Geography, geology and natural resources in Central Asia (Guest Editorial Board Member: Prof. Dr. XIAO Wenjiao)
Neoproterozoic I-type granites in the Central Tianshan Block (NW China): geochronology, geochemistry, and tectonic implications
SONG Yujia1, LIU Xijun1,2,3,*(), XIAO Wenjiao2, ZHANG Zhiguo1, LIU Pengde1, XIAO Yao1, LI Rui1, WANG Baohua1, LIU Lei1,3, HU Rongguo1
1Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration, College of Earth Sciences, Guilin University of Technology, Guilin 541004, China 2Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China 3Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resource, Guilin University of Technology, Guilin 541004, China
The Central Tianshan Block is one of numerous microcontinental blocks within the Central Asian Orogenic Belt (CAOB) that overlies Precambrian basement rocks. Constraining the evolution of these ancient basement rocks is central to understanding the accretionary and collisional tectonics of the CAOB, and their place within the Rodinia supercontinent. However, to date, the timing and tectonic settings in which the basement rocks in the Central Tianshan Block formed are poorly constrained, with only sparse geochemical and geochronological data from granitic rocks within the northern segment of the block. Here, we present a systematic study combining U-Pb geochronology, whole-rock geochemistry, and the Sr-Nd isotopic compositions of newly-identified granitic gneisses from the Bingdaban area of Central Tianshan Block. The analyzed samples yield a weighted mean Neoproterozoic 206Pb/238U ages of 975-911 Ma. These weakly-peraluminous granitic rocks show a common geochemical I-type granite affinity. The granitic gneisses are calc-alkaline and enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), but they are depleted in high field strength elements (HFSEs); these characteristics are similar to those of typical subduction-related magmatism. All samples show initial (87Sr/86Sr)(t) ratios between 0.705136 and 0.706745. Values for ƐNd(t) in the granitic gneisses are in the range from -5.7 to -1.2, which correspond to Nd model ages of 2.0-1.7 Ga, indicating a role for Mesoproterozoic to Paleoproterozoic rocks in the generation of the granitic protoliths. The documented geochemical features indicate that the protoliths for the gneisses have a similar petrogenesis and magmatic source, which may reflect partial melting of thickened crust with the addition of small amounts of mantle-derived material. The Central Tianshan Block probably constitute part of an exterior orogen that developed along the margin of the Rodinian supercontinent during the Early Neoproterozoic and underwent a transition from subduction to syn-collision compression at 975-911 Ma.
SONG Yujia, LIU Xijun, XIAO Wenjiao, ZHANG Zhiguo, LIU Pengde, XIAO Yao, LI Rui, WANG Baohua, LIU Lei, HU Rongguo. Neoproterozoic I-type granites in the Central Tianshan Block (NW China): geochronology, geochemistry, and tectonic implications. Journal of Arid Land, 2022, 14(1): 82-101.
Fig. 1Geological map of the Central Tianshan Block and adjacent regions (a), and tectonic map of the Central Asian Orogenic Belt (b) as well as sample locations (c). CTB, Central Tianshan Block; KYB, Kazakhstan-Yili Block; NTB, North Tianshan Belt; STB, South Tianshan Belt (modified after Gao et al. (2015) and Liu et al. (2020)).
Fig. 2Simplified geologic map of the Bingdaban area, Central Tianshan Block (modified after Yang et al. (2008) and Liu et al. (2020))
Fig. 3Field and petrographic photographs of the studied Neoproterozoic granitic gneisses in the Bingdaban area. (a), field photograph; (b), hand specimens; (c)-(d), photomicrographs. Qtz, Quartz; Pl, Plagioclase; Bt, Biotite.
