the ecohydrology of the western alpine region in China, which is a crucial ecological barrier, has undergone significant changes. In this study, we collected 1077 sampling points and presented a comprehensive overview of research results pertaining to the hydrochemistry of river water, meltwater, groundwater, and precipitation in the western alpine region of China using piper diagram, end-member diagram, and hydrological process indication. Water resources in the western alpine region of China were found to be weakly alkaline and have low total dissolved solids (TDS). The mean pH values for river water, meltwater, groundwater, and precipitation are 7.92, 7.58, 7.72, and 7.32, respectively. The mean TDS values for river water, meltwater, groundwater, and precipitation are 280.99, 72.48, 544.41, and 67.68 mg/L. The hydrochemical characteristics of the water resources in this region exhibit significant spatial and temporal variability. These characteristics include higher ion concentrations during the freezing period and higher ion concentrations in inland river basins, such as the Shule River Basin and Tarim River Basin. The principal hydrochemical type of river water and meltwater is HCO3-•SO42--Ca2+, whereas the principal cations in groundwater are Mg2+ and Ca2+, and the principal anions are HCO3- and SO42-. In terms of precipitation, the principal hydrochemical type is SO42--Ca2+. The chemical ions in river water and groundwater are primarily influenced by rock weathering and evaporation-crystallization, whereas the chemical ions in meltwater are mainly affected by rock weathering and atmospheric precipitation, and the chemical ions in precipitation are derived primarily from terrestrial sources. The main forms of water input in the western alpine region of China are precipitation and meltwater, and mutual recharge occurs between river water and groundwater. Hydrochemical characteristics can reflect the impact of human activities on water resources. By synthesizing the regional hydrochemical studies, our findings provide insights for water resources management and ecological security construction in the western alpine region in China.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatio-temporal dynamics of desertification in China from 1970 to 2019: A meta-analysis
XIU Xiaomin, WU Bo, CHEN Qian, LI Yiran, PANG Yingjun, JIA Xiaohong, ZHU Jinlei, LU Qi
Journal of Arid Land    2025, 17 (9): 1189-1214.   DOI: 10.1007/s40333-025-0056-0
Abstract92)   HTML2)    PDF(pc) (2124KB)(48)       Save

Desertification is a global crucial ecological and environmental issue, and China is among the countries most seriously affected by desertification. In recent decades, numerous independent studies on desertification dynamics have been carried out using remote sensing technology, but there has been a lack of systematic research on desertification trends in China. This study employed the meta-analysis to integrate the findings of 140 published research cases and examined the dynamics of desertification in the eight major deserts, four major sandy lands, and their surrounding areas in China from 1970 to 2019, with a comparative analysis of differences between the eastern (including the Mu Us Sandy Land, the Otindag Sandy Land, the Hulunbuir Sandy Land, the Horqin Sandy Land, and the Hobq Desert) and western (including the Taklimakan Desert, the Gurbantunggut Desert, the Kumtagh Desert, the Ulan Buh Desert, the Qaidam Basin Desert, the Badain Jaran Desert, and the Tengger Desert) regions. The results revealed that from 1970 to 2019, desertification first expanded and then reversed in the whole region. Specifically, desertification expanded from 1980 to 1999 and reversed after 2000. The desertification trend exhibited distinct spatio-temporal variations between the eastern and western regions. From 1970 to 2019, the western region experienced relatively minor changes in desertified land area compared to the eastern region. In the context of global climate change, beneficial climatic conditions and ecological construction projects played a crucial role in reversing desertification. These findings provide valuable insights for understanding the development patterns of desertification in the most representative deserts and sandy lands in China and formulating effective desertification control strategies.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Response of drought to climate extremes in a semi-arid inland river basin in China
QU Zhicheng, YAO Shunyu, LIU Dongwei
Journal of Arid Land    2024, 16 (11): 1505-1521.   DOI: 10.1007/s40333-024-0064-5
Abstract89)   HTML9)    PDF(pc) (2997KB)(58)       Save

Against the backdrop of global warming, climate extremes and drought events have become more severe, especially in arid and semi-arid areas. This study forecasted the characteristics of climate extremes in the Xilin River Basin (a semi-arid inland river basin) of China for the period of 2021-2100 by employing a multi-model ensemble approach based on three climate Shared Socioeconomic Pathway (SSP) scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) from the latest Coupled Model Intercomparison Project Phase 6 (CMIP6). Furthermore, a linear regression, a wavelet analysis, and the correlation analysis were conducted to explore the response of climate extremes to the Standardized Precipitation Evapotranspiration Index (SPEI) and Streamflow Drought Index (SDI), as well as their respective trends during the historical period from 1970 to 2020 and during the future period from 2021 to 2070. The results indicated that extreme high temperatures and extreme precipitation will further intensify under the higher forcing scenarios (SSP5-8.5>SSP2-4.5>SSP1-2.6) in the future. The SPEI trends under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios were estimated as -0.003/a, -0.004/a, and -0.008/a, respectively, indicating a drier future climate. During the historical period (1970-2020), the SPEI and SDI trends were -0.003/a and -0.016/a, respectively, with significant cycles of 15 and 22 a, and abrupt changes occurring in 1995 and 1996, respectively. The next abrupt change in the SPEI was projected to occur in the 2040s. The SPEI had a significant positive correlation with both summer days (SU) and heavy precipitation days (R10mm), while the SDI was only significantly positively correlated with R10mm. Additionally, the SPEI and SDI exhibited a strong and consistent positive correlation at a cycle of 4-6 a, indicating a robust interdependence between the two indices. These findings have important implications for policy makers, enabling them to improve water resource management of inland river basins in arid and semi-arid areas under future climate uncertainty.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Impact of climate change on water resources in the Yarmouk River Basin of Jordan
Abdelaziz Q BASHABSHEH, Kamel K ALZBOON
Journal of Arid Land    2024, 16 (12): 1633-1647.   DOI: 10.1007/s40333-024-0069-0
Abstract88)   HTML6)    PDF(pc) (942KB)(57)       Save

Understanding the impact of climate change on water resources is important for developing regional adaptive water management strategies. This study investigated the impact of climate change on water resources in the Yarmouk River Basin (YRB) of Jordan by analyzing the historical trends and future projections of temperature, precipitation, and streamflow. Simple linear regression was used to analyze temperature and precipitation trends from 1989 to 2017 at Irbid, Mafraq, and Samar stations. The Statistical Downscaling Model (SDSM) was applied to predict changes in temperature and precipitation from 2018 to 2100 under three Representative Concentration Pathway (RCP) scenarios (i.e., RCP2.6, RCP4.5, and RCP8.5), and the Soil and Water Assessment Tool (SWAT) was utilized to estimate their potential impact on streamflow at Addasiyia station. Analysis of data from 1989 to 2017 revealed that mean maximum and minimum temperatures increased at all stations, with average rises of 1.62°C and 1.39°C, respectively. The precipitation trends varied across all stations, showing a significant increase at Mafraq station, an insignificant increase at Irbid station, and an insignificant decrease at Samar station. Historical analysis of streamflow data revealed a decreasing trend with a slope of -0.168. Significant increases in both mean minimum and mean maximum temperatures across all stations suggested that evaporation is the dominant process within the basin, leading to reduced streamflow. Under the RCP scenarios, projections indicated that mean maximum temperatures will increase by 0.32°C to 1.52°C, while precipitation will decrease by 8.5% to 43.0% throughout the 21st century. Future streamflow projections indicated reductions in streamflow ranging from 8.7% to 84.8% over the same period. The mathematical model results showed a 39.4% reduction in streamflow by 2050, nearly double the SWAT model's estimate under RCP8.5 scenario. This research provides novel insights into the regional impact of climate change on water resources, emphasizing the urgent need to address these environmental challenges to ensure a sustainable water supply in Jordan.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Soil ecological stoichiometry in varied micro- topographies of an alluvial fan at eastern Helan Mountains, Northwest China
SHEN Aihong, ZHAO Na, SHI Yun, MI Wenbao, SHE Jie, ZHANG Fenghong, GUO Rui, WU Tao, LI Zhigang, LI Jianhua, ZHU Xiaowen, LI Hongxia, YUE Shaoli
Journal of Arid Land    2024, 16 (12): 1648-1663.   DOI: 10.1007/s40333-024-0037-8
Abstract88)   HTML6)    PDF(pc) (2107KB)(38)       Save

Alluvial fans possess diverse geomorphological features and have a significant impact on soil characteristics and variations in ecological stoichiometry. However, it remains unclear how alluvial fans in arid mountainous areas influence the changes in ecological chemical stoichiometry and, consequently, indirectly affect ecosystem function. Alluvial fan, with its diverse topographical features, exerts a multifaceted influence on soil formation and characteristics. Limited information exists regarding the ecological stoichiometric characteristics of the alluvial fan in arid mountainous areas. This study investigated the soil physical-chemical characteristics, enzyme activities, soil ecological stoichiometries, and its driving factors of four types of micro-topographies (alluvial mesas, high floodplain, groove beach, and striated groove) in the foothills of eastern Helan Mountains, China. Results showed that soil physical and chemical properties in the 0-20 cm soil depth was consistently higher than those in the 20-40 cm soil depth, with no changes in pH, total nitrogen, and total potassium. C:P and N:P ratios in alluvial mesas, high floodplain, and striated groove were significantly higher than those in groove beach. Redundancy analysis showed that soil nutrients played the most significant role in the variation of soil ecological stoichiometry characteristics. Topography influenced soil stoichiometry indirectly, primarily through impacts on enzyme activity and soil nutrient elements. These findings elucidate the intricate interplay between soil ecological stoichiometric characteristics and environmental factors across diverse micro-topographies in alluvial fan, contributing to our understanding of the formation and development of soil in dryland.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Seed germination response of the invasive Haloxylon persicum in Tunisia
Hanen FARHAT, Khouloud KRICHEN, Khouloud ZAGOUB, Mohamed CHAIEB
Journal of Arid Land    2024, 16 (12): 1744-1759.   DOI: 10.1007/s40333-024-0065-4
Abstract86)   HTML2)    PDF(pc) (1000KB)(9)       Save

Biological invasion represents a major worldwide threat to native biodiversity and environmental stability. Haloxylon persicum was introduced to Tunisia (North Africa) with Saharan bioclimate in 1969 to fix sandy dunes. Since then, it has gained significant interest for its potential to colonize, proliferate, and become naturalized in Tunisia. Hence, understanding the seed germination response of H. persicum to abiotic conditions, including temperature, water stress, and salt stress, is crucial for predicting its future spread and adopting effective control strategies. Our work investigated the germination behavior of this invasive plant species by incubation at temperatures from 10.0°C to 35.0°C and at various osmotic potentials (-2.00, -1.60, -1.00, -0.50, and 0.00 MPa) of polyethylene glycol-6000 (PEG6000, indicating water stress) and sodium chloride (NaCl, indicating salt stress) solutions. Results showed remarkable correlations among the seed functional traits of H. persicum, indicating adaptive responses to local environmental constraints. The maximum germination rate was recorded at 25.0°C with a rate of 0.39/d. Using the thermal time model, the base temperature was recorded at 8.4°C, the optimal temperature was 25.5°C, and the ceiling temperature was found at 58.3°C. Besides, based on the hydrotime model, the base water potential showed lower values of -7.74 and -10.90 MPa at the optimal temperatures of 25.0°C and 30.0°C, respectively. Also, the species was found to have excellent tolerance to drought (water stress) compared to salt stress, which has implications for its potential growth into new habitats under climate change. Combining ecological and physiological approaches, this work elucidates the invasive potential of H. persicum and contributes to the protection of species distribution in Tunisian ecosystems.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Land use/cover change and ecological network in Gansu Province, China during 2000-2020 and their simulations in 2050
MA Xinshu, XIN Cunlin, CHEN Ning, XIN Shunjie, CHEN Hongxiang, ZHANG Bo, KANG Ligang, WANG Yu, JIAO Jirong
Journal of Arid Land    2025, 17 (1): 43-57.   DOI: 10.1007/s40333-025-0092-9
Abstract83)   HTML6)    PDF(pc) (1609KB)(25)       Save

Land use/cover change (LUCC) constitutes the spatial and temporal patterns of ecological security, and the construction of ecological networks is an effective way to ensure ecological security. Exploring the spatial and temporal change characteristics of ecological network and analyzing the integrated relationship between LUCC and ecological security are crucial for ensuring regional ecological security. Gansu is one of the provinces with fragile ecological environment in China, and rapid changes in land use patterns in recent decades have threatened ecological security. Therefore, taking Gansu Province as the study area, this study simulated its land use pattern in 2050 using patch-generating land use simulation (PLUS) model based on the LUCC trend from 2000 to 2020 and integrated the LUCC into morphological spatial pattern analysis (MSPA) to identify ecological sources and extract the ecological corridors to construct ecological network using circuit theory. The results revealed that, according to the prediction results in 2050, the areas of cultivated land, forest land, grassland, water body, construction land, and unused land would be 63,447.52, 39,510.80, 148,115.18, 4605.21, 8368.89, and 161,752.40 km2, respectively. The number of ecological sources in Gansu Province would increase to 80, with a total area of 99,927.18 km2. The number of ecological corridors would increase to 191, with an estimated total length of 6120.66 km. Both ecological sources and ecological corridors showed a sparse distribution in the northwest and dense distribution in the southeast of the province at the spatial scale. The number of ecological pinch points would reach 312 and the total area would expect to increase to 842.84 km2, with the most pronounced increase in the Longdong region. Compared with 2020, the number and area of ecological barriers in 2050 would decrease significantly by 63 and 370.71 km2, respectively. In general, based on the prediction results, the connectivity of ecological network of Gansu Province would increase in 2050. To achieve the predicted ecological network in 2050, emphasis should be placed on the protection of cultivated land and ecological land, the establishment of ecological sources in desert areas, the reinforcement of the protection for existing ecological sources, and the construction of ecological corridors to enhance the stability of ecological network. This study provides valuable theoretical support and references for the future construction of ecological networks and regional land resource management decision-making.

Table and Figures | Reference | Related Articles | Metrics | Comments0
A novel framework of ecological risk management for urban development in ecologically fragile regions: A case study of Turpan City, China
LI Haocheng, LI Junfeng, QU Wenying, WANG Wenhuai, Muhammad Arsalan FARID, CAO Zhiheng, MA Chengxiao, FENG Xueting
Journal of Arid Land    2024, 16 (11): 1604-1632.   DOI: 10.1007/s40333-024-0110-3
Abstract82)   HTML4)    PDF(pc) (3254KB)(36)       Save