Sample spot
Th (10-6)
U (10-6)
Th/ U
Isotopic ratio
Age (Ma)
207Pb/ 206Pb
±1σ
207Pb/ 235U
±1σ
206Pb/ 238U
±1σ
207Pb/ 206Pb
±1σ
207Pb/ 235U
±1σ
206Pb/ 238U
±1σ
Sample BD-01-18
01
833
5167
0.16
0.0708
0.0009
1.6045
0.0262
0.1637
0.0015
954
25
972
10
977
9
02
1051
7802
0.13
0.0698
0.0009
1.5692
0.0268
0.1627
0.0017
924
27
958
11
972
9
03
351
6771
0.05
0.0712
0.0011
1.6006
0.0290
0.1628
0.0016
963
31
970
11
972
9
04
1007
3442
0.29
0.0667
0.0015
1.4980
0.0352
0.1618
0.0018
828
46
930
14
967
10
05
153
624
0.25
0.0675
0.0018
1.5425
0.0434
0.1658
0.0021
854
56
948
17
989
11
06
497
2238
0.22
0.0695
0.0014
1.5588
0.0382
0.1615
0.0019
915
47
954
15
965
11
07
987
10,876
0.09
0.0717
0.0014
1.6177
0.0382
0.1630
0.0023
989
39
977
15
974
12
08
1032
5441
0.19
0.0747
0.0017
1.7052
0.0421
0.1652
0.0017
1061
46
1010
16
986
10
09
2281
7064
0.32
0.0731
0.0013
1.6637
0.0384
0.1645
0.0024
1017
32
995
15
982
13
10
636
1622
0.39
0.0723
0.0017
1.6264
0.0388
0.1629
0.0018
994
47
980
15
973
10
Sample BD-06-18
01
330
9571
0.03
0.0738
0.0025
1.5996
0.0448
0.1585
0.0028
1037
67
970
18
948
16
02
739
13,358
0.06
0.0686
0.0013
1.5346
0.0331
0.1612
0.0019
887
40
944
13
963
10
03
601
3840
0.16
0.0676
0.0018
1.4961
0.0422
0.1591
0.0020
855
55
929
17
952
11
04
1985
9660
0.21
0.0686
0.0016
1.5409
0.0373
0.1620
0.0019
887
47
947
15
968
11
05
613
3185
0.19
0.0714
0.0016
1.5762
0.0409
0.1591
0.0022
969
47
961
16
952
12
06
958
6379
0.15
0.0695
0.0016
1.5319
0.0390
0.1589
0.0021
915
48
943
16
951
12
07
1050
3678
0.29
0.0678
0.0015
1.4934
0.0354
0.1589
0.0018
861
44
928
14
951
10
08
605
3224
0.19
0.0671
0.0014
1.4759
0.0348
0.1586
0.0018
843
44
921
14
949
10
09
324
6249
0.05
0.0690
0.0016
1.5170
0.0458
0.1592
0.0036
898
48
937
18
952
20
10
510
8641
0.06
0.0709
0.0015
1.5589
0.0359
0.1588
0.0016
954
44
954
14
950
9
11
1075
6424
0.17
0.0702
0.0017
1.5807
0.0406
0.1626
0.0020
1000
48
963
16
971
11
12
536
3584
0.15
0.0660
0.0018
1.4514
0.0411
0.1589
0.0021
807
56
910
17
951
12
13
279
1944
0.14
0.0674
0.0032
1.4266
0.0618
0.1551
0.0025
850
98
900
26
929
14
14
855
6150
0.14
0.0669
0.0016
1.4688
0.0364
0.1589
0.0019
835
49
918
15
951
11
15
560
16,520
0.03
0.0665
0.0014
1.4306
0.0372
0.1553
0.0027
833
39
902
16
931
15
16
506
7731
0.07
0.0658
0.0014
1.4460
0.0346
0.1590
0.0023
798
44
908
14
951
13
17
2874
7997
0.36
0.0660
0.0014
1.4514
0.0356
0.1590
0.0024
806
44
910
15
951
13
18
362
5416
0.07
0.0630
0.0014
1.3894
0.0401
0.1588
0.0030
709
46
884
17
950
17
19
409
5139
0.08
0.0707
0.0015
1.5532
0.0363
0.1588
0.0020
950
44
952
14
950
11
20
678
4453
0.15
0.0674
0.0017
1.5004
0.0388
0.1611
0.0021
852
52
931
16
963
12
21
650
2156
0.30
0.0677
0.0021
1.4826
0.0462
0.1587
0.0021
861
65
923
19
950
11
22
607
1743
0.35
0.0672
0.0022
1.4931
0.0502
0.1612
0.0023
856
67
928
20
964
13
23
950
6663
0.14
0.0671
0.0014
1.4762
0.0356
0.1590
0.0023
843
43
921
15
951
13
24
763
7414
0.10
0.0667
0.0013
1.4362
0.0319
0.1559
0.0019
828
45
904
13
934
11
25
451
4732
0.10
0.0661
0.0012
1.4480
0.0306
0.1588
0.0019
809
44
909
13
950
11
26
2977
9476
0.31
0.0675
0.0012
1.4795
0.0304
0.1587
0.0018
854
42
922
12
949
10
27
709
2595
0.27