Assessing and managing ecological risks in ecologically fragile areas remain challenging at present. To get to know the ecological risk situation in Turpan City, China, this study constructed an ecological risk evaluation system to obtain the ecological risk level (ERL) and ecological risk index (ERI) based on the multi-objective linear programming-patch generation land use simulation (MOP-PLUS) model, analyzed the changes in land use and ecological risk in Turpan City from 2000 to 2020, and predicted the land use and ecological risk in 2030 under four different scenarios (business as usual (BAU), rapid economic development (RED), ecological protection priority (EPP), and eco-economic equilibrium, (EEB)). The results showed that the conversion of land use from 2000 to 2030 was mainly between unused land and the other land use types. The ERL of unused land was the highest among all the land use types. The ecological risk increased sharply from 2000 to 2010 and then decreased from 2010 to 2020. According to the value of ERI, we divided the ecological risk into seven levels by natural breakpoint method; the higher the level, the higher the ecological risk. For the four scenarios in 2030, under the EPP scenario, the area at VII level was zero, while the area at VII level reached the largest under the RED scenario. Comparing with 2020, the areas at I and II levels increased under the BAU, EPP, and EEB scenarios, while decreased under the RED scenario. The spatial distributions of ecological risk of BAU and EEB scenarios were similar, but the areas at I and II levels were larger and the areas at V and VI levels were smaller under the EEB scenario than under the BAU scenario. Therefore, the EEB scenario was the optimal development route for Turpan City. In addition, the results of spatial autocorrelation showed that the large area of unused land was the main reason affecting the spatial pattern of ecological risk under different scenarios. According to Geodetector, the dominant driving factors of ecological risk were gross domestic product rating (GDPR), soil type, population, temperature, and distance from riverbed (DFRD). The interaction between driving factor pairs amplified their influence on ecological risk. This research would help explore the low ecological risk development path for urban construction in the future.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effects of water tables and nitrogen application on soil bacterial community diversity, network structure, and function in an alpine wetland, China
HAN Yaoguang, CHEN Kangyi, SHEN Zhibo, LI Keyi, CHEN Mo, HU Yang, WANG Jiali, JIA Hongtao, ZHU Xinping, YANG Zailei
Journal of Arid Land    2024, 16 (11): 1584-1603.   DOI: 10.1007/s40333-024-0031-1
Abstract81)   HTML3)    PDF(pc) (3015KB)(16)       Save

Nitrogen deposition and water tables are important factors to control soil microbial community structure. However, the specific effects and mechanisms of nitrogen deposition and water tables coupling on bacterial diversity, abundance, and community structure in arid alpine wetlands remain unclear. The nitrogen deposition (0, 10, and 20 kg N/(hm2•a)) experiments were conducted in the Bayinbulak alpine wetland with different water tables (perennial flooding, seasonal waterlogging, and perennial drying). The 16S rRNA (ribosomal ribonucleic acid) gene sequencing technology was employed to analyze the changes in bacterial community diversity, network structure, and function in the soil. Results indicated that bacterial diversity was the highest under seasonal waterlogging condition. However, nitrogen deposition only affected the bacterial Chao1 and beta diversity indices under seasonal waterlogging condition. The abundance of bacterial communities under different water tables showed significant differences at the phylum and genus levels. The dominant phylum, Proteobacteria, was sensitive to soil moisture and its abundance decreased with decreasing water tables. Although nitrogen deposition led to changes in bacterial abundance, such changes were small compared with the effects of water tables. Nitrogen deposition with 10 kg N/(hm2•a) decreased bacterial edge number, average path length, and robustness. However, perennial flooding and drying conditions could simply resist environmental changes caused by 20 kg N/(hm2•a) nitrogen deposition and their network structure remain unchanged. The sulfur cycle function was dominant under perennial flooding condition, and carbon and nitrogen cycle functions were dominant under seasonal waterlogging and perennial drying conditions. Nitrogen application increased the potential function of part of nitrogen cycle and decreased the potential function of sulfur cycle in bacterial community. In summary, composition of bacterial community in the arid alpine wetland was determined by water tables, and diversity of bacterial community was inhibited by a lower water table. Effect of nitrogen deposition on bacterial community structure and function depended on water tables.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Occurrence of flash drought in reservoirs in the semi-arid area of the Ceará State, Brazil
Suellen Teixeira Nobre GONÇALVES, Francisco das Chagas VASCONCELOS JÚNIOR, Cleiton da Silva SILVEIRA, José Micael Ferreira da COSTA, Antonio Duarte MARCOS JUNIOR
Journal of Arid Land    2025, 17 (7): 865-887.   DOI: 10.1007/s40333-025-0020-z
Abstract81)   HTML2)    PDF(pc) (1384KB)(49)       Save

Precipitation is scarce in semi-arid areas, which results in serious drought. Occurrence of flash drought is quite often in these areas, and flash drought may also cause significant disasters. However, monitoring flash drought is still weak and remains a challenge. This study aims to identify, evaluate, and monitor flash drought events that occurred from 1961 to 2020 in reservoirs of the Ceará State, Brazil. The Christian's method, standardized precipitation index (SPI), standardized precipitation evapotranspiration index (SPEI), and evaporative demand drought index (EDDI) were used to assess the severity and persistence of flash drought. Moreover, analyses conducted in 2001, 2008, 2011, 2012, 2016, and 2020 revealed the complexity and interaction of flash drought with environmental and meteorological factors. The results indicated that in dry years such as 2001, 2012, and 2016, drought indices pointed to the intensification of drought conditions, with impacts on major reservoirs in the area, such as Banabuiú, Castanhão, and Orós. Low precipitation, associated with high evaporative demand, intensified water stress, reducing water availability for the population and local ecosystems. In wet years such as 2008, 2011, and 2020, SPEI and EDDI indicated higher moisture levels and drought relief, favoring the recovery of reservoirs. It was also observed that most flash drought episodes evolved into conventional droughts, highlighting their persistence and potential long-term impact. Moreover, the months of May and November presented a higher frequency of flash drought during the wet and dry periods, respectively, negatively impacting most of the studied reservoirs. These findings underscore the need for effective drought monitoring and mitigation strategies to reduce its impacts on agriculture and water resources in the semi-arid area. Early detection and analysis of flash drought are important for improving water resource management and for continuous adaptation to changing drought conditions.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatiotemporal patterns and driving factors of soil protection in the wind-water erosion area of Chinese Loess Plateau
LI Qing, LI Dan, WANG Sheng, WANG Jinfeng, WANG Rende, FU Gang, YUAN Yixiao, ZHENG Zhenhua
Journal of Arid Land    2024, 16 (11): 1522-1540.   DOI: 10.1007/s40333-024-0033-z
Abstract76)   HTML3)    PDF(pc) (3291KB)(24)       Save

As one of typical areas in the world, northern Chinese Loess Plateau experiences serious wind-water erosion, which leads to widespread land degradation. During the past decades, an ecological engineering was implemented to reduce soil erosion and improve soil protection in this area. Thus, it is necessary to recognize the basic characteristics of soil protection for sustainable prevention and wind-water erosion control in the later stage. In this study, national wind erosion survey model and revised universal soil loss equation were used to analyze the spatiotemporal evolution and driving forces of soil protection in the wind-water erosion area of Chinese Loess Plateau during 2000-2020. Results revealed that: (1) during 2000-2020, total amount of soil protection reached up to 15.47×108 t, which was realized mainly through water and soil conservation, accounting for 63.20% of the total; (2) soil protection was improved, with increases in both soil protection amount and soil retention rate. The amounts of wind erosion reduction showed a decrease trend, whereas the retention rate of wind erosion reduction showed an increase trend. Both water erosion reduction amount and retention rate showed increasing trends; and (3) the combined effects of climate change and human activities were responsible for the improvement of soil protection in the wind-water erosion area of Chinese Loess Plateau. The findings revealed the spatiotemporal patterns and driving forces of soil protection, and proposed strategies for future soil protection planning in Chinese Loess Plateau, which might provide valuable references for soil erosion control in other wind-water erosion areas of the world.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Erosion on marginal slopes of unpaved roads in semi-arid Brazil, and the role of Caatinga vegetation in sediment retention and disconnectivity
Teresa Raquel Lima FARIAS, Maria Thereza Rocha CHAVES, Cicero Lima de ALMEIDA, Pedro Henrique Augusto MEDEIROS, José Carlos de ARAÚJO, Joaquín NAVARRO-HEVIA
Journal of Arid Land    2025, 17 (4): 500-514.   DOI: 10.1007/s40333-025-0012-z
Abstract71)   HTML3)    PDF(pc) (1518KB)(15)       Save