0.0686
0.0016
1.4998
0.0389
0.1587
0.0020
887
82
930
16
950
11
28
377
16,764
0.02
0.0686
0.0012
1.5018
0.0325
0.1588
0.0020
887
37
931
13
950
11
29
1719
10,931
0.16
0.0686
0.0014
1.5505
0.0357
0.1630
0.0018
887
43
951
14
974
10
30
359
9742
0.04
0.0689
0.0014
1.5157
0.0374
0.1588
0.0024
894
44
937
15
950
13
31
694
3330
0.21
0.0687
0.0016
1.5585
0.0426
0.1630
0.0023
900
48
954
17
973
13
32
1694
6807
0.25
0.0693
0.0017
1.5252
0.0399
0.1588
0.0019
907
56
941
16
950
11
33
2182
7524
0.29
0.0690
0.0017
1.5258
0.0416
0.1589
0.0021
898
50
941
17
951
12
Sample spot
Th (10-6)
U (10-6)
Th/ U
Isotopic ratio
Age (Ma)
207Pb/ 206Pb
±1σ
207Pb/ 235U
±1σ
206Pb/ 238U
±1σ
207Pb/ 206Pb
±1σ
207Pb/ 235U
±1σ
206Pb/ 238U
±1σ
Sample BD-46-18
01
1012
3661
0.28
0.0702
0.0017
1.4782
0.0451
0.1519
0.0027
1000
51
921
18
911
15
02
397
3350
0.12
0.0741
0.0023
1.5592
0.0535
0.1515
0.0026
1044
58
954
21
910
15
03
1435
6293
0.23
0.0711
0.0017
1.4983
0.0404
0.1515
0.0020
961
50
930
16
909
11
04
488
2787
0.18
0.0700
0.0019
1.4765
0.0425
0.1516
0.0020
929
56
921
17
910
11
05
577
3918
0.15
0.0662
0.0017
1.4019
0.0402
0.1516
0.0024
813
50
890
17
910
14
06
411
3481
0.12
0.0688
0.0018
1.4625
0.0424
0.1518
0.0024
892
54
915
17
911
14
07
469
3019
0.16
0.0690
0.0012
1.4507
0.0296
0.1519
0.0015
900
38
910
12
911
9
08
403
4058
0.10
0.0690
0.0012
1.4496
0.0289
0.1518
0.0015
900
69
910
12
911
9
09
315
3412
0.09
0.0726
0.0018
1.5150
0.0374
0.1516
0.0020
1003
50
936
15
910
11
10
609
5710
0.11
0.0700
0.0016
1.4673
0.0490
0.1516
0.0040
928
47
917
20
910
22
11
457
3872
0.12
0.0702
0.0011
1.4746
0.0280
0.1517
0.0014
1000
33
920
11
910
8
12
1312
2902
0.45
0.0690
0.0018
1.4458
0.0327
0.1531
0.0019
898
53
908
14
918
11
13
362
2747
0.13
0.0678
0.0013
1.4264
0.0325
0.1519
0.0018
861
41
900
14
912
10
14
737
2481
0.30
0.0681
0.0014
1.4290
0.0303
0.1517
0.0016
872
45
901
13
911
9
15
252
1892
0.13
0.0699
0.0015
1.4681
0.0357
0.1515
0.0015
928
46
917
15
910
9
16
641
2534
0.25
0.0683
0.0012
1.4326
0.0297
0.1516
0.0017
880
37
903
12
910
9
17
739
4140
0.18
0.0696
0.0014
1.4575
0.0328
0.1515
0.0019
917
45
913
14
909
10
18
2718
5361
0.51
0.0716
0.0016
1.5030
0.0387
0.1517
0.0020
973
46
932
16
911
11
19
1084
5033
0.22
0.0695
0.0013
1.4598
0.0316
0.1517
0.0015
917
39
914
13
910
9
20
796
5149
0.15
0.0705
0.0015
1.4765
0.0340
0.1516
0.0016
943
43
921
14
910
9
21
617
2884
0.21
0.0719
0.0017
1.5041
0.0392
0.1518
0.0019
983
49
932
16
911
11
22
311
2349
0.13
0.0703
0.0015
1.4729
0.0364
0.1517
0.0019
1000
44
919
15
910
10
23
565
3314
0.17
0.0705
0.0013
1.4980
0.0331
0.1540
0.0019
943
44
930
13
923
10
24
540
3194
0.17
0.0707
0.0014
1.4812
0.0355
0.1516
0.0021
948
40
923
15
910
12
25
752
2950
0.26
0.0706
0.0019
1.4767
0.0431
0.1516
0.0022
946
56
921
18
910
12
26
433
2502
0.17
0.0706
0.0015
1.4826
0.0330
0.1526
0.0018
946
43
923
13
915
10
27
368
3469
0.11
0.0685
0.0012
1.4412
0.0307
0.1524
0.0018
883
32
906
13
914
10
28
226
3699
0.06
0.0746
0.0021
1.5603
0.0447
0.1517
0.0018
1057
58
955
18
910
10
29
652
3893
0.17
0.0729
0.0020
1.5259
0.0444
0.1513
0.0021
1013
49
941
18
908
12
30
1351
3107
0.43
0.0734
0.0022
1.5441
0.0497
0.1517
0.0019
1026
61
948
20
911
11
31
419
3153
0.13
0.0714
0.0023
1.4935
0.0499
0.1518
0.0023
970
67
928
20
911
13
32
218
2382
0.09
0.0719
0.0025
1.5051
0.0531
0.1521
0.0024
983
71
932
22
913
14
Table 1 LA-ICP-MS zircon U-Pb isotopic analysis of the granitic gneisses from the Bingdaban area in the Central Tianshan Block
Element
Granitic gneisses
Sample BD-01-18
Sample BD-06-18
Sample BD-46-18
Major element (%)
SiO2
70.89
69.21
70.08
TiO2
0.32
0.36
0.36
Al2O3
14.90
16.30
14.16
Fe2O3T
2.04
2.33
2.65
MnO
0.03
0.03
0.06
MgO
0.74
0.86
0.69
CaO
1.69
3.07
1.35
Na2O
4.57
4.63
3.55
K2O
3.16
2.32
4.70
P2O5
0.08
0.12
0.04
LOI
1.48
0.93
1.46
Total
99.92
100.17
99.10
FeOT/MgO
2.47
2.44
3.46
K2O/Na2O
0.69
0.50
1.32
Mg#
45.90
46.24
37.74
A/CNK
1.06
1.04
1.06
Trace element (×10-6)
Ga
44.10
31.83
30.69
Rb
42.14
32.11
92.32
Sr
87.52
141.29
50.71
Y
4.18
4.08
24.33
Zr
108.96
96.98
133.73
Nb
4.60
4.69
17.13
Ba
417.63
287.87
499.06
La
24.94
21.34
47.81
Ce
49.98
43.07
109.04
Pr
5.35
4.55
12.23
Nd
18.76
15.65
43.40
Sm
3.06
2.57
8.90
Eu
0.69
0.94
0.79
Gd
2.83
2.45
9.63
Tb
0.33
0.32
1.63
Dy
1.45
1.51
8.99
Ho
0.29
0.30
1.71
Er
0.78
0.76
4.78
Tm
0.12
0.11
0.74
Yb
0.82
0.70
5.02
Lu
0.10
0.08
0.60
Hf
4.56
4.06
7.34
Ta
0.86
0.60
4.00
Pb
18.58
33.51
66.35
Th
12.48
8.02
45.63
U
2.73
2.86
12.01
a(La/Yb)N
21.71
22.02
6.84
a(La/Sm)N
5.26
5.37
3.47
a(Gd/Yb)N
2.84
2.91
1.59
∑REE
109.52
94.32
255.27
LREE
102.78
88.11
222.17
HREE
6.74
6.22
33.10
LREE/HREE
15.25
14.17
6.71
δEu
0.71
1.14
0.26
Table 2 Major and trace element compositions of the granitic gneisses from the Bingdaban area in the Central Tianshan Block
Element
Granitic gneisses
Sample BD-01-18
Sample BD-06-18
Sample BD-46-18
Rb (×10-6)
42.10
32.10
92.30
Sr (×10-6)
87.50
141.0
40.70
Sm (×10-6)
3.06
2.57
8.90
Nd (×10-6)
18.80
15.70
43.40
87Sr/86Sr(i)
0.706745
0.706647
0.705136
147Sm/144Nd
0.100223
0.100817
0.126137
143Nd/144Nd(t)
0.511959
0.511977
0.511924
ƐNd(t)
-2.16
-1.20
-5.72
fSm/Nd
-0.49
-0.49
-0.36
TDM1 (Ma)
1606
1589
2143
TDM2 (Ma)
1730
1704
2038
Table 3 Sr-Nd isotopic analysis results of the granitic gneisses from the Bingdaban area in the Central Tianshan Block
Fig. 4Concordia diagrams showing zircon U-Pb isotopic analyses (a, c, and e) and chondrite-normalized REE patterns (b, d, and f) from the Bingdaban granitic gneisses in the Central Tianshan Block. REE, rare earth element; MSWD, mean square of weighted deviate.
Fig. 5Total-alkali versus silica diagram (Middlemost, 1994) (a), A/NK versus A/CNK diagram (b) (Maniar and Piccoli, 1989), P2O5 versus SiO2 diagram (c) (Chappell and White, 1992), and SiO2 versus K2O diagram (d) (Peccerillo and Taylor, 1976)
Fig. 6Chondrite-normalized REE (a) and primitive mantle-normalized trace element diagrams (b) for the studied granitic gneisses. Normalizing values for chondrite and primitive mantle are from Taylor and McLennan (1985) and Sun and McDonough (1989), respectively (reference data from Gao et al. (2015)). N-MORB, normal mid-ocean ridge basalt; E-MORB, enriched mid-ocean ridge basalt; OIB, ocean island basalt. Grey shaded area represents data source from Gao et al. (2015).