Vegetation plays a major role in soil protection against erosion effects, and studies have also highlighted its importance in retaining sediments from roadside slopes. Yet, hydro-sedimentological studies under natural precipitation conditions are still scarce in semi-arid areas due to difficulties in monitoring the few and very concentrated precipitation events. Quantifying sediment connectivity and yield at watershed scale, often highly impacted by the erosion of unpaved roads, is necessary for management plans. This study aims to evaluate the efficiency of native vegetation on roadside slope segments in Caatinga biome in retaining sediments and conserving the soil in a semi-arid area of Brazil. Surface runoff, sediment concentration, and yield measurements were measured from 34 natural precipitation events in four years on two slopes with and without vegetation. The runoff coefficients of the plot with no vegetation varied from 3.0% to 58.0%, while in the vegetated plot, they showed variation from 1.0% to 21.0%. The annual specific sediment yield ranged from 4.6 to 138.7 kg/(hm2•a) for the vegetated plot and from 34.9 to 608.5 kg/(hm2•a) for the unvegetated one. These results indicate a 4 to 12 times higher soil loss on the unvegetated slope in relation to the vegetated one and demonstrate that natural Caatinga vegetation acts as an effective barrier against surface-transported sediments. Moreover, natural Caatinga vegetation present on the slope plays an important role in breaking connectivity between sediment flows from unpaved roads and the watershed drainage system. These findings indicate that investments in unpaved road and roadside slope restoration, not only enhance road infrastructure but also promote environmental gains by reducing the impact of erosion.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Impact of climate change and land use/cover change on water yield in the Liaohe River Basin, Northeast China
LYU Leting, JIANG Ruifeng, ZHENG Defeng, LIANG Liheng
Journal of Arid Land    2025, 17 (2): 182-199.   DOI: 10.1007/s40333-025-0090-y
Abstract70)   HTML7)    PDF(pc) (2351KB)(35)       Save

The Liaohe River Basin (LRB) in Northeast China, a critical agricultural and industrial zone, has faced escalating water resource pressures in recent decades due to rapid urbanization, intensified land use changes, and climate variability. Understanding the spatiotemporal dynamics of water yield and its driving factors is essential for sustainable water resource management in this ecologically sensitive region. This study employed the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model to quantify the spatiotemporal patterns of water yield in the LRB (dividing into six sub-basins from east to west: East Liaohe River Basin (ELRB), Taizi River Basin (TRB), Middle Liaohe River Basin (MLRB), West Liaohe River Basin (WLRB), Xinkai River Basin (XRB), and Wulijimuren River Basin (WRB)) from 1993 to 2022, with a focus on the impacts of climate change and land use cover change (LUCC). Results revealed that the LRB had an average annual precipitation of 483.15 mm, with an average annual water yield of 247.54 mm, both showing significant upward trend over the 30-a period. Spatially, water yield demonstrated significant heterogeneity, with higher values in southeastern sub-basins and lower values in northwestern sub-basins. The TRB exhibited the highest water yield due to abundant precipitation and favorable topography, while the WRB recorded the lowest water yield owing to arid conditions and sparse vegetation. Precipitation played a significant role in shaping the annual fluctuations and total volume of water yield, with its variability exerting substantially greater impacts than actual evapotranspiration (AET) and LUCC. However, LUCC, particularly cultivated land expansion and grassland reduction, significantly reshaped the spatial distribution of water yield by modifying surface runoff and infiltration patterns. This study provides critical insights into the spatiotemporal dynamics of water yield in the LRB, emphasizing the synergistic effects of climate change and land use change, which are pivotal for optimizing water resource management and advancing regional ecological conservation.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Rhizosphere bacterial communities of Agriophyllum squarrosum (L.) Moq. during different developmental stages
ZHANG Shengnan, GAO Haiyan, YANG Shanshan, ZHANG Lei, YAN Deren, HUANG Haiguang, YANG Zhiguo, LI Junwen, TANG Yuekun, XU Hongbin
Journal of Arid Land    2025, 17 (9): 1282-1296.   DOI: 10.1007/s40333-025-0028-4
Abstract70)   HTML2)    PDF(pc) (1476KB)(27)       Save

The rhizosphere bacteria play crucial roles in plant health and growth as they are involved in assimilating nutrients and resisting adverse conditions such as nutrient stress, drought, and wind erosion. Agriophyllum squarrosum (L.) Moq. is a pioneer plant used in sand fixation due to its strong resistance to drought and wind erosion. However, the bacterial community characteristics and ecological function in the rhizosphere of A. squarrosum are poorly understood. In this study, soil samples were collected from different developmental stages (seedling stage, vegetative stage, reproductive stage, and withering stage) of A. squarrosum. Illumina Miseq sequencing was used to detect differences in soil bacterial abundance. The Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) program was used to predict bacterial functions, and the relationships among bacteria, functional populations, and soil nutrients were examined using a heatmap analysis. The results showed that the Shannon and Sobs indices of rhizosphere bacteria were significantly higher during the reproductive stage than during the other stages. Pantoea sp. (7.03%) was the dominant genus during the seedling stage; Arthrobacter sp. was the dominant genus during the vegetative (13.94%), reproductive (7.57%), and withering (12.30%) stages. The relative abundances of Chloroflexi, Acidobacteria, and Gemmatimonadetes were significantly high during the reproductive stage. According to the PICRUSt analysis, membrane transport, signal transduction, and environmental adaptation of the bacterial functional population occurred during the seedling stage. Carbohydrate metabolism increased during the vegetative stage, while energy metabolism, lipid metabolism, and biosynthesis of other secondary metabolites of the bacterial functional population significantly increased during the reproductive stage. The abundances of bacterial communities, functional genes, and soil nutrients were synergistically altered during various developmental stages. Our findings suggest that the developmental stages of A. squarrosum play a significant role in defining the composition and structure of bacterial communities in the rhizosphere. The results will provide a basis for better prediction and understanding of soil bacterial metabolic potential and functions of A. squarrosum rhizosphere in sandy areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatiotemporal variations and driving mechanisms of flash droughts during 1981-2020 in the Qilian Mountains, China
BAI Junhong, WANG Jianglin, CHEN Jie, WANG Xuejia
Journal of Arid Land    2025, 17 (4): 481-499.   DOI: 10.1007/s40333-025-0097-4
Abstract68)   HTML4)    PDF(pc) (2574KB)(24)       Save

Flash drought is characterized by a period of rapid drought intensification with impacts on agriculture, water resources, ecosystems, and human environment. In the Qilian Mountains, northwestern China, flash droughts are becoming more frequently due to the global climate warming. However, the spatiotemporal variations and their driving factors of flash droughts are not clear in this region. In this study, the European Centre for Medium-range Weather Forecasts (ECMWF) Reanalysis v5-Land (ERA5-Land) dataset was utilized to identify two types of flash drought events (heatwave-induced and water scarcity-induced flash drought events) that occurred in the growing season (April‒September) during 1981-2020 in this area. The results showed that the frequency of heatwave-induced flash droughts has decreased since 2010, while the frequency of water scarcity-induced flash droughts has declined markedly. Spatially, heatwave-induced flash droughts were predominantly concentrated in the western Qilian Mountains, whereas water scarcity-induced flash droughts were primarily concentrated in the central and eastern Qilian Mountains. A significantly increasing temporal trend in both types of flash droughts in the eastern Qilian Mountains was found. Meanwhile, there was a decreasing temporal trend of heatwave-induced flash droughts in the southwestern part of the region. Additionally, the influence of two major atmospheric modes, i.e., the El Niño‒Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO), on these two types of flash droughts was explored by the Superposed Epoch Analysis. The ENSO mainly influences flash droughts in the central and eastern parts of the Qilian Mountains by altering the strength of the East Asian monsoon, while the NAO mainly affects flash droughts in the entire parts of the Qilian Mountains by inducing anomalous westerlies activity. Our findings have important implications for predicting the evolution of flash drought events in the Qilian Mountains region under continued climate warming.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Quantitative analysis of factors driving the variations in snow cover fraction in the Qilian Mountains, China
JIN Zizhen, QIN Xiang, LI Xiaoying, ZHAO Qiudong, ZHANG Jingtian, MA Xinxin, WANG Chunlin, HE Rui, WANG Renjun
Journal of Arid Land    2025, 17 (7): 888-911.   DOI: 10.1007/s40333-025-0083-x
Abstract67)   HTML4)    PDF(pc) (1392KB)(27)       Save