Fig. 7Plots of ƐNd(t) versus age for zircons from the studied granitic gneisses in the Central Tianshan Block. The granitoid or continental ''slope'' is defined with the parameter fSm/Nd=0.4 (indicating the average continental or granitoid isotopic evolution). The Tianshan dashed field represents the isotopic region of Tianshan basement rocks (reference data from the basement rocks in the northern Xinjiang; after Hu et al. (2000)). The isotope fields for the four terranes are distinguished by different colored lines. CHUR, chondritic uniform reservoir.
Fig. 8Major and trace element tectonic discrimination diagrams for the studied granitic gneisses. (a), R1 versus R2 diagram of Batchelor and Bowden (1985); (b), Nb versus Y diagram (Pearce et al., 1984). WPG, within plate granitoid; VAG, volcanic arc granitoid; Syn-COLG, syn-collision granitoid; ORG, ocean ridge granitoid. R1=1000×(4×SiO2/60.09-11×(Na2O×2/61.98+K2O×2/94.2)-2×(Fe2O3T×2/159.69+TiO2/79.9)) (Batchelor and Bowden, 1985); R2=1000×(6×CaO/56.08+2×MgO/40.3+Al2O3×2/101.96) (Batchelor and Bowden, 1985).
[1]
Alexeiev D V, Biske Y S, Wang B, et al. 2015. Tectono-Stratigraphic framework and Palaeozoic evolution of the Chinese South Tianshan. Geotectonics, 49:93-122.
doi: 10.1134/S0016852115020028
[2]
Allen M B, Windley B F, Zhang C. 1993. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, Central Asia. Tectonophysics, 220(1-4):89-115.
doi: 10.1016/0040-1951(93)90225-9
[3]
Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3):605-626.
doi: 10.1016/S0024-4937(98)00085-1
[4]
Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48(1-4):43-55.
doi: 10.1016/0009-2541(85)90034-8
[5]
Bonin B. 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97(1-2):1-29.
doi: 10.1016/j.lithos.2006.12.007
[6]
Chappell B W, White A J R. 1974. Two contrasting granite types. Pacific Geology, 8:173-174.
[7]
Chappell B W, White A J R. 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1-2):1-26.
[8]
Chappell B W. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3):535-551.
doi: 10.1016/S0024-4937(98)00086-3
[9]
Chappell B W, White A J R. 2001. Two contrasting granite types: 25 years later. Journal of the Geological Society of Australia, 48(4):489-499.
[10]
Charvet J, Shu L S, Laurent-Charvet S, et al. 2011. Paleozoic tectonic evolution of the Tianshan belt, NW China. Science China Earth Sciences, 54(2):166-184.
doi: 10.1007/s11430-010-4138-1
[11]
Chen X Y, Wang Y J, Sun L H. 2009. Zircon SHRIMP U-Pb dating of the granitic gneisses from Bingdaban and Laerdundaban (Tianshan Orogen) and their geological significances. Geochimica, 38(5):424-431. (in Chinese)
[12]
Chen Y B, Hu A Q, Zhang G X, et al. 1999. Zircon U-Pb age and its geological significance in the Duku Highway granitic gneiss in the Western Tianshan Mountains. Chinese Science Bulletin, 44(21):217-325. (in Chinese)
[13]
Coleman R G. 1989. Continental growth of northwest China. Tectonics, 8(3):621-635.
doi: 10.1029/TC008i003p00621
[14]
Collins W J, Beams S D, White A J R, et al. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80:189-200.
doi: 10.1007/BF00374895
[15]
Du L, Long X P, Yuan C, et al. 2018. Petrogenesis of Late Paleozoic diorites and A-type granites in the central Eastern Tianshan, NW China: Response to post-collisional extension triggered by slab breakoff. Lithos, 318-319:47-59.
doi: 10.1016/j.lithos.2018.08.006
[16]
Foley S F, Barth M G, Jenner G A. 2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochimica et Cosmochimica Acta, 64(5):933-938.
doi: 10.1016/S0016-7037(99)00355-5
[17]
Frost B R, Barnes C G, Collins W J, et al. 2001. Transactions of the Royal Society of Edinburgh: Earth Sciences. Journal of Petrology, 42(11):2033-2048.
doi: 10.1093/petrology/42.11.2033
[18]
Gao J, Li M S, Xiao X C, et al. 1998. Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China. Tectonophysics, 287(1-4):213-231.
doi: 10.1016/S0040-1951(97)00211-4
[19]
Gao J, Klemd R. 2003. Formation of HP-LT rocks and their tectonic implications in the western Tianshan Orogen, NW China: geochemical and age constraints. Lithos, 66(1-2):1-22.
doi: 10.1016/S0024-4937(02)00153-6
[20]
Gao J, Long L L, Klemd R, et al. 2009. Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China: geochemical and age constraints of granitoid rocks. International Journal of Earth Sciences, 98(6):1221-1238.
doi: 10.1007/s00531-008-0370-8
[21]
Gao J, Wang X S, Klemd R, et al. 2015. Record of assembly and breakup of Rodinia in the Southwestern Altaids: Evidence from Neoproterozoic magmatism in the Chinese Western Tianshan Orogen. Journal of Asian Earth Sciences, 113:173-193.
doi: 10.1016/j.jseaes.2015.02.002
[22]
Gao Z J, Peng C W. 1985. The Precambrian of Tianshan, Xinjiang. Xinjiang Geology, 3(2):14-25. (in Chinese)
[23]
Goldstein S L, O'Nions R K, Hamilton P J. 1984. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters, 70(2):221-236.
doi: 10.1016/0012-821X(84)90007-4
[24]
Han B F, He G Q, Wang X C, et al. 2011. Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China. Earth-Science Reviews, 109(3-4):74-93.
doi: 10.1016/j.earscirev.2011.09.001
[25]
He Z Y, Zhang Z M, Zong K Q, et al. 2012. Neoproterozoic granulites from the northeastern margin of the Tarim Craton: Petrology, zircon U-Pb ages and implications for the Rodinia assembly. Precambrian Research, 212-213:21-33.
doi: 10.1016/j.precamres.2012.04.014
[26]
He Z Y, Zhang Z M, Zong K Q, et al. 2014. Zircon U-Pb and Hf isotopic studies of the Xingxingxia Complex from Eastern Tianshan (NW China): Significance to the reconstruction and tectonics of the southern Central Asian Orogenic Belt. Lithos, 190-191:485-499.
doi: 10.1016/j.lithos.2013.12.023
[27]
He Z Y, Klemd R, Zhang Z M, et al. 2015. Mesoproterozoic continental arc magmatism and crustal growth in the eastern Central Tianshan Arc Terrane of the southern Central Asian Orogenic Belt: Geochronological and geochemical evidence. Lithos, 236-237:74-89.
doi: 10.1016/j.lithos.2015.08.009
[28]
Hu A Q, Zhang G X, Zhang Q F, et al. 1998. Constraints on the age of basement and crustal growth in Tianshan Orogen by Nd isotopic composition. Science in China Series D: Earth Sciences, 41(6):648-657.
[29]
Hu A Q, Jahn B M, Zhang G X, et al. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics, 328(1-2):15-51.
doi: 10.1016/S0040-1951(00)00176-1
[30]
Hu A Q, Wei G J, Deng W F, et al. 2006. 1.4 Ga SHRIMP U-Pb age for zircons of granodiorite and its geological significance from the eastern segment of the Tianshan Mountains, Xinjiang, China. Geochimica, 35(4):333-345. (in Chinese)
[31]
Hu A Q, Jian W G, Zhang J B, et al. 2008. SHRIMP U-Pb ages for zircons of the amphibolites and tectonic evolution significance from the Wenquan domain in the West Tianshan Mountains, Xinjiang, China. Acta Petrologica Sinica, 24(12):2731-2740. (in Chinese)
[32]
Hu A Q, Wei G J, Jahn B M, et al. 2010. Formation of the 0.9 Ga Neoproterozoic granitoids in the Tianshan Orogen, NW China: Constraints from the SHRIMP zircon age determination and its tectonic significance. Geochimica, 39(3):197-212. (in Chinese)
[33]
Huang B T, He Z Y, Zong K Q, et al. 2014. Zircon U-Pb and Hf isotopic study of Neoproterozoic granitic gneisses from the Alatage area, Xinjiang: constraints on the Precambrian crustal evolution in the Central Tianshan Block. Chinese Science Bulletin, 59(3):287-296.
[34]
Huang B T, He Z Y, Zhang Z M, et al. 2015a. Early Neoproterozoic granitic gneisses in the Chinese Eastern Tianshan: Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 113:339-352.
doi: 10.1016/j.jseaes.2014.08.021
[35]
Huang Z Y, Long X P, Kröner A, et al. 2015b. Neoproterozoic granitic gneisses in the Chinese Central Tianshan Block: Implications for tectonic affinity and Precambrian crustal evolution. Precambrian Research, 269:73-89.
doi: 10.1016/j.precamres.2015.08.005
[36]
Huang Z Y, Long X P, Wang X C, et al. 2017. Precambrian evolution of the Chinese Central Tianshan Block: Constraints on its tectonic affinity to the Tarim Craton and responses to supercontinental cycles. Precambrian Research, 295:24-37.
doi: 10.1016/j.precamres.2017.04.014
[37]
Jacobsen S B, Wasserburg G J. 1980. Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters, 50(1):139-155.
doi: 10.1016/0012-821X(80)90125-9
[38]
Jahn B M, Wu F Y, Chen B. 2000. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 23(2):82-92.