Understanding the impact of meteorological and topographical factors on snow cover fraction (SCF) is crucial for water resource management in the Qilian Mountains (QLM), China. However, there is still a lack of adequate quantitative analysis of the impact of these factors. This study investigated the spatiotemporal characteristics and trends of SCF in the QLM based on the cloud-removed Moderate Resolution Imaging Spectroradiometer (MODIS) SCF dataset during 2000-2021 and conducted a quantitative analysis of the drivers using a histogram-based gradient boosting regression tree (HGBRT) model. The results indicated that the monthly distribution of SCF exhibited a bimodal pattern. The SCF showed a pattern of higher values in the western regions and lower values in the eastern regions. Overall, the SCF showed a decreasing trend during 2000-2021. The decrease in SCF occurred at higher elevations, while an increase was observed at lower elevations. At the annual scale, the SCF showed a downward trend in the western regions affected by westerly (52.84% of the QLM). However, the opposite trend was observed in the eastern regions affected by monsoon (45.73% of the QLM). The SCF displayed broadly similar spatial patterns in autumn and winter, with a significant decrease in the western regions and a slight increase in the central and eastern regions. The effect of spring SCF on spring surface runoff was more pronounced than that of winter SCF. Furthermore, compared with meteorological factors, a variation of 46.53% in spring surface runoff can be attributed to changes in spring SCF. At the annual scale, temperature and relative humidity were the most important drivers of SCF change. An increase in temperature exceeding 0.04°C/a was observed to result in a decline in SCF, with a maximum decrease of 0.22%/a. An increase in relative humidity of more than 0.02%/a stabilized the rise in SCF (about 0.06%/a). The impacts of slope and aspect were found to be minimal. At the seasonal scale, the primary factors impacting SCF change varied. In spring, precipitation and wind speed emerged as the primary drivers. In autumn, precipitation and temperature were identified as the primary drivers. In winter, relative humidity and precipitation were the most important drivers. In contrast to the other seasons, slope exerted the strongest influence on SCF change in summer. This study facilitates a detailed quantitative description of SCF change in the QLM, enhancing the effectiveness of watershed water resource management and ecological conservation efforts in this region.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Estimation of evapotranspiration from artificial forest in mountainous areas of western Loess Plateau based on HYDRUS-1D model
LU Rui, ZHANG Mingjun, ZHANG Yu, QIANG Yuquan, CHE Cunwei, SUN Meiling, WANG Shengjie
Journal of Arid Land    2024, 16 (12): 1664-1685.   DOI: 10.1007/s40333-024-0112-1
Abstract67)   HTML5)    PDF(pc) (2710KB)(33)       Save

Evapotranspiration is the most important expenditure item in the water balance of terrestrial ecosystems, and accurate evapotranspiration modeling is of great significance for hydrological, ecological, agricultural, and water resource management. Artificial forests are an important means of vegetation restoration in the western Loess Plateau, and accurate estimates of their evapotranspiration are essential to the management and development of water use strategies for artificial forests. This study estimated the soil moisture and evapotranspiration based on the HYDRUS-1D model for the artificial Platycladus orientalis (L.) Franco forest in western mountains of Loess Plateau, China from 20 April to 31 October, 2023. Moreover, the influence factors were identified by combining the correlation coefficient method and the principal component analysis (PCA) method. The results showed that HYDRUS-1D model had strong applicability in portraying hydrological processes in this area and revealed soil water surplus from 20 April to 31 October, 2023. The soil water accumulation was 49.64 mm; the potential evapotranspiration (ETp) was 809.67 mm, which was divided into potential evaporation (Ep; 95.07 mm) and potential transpiration (Tp; 714.60 mm); and the actual evapotranspiration (ETa) was 580.27 mm, which was divided into actual evaporation (Ea; 68.27 mm) and actual transpiration (Ta; 512.00 mm). From April to October 2023, the ETp, Ep, Tp, ETa, Ea, and Ta first increased and then decreased on both monthly and daily scales, exhibiting a single-peak type trend. The average ratio of Ta/ETa was 0.88, signifying that evapotranspiration mainly stemmed from transpiration in this area. The ratio of ETa/ETp was 0.72, indicating that this artificial forest suffered from obvious drought stress. The ETp was significantly positively correlated with ETa, and the R2 values on the monthly and daily scales were 0.9696 and 0.9635 (P<0.05), respectively. Furthermore, ETa was significantly positively correlated with temperature, solar radiation, and wind speed, and negatively correlated with relative humidity and precipitation (P<0.05); and temperature exhibited the highest correlation with ETa. Thus, ETp and temperature were the decisive contributors to ETa in this area. The findings provide an effective method for simulating regional evapotranspiration and theoretical reference for water management of artificial forests, and deepen understanding of effects of each influence factors on ETa in arid areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Combined effects of polymer SH and ryegrass on the water-holding characteristics of loess
YING Chunye, LI Chenglong, LI Lanxing, ZHOU Chang
Journal of Arid Land    2024, 16 (12): 1686-1700.   DOI: 10.1007/s40333-024-0089-9
Abstract65)   HTML3)    PDF(pc) (1124KB)(12)       Save

The Chinese Loess Plateau has long been plagued by severe soil erosion and water scarcity. In this study, we proposed a technique involving the combined use of polymer SH and ryegrass and evaluated its effectiveness in modifying the water-holding characteristics of loess on the Chinese Loess Plateau (Chinese loess). We analysed the volumetric water content and water potential of untreated loess, treated loess with single polymer SH, treated loess with single ryegrass, and treated loess with both polymer SH and ryegrass using the loess samples collected from the Chinese Loess Plateau in July 2023. Moreover, fractal theory was used to analyse the fractal characteristics of the soil structure, and wet disintegration tests were conducted to assess the structural stability of both untreated and treated loess samples. The results showed that the loess samples treated with both polymer SH and ryegrass presented much higher volumetric water content and water potential than the untreated loess samples and those treated only with ryegrass or polymer SH. Moreover, the planting density of ryegrass affected the combined technique, since a relatively low planting density (20 g/m2) was conducive to enhancing the water-holding capacity of Chinese loess. The fractal dimension was directly correlated with both volumetric water content and water potential of Chinese loess. Specifically, since loess treated with both polymer SH and ryegrass was more saturated with moisture, its water potential increased, thus improving its water-holding capacity and fractal dimension. The combined technique better resisted disintegration than ryegrass alone but had slightly less resistance than polymer SH alone. This study provides insight into soil reinforcement and soil water management using polymetric materials and vegetation on the Chinese Loess Plateau.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Response of precipitation isotopes and water vapor sources to regional climate change on the Gannan Plateau, China
CHEN Fenli, KANG Nan, WANG Shengjie, GAO Minyan, ZHANG Qiuyan, LI Huizhen, YAO Yiwen
Journal of Arid Land    2025, 17 (4): 440-456.   DOI: 10.1007/s40333-025-0077-8
Abstract63)   HTML5)    PDF(pc) (3409KB)(35)       Save