doi: 10.18814/epiiugs/2000/v23i2/001
[39]
Keto L S, Jacobsen S B. 1987. Nd and Sr isotopic variations of Early Paleozoic oceans. Earth and Planetary Science Letters, 84(1):27-41.
doi: 10.1016/0012-821X(87)90173-7
[40]
Klemd R, John T, Scherer E E, et al. 2011. Changes in dip of subducted slabs at depth: Petrological and geochronological evidence from HP-UHP rocks (Tianshan, NW-China). Earth and Planetary Science Letters, 310(1-2):9-20.
doi: 10.1016/j.epsl.2011.07.022
[41]
Kröner A, Alexeiev D V, Hegner E, et al. 2007. Accretionary growth and crust formation in the Central Asian Orogenic Belt and comparison with the Arabian-Nubian shield. Memoir of the Geological Society of America, 200:181-209.
[42]
Kröner A, Alexeiev D V, Hegner E, et al. 2012. Zircon and muscovite ages, geochemistry, and Nd-Hf isotopes for the Aktyuz metamorphic terrane: Evidence for an Early Ordovician collisional belt in the northern Tianshan of Kyrgyzstan. Gondwana Research, 21(4):901-927.
doi: 10.1016/j.gr.2011.05.010
[43]
Kröner A, Alexeiev D V, Rojas-Agramonte Y, et al. 2013. Mesoproterozoic (Grenville-age) terranes in the Kyrgyz North Tianshan: Zircon ages and Nd-Hf isotopic constraints on the origin and evolution of basement blocks in the southern Central Asian Orogen. Gondwana Research, 23(1):272-295.
doi: 10.1016/j.gr.2012.05.004
[44]
Kröner A, Kovach V, Belousova E, et al. 2014. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Research, 25(1):103-125.
doi: 10.1016/j.gr.2012.12.023
[45]
Li Z X, Bogdanova S V, Collins A S, et al. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160(1-2):179-210.
doi: 10.1016/j.precamres.2007.04.021
[46]
Liu X J, Zhang Z G, Xu J F, et al. 2020. The youngest Permian Ocean in Central Asian Orogenic Belt: Evidence from Geochronology and Geochemistry of Bingdaban Ophiolitic Melange in Central Tianshan, northwestern China. Geological Journal, 55(3):2062-2079.
doi: 10.1002/gj.v55.3
[47]
Long L L, Gao J, Klemd R, et al. 2011. Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen: Implications for continental growth in the southwestern Central Asian Orogenic Belt. Lithos, 126(3-4):321-340.
doi: 10.1016/j.lithos.2011.07.015
[48]
Lü Z, Zhang L, Du J, et al. 2008. Coesite inclusions in garnet from eclogitic rocks in western Tianshan, northwest China: Convincing proof of UHP metamorphism. American Mineralogist, 93(11-12):1845-1850.
doi: 10.2138/am.2008.2800
[49]
Ludwig K R. 2003. User's manual for a geochronological toolkit for Microsoft Excel (Isoplot/Ex version 3.0). Berkeley Geochronology Center, 4:1-71.
[50]
Ma X X, Shu L S, Santosh M, et al. 2013. Paleoproterozoic collisional orogeny in Central Tianshan: Assembling the Tarim Block within the Columbia supercontinent. Precambrian Research, 228:1-19.
doi: 10.1016/j.precamres.2013.01.009
Meert J G, Torsvik T H. 2003. The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics, 375(1-4):261-288.
doi: 10.1016/S0040-1951(03)00342-1
[53]
Meng Y, Tang S L, Wang K, et al. 2018. Zircon U-Pb age, geochemistry and tectonic implications of Neoproterozoic granite from south of Dabaishitou, East Tianshan. Earth Science, 43(12):4427-4442. (in Chinese)
[54]
Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4):215-224.
doi: 10.1016/0012-8252(94)90029-9
[55]
Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4):956-983.
doi: 10.1093/petrology/25.4.956
[56]
Peccerillo A, Taylor S R. 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63-81.
doi: 10.1007/BF00384745
[57]
Peng M X, Zhong C G, Zuo Q H, et al. 2012. The ages of the gneissic granite from Kawabulag area in the Eastern Tianshan and their geological significances. Xinjiang Geology, 30:12-18. (in Chinese)
[58]
Peucat J J, Vidal P, Bernard-Griffiths J, et al. 1989. Sr, Nd and Pb isotopic systematics in the Archaean low- to high-grade transition zone of southern India: Synaccretion vs. post-accretion Granulites. Journal of Geology, 97(5):537-549.
doi: 10.1086/629333
[59]
Rojas-Agramonte Y, Kroner A, Demoux A, et al. 2011. Detrital and xenocrystic zircon ages from Neoproterozoic to Palaeozoic arc terranes of Mongolia: Significance for the origin of crustal fragments in the Central Asian Orogenic Belt. Gondwana Research, 19(3):751-763.