Precipitation isotopes (δ18O and δ2H) are closely related to meteorological conditions for precipitation generation and the initial state of water vapor source areas, and are essential to the study of the regional hydrological cycle. The deuterium excess (d-excess) indicates deviation in isotope fractionation during evaporation and can trace water vapor sources. This study analyzed 443 precipitation samples collected from the Gannan Plateau, China in 2022 to assess precipitation isotope variations and their driving factors. Water vapor sources were evaluated using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT), Concentration Weighted Trajectory (CWT), and Potential Source Contribution Factor (PSCF) models. Results showed that precipitation isotope values showed significant spatial and temporal variations on the Gannan Plateau. Temporally, precipitation isotope values peaked in June (when evaporation dominated) and minimized in March (depletion effect of air masses in the westerly wind belt). Spatially, the isotope values showed a distribution pattern of "high in the east and low in the west", which was mainly regulated by the differences in altitude and local meteorological conditions. Compared with the global meteoric water line (GMWL) with equation of δ2H=8.00δ18O+10.00, the slope and intercept of local meteoric water line (LMWL) for precipitation on the Gannan Plateau were smaller (7.49 and 7.63, respectively), reflecting the existence of a stronger secondary evaporation effect under the clouds in the region. The sources of water vapor on the Gannan Plateau showed significant seasonality and spatial heterogeneity. Specifically, the westerly belt and monsoon were the main water vapor transport paths at each sampling point, with Central Asian continental water vapor dominating in spring (53.49%), Indian Ocean water vapor dominating in summer (52.53%), Atlantic Ocean water vapor dominating in autumn (46.74%), and Atlantic Ocean and Mediterranean Sea water vapor dominating in winter (42.30% and 33.68%, respectively). Changes in the intensity of convective activity and Outgoing Longwave Radiation (OLR) affected the enrichment of isotopic values, which exhibited the same change trends as δ18O. During the precipitation process, the δ18O value first decreased and then increased. During the initial and final stages of precipitation process, precipitation was mainly influenced by continental air masses, while during the middle stage, it was controlled by marine air masses. The systematic research on precipitation isotopes and water vapor sources is important for climate change research and extreme precipitation prediction on the Gannan Plateau and other similar areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Mechanical properties and enhanced soil shear strength of herbaceous plant roots in the alpine meadow layer of the permafrost region on the Qinghai-Xizang Plateau, China
HE Dequan, LU Haijing, HU Xiasong, WANG Cheng, LIU Changyi, ZHAO Yingxiao, LI Shuaifei, DENG Taiguo
Journal of Arid Land    2025, 17 (4): 515-537.   DOI: 10.1007/s40333-025-0051-5
Abstract63)   HTML4)    PDF(pc) (1655KB)(19)       Save

The Qinghai-Xizang Plateau of China faces challenges like thaw slumping, threatening slope stability and infrastructure. Understanding the mechanical properties of the roots of the dominant herbaceous plant species in the alpine meadow layer of the permafrost regions on the Qinghai-Xizang Plateau is essential for evaluating their role in enhancing soil shear strength and mitigating slope deformation in these fragile environments. In this study, the roots of four dominant herbaceous plant species—Kobresia pygmaea, Kobresia humilis, Carex moorcroftii, and Leontopodium pusillum—that are widely distributed in the permafrost regions of the Qinghai-Xizang Plateau were explored to determine their mechanical properties and effects in enhancing soil shear strength. Through indoor single root tensile and root group tensile tests, we determined the root diameter, tensile force, tensile strength, tensile ratio, and strength frequency distributions. We also evaluated their contributions to inhibiting slope deformation and failure during the formation and development of thermal thaw slumps in the alpine meadow. The results showed that the distribution of the root diameter of the dominant plant species is mostly normal, while the tensile strength tends to be logarithmically normally distributed. The relationship between the root diameter and root tensile strength conforms to a power function. The theoretical tensile strength of the root group was calculated using the Wu-Waldron Model (WWM) and the Fiber Bundle Model (FBM) under the assumption that the cumulative single tensile strength of the root bundle is identical to the tensile strength of the root group in the WWM. The FBM considers three fracture modes: FBM-D (the tensile force on each single root is proportional to its diameter relative to the total sum of all the root diameters), FBM-S (the cross-sectional stress in the root bundle is uniform), and FBM-N (each tensile strength test of individual roots experiences an equal load). It was found that the model-calculated tensile strength of the root group was 162.60% higher than the test value. The model-derived tensile force of the root group from the FBM-D, FBM-S, and FBM-N was 73.10%, 28.91%, and 13.47% higher than the test values, respectively. The additional cohesion of the soil provided by the roots was calculated to be 25.90-45.06 kPa using the modified WWM, 67.05-38.15 kPa using the FBM-S, and 57.24-32.74 kPa using the FBM-N. These results not only provide a theoretical basis for further quantitative evaluation of the mechanical effects of the root systems of herbaceous plant species in reinforcing the surface soil but also have practical significance for the effective prevention and control of thermal thaw slumping disasters in the permafrost regions containing native alpine meadows on the Qinghai-Xizang Plateau using flexible plant protection measures.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Mechanical properties of surface soil in alpine meadow and its relationship with soil cracking in Qinghai Province, China
ZHANG Hailong, ZHU Haili, WU Yuechen, XU Pengkai, HONG Chenze, LIU Yabin, LI Guorong, HU Xiasong
Journal of Arid Land    2025, 17 (5): 644-663.   DOI: 10.1007/s40333-025-0100-0
Abstract63)   HTML4)    PDF(pc) (2621KB)(11)       Save

Surface soil cracking in alpine meadows signifies the transition of degradation from quantitative accumulation to qualitative deterioration. Quantitative research remains insufficient regarding changes in the mechanical properties of degraded meadow soils and the mechanical thresholds for cracking initiation. This study explored the relationships between surface cracking and the physical properties, tensile strength, and matrix suction of root-soil composites in alpine meadow sites with different stages of degradation (undegraded (UD), lightly degraded (LD), moderately degraded (MD), and heavily degraded (HD)) under different water gradients (high water content (HWC), medium water content (MWC), and low water content (LWC)) corresponding to different drying durations at a constant temperature of 40.0°C. The Huangcheng Mongolian Township in Menyuan Hui Autonomous County, Qinghai Province, China was chosen as the study area. The results indicated that as the degradation degree of alpine meadow intensified, both water content of root-soil composite and the fine grain content of soil decreased. In contrast, the root-soil mass ratio and root area ratio initially increased and then decreased with progressive degradation. Under a consistent water content, the tensile strength of root-soil composite followed a pattern of MD>HD>LD>UD. The peak displacement of tensile strength also decreased as the degradation degree of alpine meadow increased. Both the tensile strength and matrix suction of root-soil composite increased as root-soil water content decreased. A root-soil water content of 30.00%-40.00% was found to be the critical threshold for soil cracking in alpine meadows. Within this range, the matrix suction of root-soil composite ranged from 50.00 to 100.00 kPa, resulting in the formation of linear cracks in the surface soil. As the root-soil water content continued to decrease, liner cracks evolved into branch-like and polygonal patterns. The findings of this study provide essential data for improving the mechanical understanding of grassland cracking and its development process.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Diversity and plant growth-promoting properties of culturable bacteria associated with three halophytes in an arid land, Northwest China
HUANG Yin, ZHANG Xiaoye, MA Jinbiao, JIAO Haocheng, Murad MUHAMMAD, Rashidin ABDUGHENI, Vyacheslav SHURIGIN, Dilfuza EGAMBERDIEVA, LI Li
Journal of Arid Land    2025, 17 (5): 696-713.   DOI: 10.1007/s40333-025-0015-9
Abstract62)   HTML3)    PDF(pc) (1256KB)(14)       Save

Salt-tolerant bacteria associated with halophytes enhance plant resistance and adaptation to environmental stress. The purpose of this study was to investigate the diversity and plant-beneficial traits of bacteria associated with three halophytes in an arid land, Northwest China. The bacterial strains were isolated from the roots, shoots, rhizosphere, and bulk soil of three halophytes, i.e., Salicornia europaea L., Kalidium foliatum (Pall.) Moq., and Suaeda aralocaspica (Bunge) Freitag & Schütze, collected from the saline soils near to the Wujiaqu City, Xinjiang, Northwest China. A total of 567 strains were isolated and identified from these three halophytes belonging to 4 phyla, 6 classes, 25 orders, 36 families, and 66 genera, including 147 potential novel species. A total of 213 strains exhibited one or more plant growth- promoting properties, while 20 strains demonstrated multiple in vitro plant growth-promoting activities, including phosphate solubilization, nitrogen fixation, siderophore production, and production of hydrolytic enzymes such as protease and cellulase. Our findings showed that halophytes in the arid land harbor diverse bacteria with the potential to enhance plant growth and adaptability under challenging environmental conditions.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Improving the livelihoods of local communities in degraded desert regions through afforestation with Moringa peregrina trees to combat desertification
Ghasem GHOOHESTANI, Masoumeh SALEHI MOURKANI, Salman ZARE, Hamed RAFIE, Emad A FARAHAT, Farhad SARDARI, Ali ASADI
Journal of Arid Land    2025, 17 (5): 664-679.   DOI: 10.1007/s40333-025-0079-6
Abstract61)   HTML2)    PDF(pc) (1231KB)(4)       Save

Climate change and human activities have led to desertification and decreased land productivity, significantly affecting human livelihoods in desert regions. Identifying suitable areas for cultivating economic and native plants based on ecological capacity, biological restoration, and risk management can be valuable tools for combating desertification. In this study, we identified suitable areas for the growth of economic and medicinal Moringa peregrina trees in desert regions of Sistan and Baluchestan Province, southern Iran, using library research and field methods. We also assessed the economic involvement of local communities in areas under different topographic conditions (namely flat area, undulating area, rolling area, moderately sloping area, and steep area) in the study area. Financial indicators such as the net present value (NPV), benefit-cost ratio (BCR), internal rate of return (IRR), and return on investment (ROI) were calculated for areas under various topographic conditions in the study area. The rolling area with results of NPV (6142.75 USD), IRR (103.38), BCR (5.38), and ROI (in the 3rd year) was the best region for investing and cultivating M. peregrina. The minimum economic level varied from 0.80 hm2 in the flat area to 21.60 hm2 in the steep area. Also, approximately 5,314,629.51 hm2 of desert lands in the study area were deemed suitable for M. peregrina cultivation, benefiting around 1,743,246 households in the study area. Cultivating M. peregrina in southern Iran can positively affect local communities and help preserve land from erosion. Our study will provide theoretical support for planting native species in other degraded desert regions to enhance ecosystem services and the well-being of indigenous populations.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effects of film-stalk spaced dual mulching system on corn growth and yield
CAO Jinjun, SUN Yaqi, PENG Shuili, LI Wanxing, HE Xiaobing, LI Xiaoxia, LI Dan, JIN Kunpeng, YANG Yi, LIU Yongzhong
Journal of Arid Land    2024, 16 (12): 1714-1729.   DOI: 10.1007/s40333-024-0035-x
Abstract61)   HTML2)    PDF(pc) (2335KB)(12)       Save

Film-stalk spaced dual mulching is a new type of cultivation measure that is increasingly highlighted in semi-arid areas in China. Despite its potential, there is limited understanding of how different mulching materials affect both soil quality and crop yield in these areas. To address this gap, we conducted a two-year (2020-2021) field experiment in central China to explore the yield-enhancing mechanisms and assess the impact of various mulching materials on soil and corn yield. The experiment comprised six treatments, i.e., plastic film-whole stalk spaced mulching in fall (PSF), plastic film-whole stalk spaced mulching in spring (PSS), black and silver plastic film-whole stalk spaced mulching in spring (BPSS), biodegradable film-whole stalk spaced mulching in spring (BSS), liquid film-whole stalk spaced mulching in spring (LSS), and non-mulching cultivation (CK). Results revealed that BPSS demonstrated the most significant yield increase, surpassing CK by a notable 10.0% and other mulching treatments by 2.4%-5.9%. The efficacy of BPSS lied in its provision of favorable hydrothermal conditions for corn cultivation, particularly during hot season. Its cooling effect facilitated the establishment of optimal temperature conditions relative to transparent mulching, leading to higher root growth indices (e.g., length and surface area), as well as higher leaf photosynthetic rate and dry matter accumulation per plant. Additionally, BPSS maintained higher average soil moisture content within 0-100 cm depth compared with biodegradable mulching and liquid mulching. As a result, BPSS increased activities of urease, catalase, and alkaline phosphatase, as well as the diversity and abundance of soil bacteria and fungi in the rhizosphere zone of corn, facilitating nutrient accessibility by the plant. These findings suggest that selecting appropriate mulching materials is crucial for optimizing corn production in drought-prone areas, highlighting the potential of BPSS cultivation.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Properties, challenges, and opportunities of the loess plains in the northern Negev Desert: A review
Ilan STAVI, Gal KAGAN, Sivan ISAACSON
Journal of Arid Land    2025, 17 (6): 715-734.   DOI: 10.1007/s40333-025-0053-3
Abstract60)   HTML4)    PDF(pc) (1558KB)(36)       Save

The loess plains cover approximately 2000.00 km2 of the northern Negev Desert, accounting for about 9% of Israel's total land area. As elsewhere, the loess in the Negev Desert is composed of wind-transported dust and sand particles that have been deposited in sink sites. The loess deposits are characteristically covered by biocrusts, which constitute a substantial share of the region's primary productivity. The biocrusts regulate the vascular vegetation communities, including herbaceous and woody plants, many of which are endemic and/or endangered plant species. Throughout history, the region's main land-uses have been based on extensive livestock grazing and runoff-harvesting agriculture, which both still exist to some extent. These land-uses did not challenge the sustainability of the geo-ecosystems over centuries and millennia. At present, predominant land-uses include intensive rangelands (1016.81 km2, encompassing 51% of the loess plains' area), croplands (encompassing both rainfed and irrigated cropping systems: 930.92 km2, 47% of the loess plains' area), and afforestation lands (158.75 km2). These current land-uses impose substantial challenges to the functioning of the loess plains. Further, urban and rural settlements have expanded considerably in the last decades (158.45 km2), accompanied by mass construction of infrastructures. Altogether, these new land-uses have caused widespread soil erosion, soil structure deformation, depletion of soil organic carbon, environmental contamination, native vegetation removal, invasion of plant species, and habitat fragmentation. Recent climate change has intensified these stressors, exacerbating adverse impacts and forming feedback loops that intensify land degradation and desertification. The declining ecosystem functioning over recent decades emphasizes the urgent need for passive and active restoration schemes. While some of these efforts have proven to be successful, other have failed. Therefore, proactive policy making and environmental legislation are needed to plan and develop schemes aimed at halting land degradation, while simultaneously maximizing nature conservation and restoration of degraded lands across the loess plains. Such actions are expected to increase the regions' capacity for climate change mitigation and adaptation.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Construction and optimization of ecological security pattern in the mainstream of the Tarim River Basin, China
QIN Xiaolin, LIU Wei, LING Hongbo, ZHANG Guangpeng, GONG Yanming, MENG Xiangdong, SHAN Qianjuan
Journal of Arid Land    2025, 17 (6): 735-753.   DOI: 10.1007/s40333-025-0102-y
Abstract60)   HTML7)    PDF(pc) (2180KB)(47)       Save

Scientifically constructing an ecological security pattern (ESP) is an important spatial analysis approach to improve ecological functions in arid areas and achieve sustainable development. However, previous research methods ignored the complex trade-offs between ecosystem services in the process of constructing ESP. Taking the mainstream of the Tarim River Basin (MTRB), China as the study area, this study set seven risk scenarios by applying Ordered Weighted Averaging (OWA) model to trade-off the importance of the four ecosystem services adopted by this study (water conservation, carbon storage, habitat quality, and biodiversity conservation), thereby identifying priority protection areas for ecosystem services. And then, this study identified ecological sources by integrating ecosystem service importance with eco-environmental sensitivity. Using circuit theory, the ecological corridors and nodes were extracted to construct the ESP. The results revealed significant spatial heterogeneity in the four ecosystem services across the study area, primarily driven by hydrological gradients and human activity intensity. The ESP of the MTRB included 34 ecological sources with a total area of 1471.38 km², 66 ecological corridors with a length of about 1597.45 km, 11 ecological pinch points, and 13 ecological barrier points distributed on the ecological corridors. The spatial differentiation of the ESP was obvious, with the upper and middle reaches of the MTRB having a large number of ecological sources and exhibiting higher clustering of ecological corridors compared with the lower reaches. The upper and middle reaches require ecological protection to sustain the existing ecosystem, while the lower reaches need to carry out ecological restoration measures including desertification control. Overall, this study makes up for the shortcomings of constructing ESP simply by spatial superposition of ecosystem service functions and can effectively improve the robustness and stability of ESP construction.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatiotemporal dynamics of vegetation response to permafrost degradation in Northeast China
QIU Lisha, SHAN Wei, GUO Ying, ZHANG Chengcheng, LIU Shuai, YAN Aoxiang
Journal of Arid Land    2024, 16 (11): 1562-1583.   DOI: 10.1007/s40333-024-0088-x
Abstract59)   HTML3)    PDF(pc) (4130KB)(29)       Save

Permafrost in Northeast China is undergoing extensive and rapid degradation, and it is of great importance to understand the dynamics of vegetation response to permafrost degradation during different periods in this region. Based on the meteorological station data and MODIS land surface temperature data, we mapped the distribution of permafrost using the surface frost number (SFN) model to analyze the permafrost degradation processes in Northeast China from 1981 to 2020. We investigated the spatiotemporal variation characteristics of vegetation and its response to permafrost degradation during different periods from 1982 to 2020 using the normalized difference vegetation index (NDVI). We further discussed the dominant factors influencing the vegetation dynamics in the permafrost degradation processes. Results indicated that the permafrost area in Northeast China decreased significantly by 1.01×105 km2 in the past 40 a. The permafrost stability continued to weaken, with large areas of stable permafrost (SP) converted to semi-stable permafrost (SSP) and unstable permafrost (UP) after 2000. From 1982 to 2020, NDVI exhibited a significant decreasing trend in the seasonal frost (SF) region, while it exhibited an increasing trend in the permafrost region. NDVI in the UP and SSP regions changed from a significant increasing trend before 2000 to a nonsignificant decreasing trend after 2000. In 78.63% of the permafrost region, there was a negative correlation between the SFN and NDVI from 1982 to 2020. In the SP and SSP regions, the correlation between the SFN and NDVI was predominantly negative, while in the UP region, it was predominantly positive. Temperature was the dominant factor influencing the NDVI variations in the permafrost region from 1982 to 2020, and the impact of precipitation on NDVI variations increased after 2000. The findings elucidate the complex dynamics of vegetation in the permafrost region of Northeast China and provide deeper insights into the response mechanisms of vegetation in cold regions to permafrost degradation induced by climate change.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Non-stationary characteristics and causes of extreme precipitation in a desert steppe in Inner Mongolia, China
LI Wei, WANG Yixuan, DUAN Limin, TONG Xin, WU Yingjie, ZHAO Shuixia
Journal of Arid Land    2025, 17 (5): 590-604.   DOI: 10.1007/s40333-025-0078-7
Abstract58)   HTML4)    PDF(pc) (1553KB)(32)       Save

Recent years have witnessed increasingly frequent extreme precipitation events, especially in desert steppes in the semi-arid and arid transition zone. Focusing on a desert steppe in western-central Inner Mongolia Autonomous Region, China, this study aimed to determine the principle time-varying pattern of extreme precipitation and its dominant climate forcings during the period 1988-2017. Based on the generalized additive models for location, scale, and shape (GAMLSS) modeling framework, we developed the best time-dependent models for the extreme precipitation series at nine stations, as well as the optimized non-stationary models with large-scale climate indices (including the North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO), Southern Oscillation (SO), Pacific Decadal Oscillation (PDO), Arctic Oscillation (AO), and North Pacific Oscillation (NPO)) as covariates. The results indicated that extreme precipitation remained stationary at more than half of the stations (Hailisu, Wuyuan, Dengkou, Hanggin Rear Banner, Urad Front Banner, and Yikewusu), while linear and non-linear time-varying patterns were quantitatively identified at the other stations (Urad Middle Banner, Linhe, and Wuhai). These non-stationary behaviors of extreme precipitation were mainly reflected in the mean value of extreme precipitation. The optimized non-stationary models performed best, indicating the significant influences of large-scale climate indices on extreme precipitation. In particular, the NAO, NPO, SO, and AMO remained as covariates and significantly influenced the variations in the extreme precipitation regime. Our findings have important reference significance for gaining an in-depth understanding of the driving mechanism of the non-stationary behavior of extreme precipitation and enable advanced predictions of rainstorm risks.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Dynamic evolution of the NDVI and driving factors in the Mu Us Sandy Land of China from 2002 to 2021
CHAO Yan, ZHU Yonghua, WANG Xiaohan, LI Jiamin, LIANG Li'e
Journal of Arid Land    2025, 17 (5): 605-623.   DOI: 10.1007/s40333-025-0052-4
Abstract58)   HTML4)    PDF(pc) (3439KB)(21)       Save

Investigating the spatiotemporal evolution of vegetation and its response mechanisms to natural and anthropogenic elements is crucial for regional vegetation restoration and ecological preservation. The Mu Us Sandy Land (MUSL), which is situated in the semi-arid zone of northwestern China adjacent to the Loess Plateau, has been at the forefront of desertification and oasis formation over the past two millennia. This study is based on the synthesis of the Normalized Difference Vegetation Index (NDVI) data from MOD13A3 data in the MODIS (Moderate-Resolution Imaging Spectroradiometer) dataset (2002-2021) and climate data (temperature and precipitation) at annual and monthly scales from the National Earth System Science Data Center. A range of analytical methods, including univariate linear regression, Theil-Sen trend analysis and Mann-Kendall significance test, correlation analysis, residual analysis, and Hurst index, were used to explore the response mechanisms of the NDVI to climate change and human activities and to predict the future trends of the NDVI in the MUSL. The results showed that through the method of correlation analysis, in terms of both spatially averaged correlation coefficients and area proportion, the NDVI was positively correlated with temperature and precipitation in 97.59% and 96.51% of the study area, respectively, indicating that temperature has a greater impact on the NDVI than precipitation. Residual analysis quantified the contributions of climate change and human activities to the NDVI changes, revealing that climate change and human activities contribute up to 30.00% and 70.00%, respectively, suggesting that human activities predominantly affect the NDVI changes in the MUSL. The Hurst index was used to categorize the future trend of the NDVI into four main directions of development: continuous degradation (0.05% of the study area), degradation in the past but improvement in the future (54.45%), improvement in the past but degradation in the future (0.13%), and continuous improvement (45.36%). In more than 50.00% of the regions that have been degraded in the past but were expected to improve in the future, the NDVI was expected to exhibit a stable trend of anti-persistent improvement. These findings provide theoretical support for future ecological protection, planning, and the implementation of ecological engineering in the MUSL, and also offer a theoretical basis for the planning and execution of construction projects, environmental protection measures, and the sustainable development of vegetation.

Table and Figures | Reference | Related Articles | Metrics | Comments0