doi: 10.1016/j.gr.2010.10.004
[60]
Rudnick R L. 1995. Making continental crust. Nature, 378(6557):571-578.
doi: 10.1038/378571a0
[61]
Safonova I, Biske G, Romer R L, et al. 2016. Middle Paleozoic mafic magmatism and ocean plate stratigraphy of the South Tianshan, Kyrgyzstan. Gondwana Research, 30:236-256.
doi: 10.1016/j.gr.2015.03.006
[62]
Sengör A M C, Natal'in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435):299-307.
doi: 10.1038/364299a0
[63]
Sengör A M C, Natal'in B A. 1996. Turkic-type orogeny and its role in the making of the continental crust. Annual Review of Earth and Planetary Sciences, 24(1):263-337.
doi: 10.1146/earth.1996.24.issue-1
[64]
Shi W X, Liao Q A, Hu Y Q, et al. 2010. Characteristics of Mesoproterozoic granites and their geological significances from Middle Tianshan Block, East Tianshan district, NW China. Geological Science and Technology Information, 29(1):29-37. (in Chinese)
[65]
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society London Special Publications, 42(1):313-345.
doi: 10.1144/GSL.SP.1989.042.01.19
[66]
Taylor S R, Mclennan S M. 1985. The continental crust: Its composition and evolution. Journal of Geology, 94(4):57-72.
[67]
Tretyakov A A, Degtyarev K E, Shatagin K N, et al. 2015. Neoproterozic anorogenic rhyolite-granite volcanoplutonic association of the Aktau-Mointy sialic massif (Central Kazakhstan): Age, source, and paleotectonic position. Petrology, 23(1):22-44.
doi: 10.1134/S0869591115010063
[68]
Wang B, Chen Y, Zhan S, et al. 2007a. Primary Carboniferous and Permian paleomagnetic results from the Yili Block (NW China) and their implications on the geodynamic evolution of Chinese Tianshan Belt. Earth and Planetary Science Letters, 263(3-4):288-308.
doi: 10.1016/j.epsl.2007.08.037
[69]
Wang B, Shu L S, Cluzel D, et al. 2007b. Geochemical constraints on Carboniferous volcanic rocks of the Yili Block (Xinjiang, NW China): Implication for the tectonic evolution of Western Tianshan. Journal of Asian Earth Sciences, 29(1):148-159.
doi: 10.1016/j.jseaes.2006.02.008
[70]
Wang B, Shu L S, Faure M, et al. 2011. Paleozoic tectonics of the southern Chinese Tianshan: Insights from structural, chronological and geochemical studies of the Heiyingshan ophiolitic mélange (NW China). Tectonophysics, 497(1-4):85-104.
doi: 10.1016/j.tecto.2010.11.004
[71]
Wang B, Liu H S, Shu L S, et al. 2014. Early Neoproterozoic crustal evolution in northern Yili Block: Insights from migmatite, orthogneiss and leucogranite of the Wenquan metamorphic complex in the NW Chinese Tianshan. Precambrian Research, 242:58-81.
doi: 10.1016/j.precamres.2013.12.006
[72]
Wang G H, Wang Z Z, Yan C M. 2019. A survey of the genesis classification and geochemical diagram discrimination of granite. Yunnan Geology, 38(1):28-37. (in Chinese)
[73]
Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy & Petrology, 95(4):407-419.
[74]
Xiao W J, Zhang L C, Qin K, et al. 2004. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): Implications for the continental growth of central Asia. American Journal of Science, 304(4):370-395.
doi: 10.2475/ajs.304.4.370
[75]
Xiao W J, Windley B F, Yong Y, et al. 2008a. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China. Journal of Asian Earth Sciences, 35(3-4):323-333.
doi: 10.1016/j.jseaes.2008.10.001
[76]
Xiao W J, Han C M, Yuan C, et al. 2008b. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences, 32(2-4):102-117.
doi: 10.1016/j.jseaes.2007.10.008
[77]
Xiao W J, Windley B F, Yuan C, et al. 2009a. Paleozoic multiple subduction-accretion processes of the southern Altaids. American Journal of Science, 309(3):221-270.
doi: 10.2475/03.2009.02
[78]
Xiao W J, Windley B, Huang B, et al. 2009b. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences, 98(6):1189-1217.
doi: 10.1007/s00531-008-0407-z
[79]
Xiao W J, Windley B F, Allen M B, et al. 2013. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Research, 23(4):1316-1341.
doi: 10.1016/j.gr.2012.01.012
[80]
Xiao W J, Windley B F, Sun S, et al. 2015. A tale of amalgamation of three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43(1):477-507.
doi: 10.1146/earth.2015.43.issue-1
[81]
Xiong F H, Hou M C, Cawood P A, et al. 2019. Neoproterozoic I-type and highly fractionated A-type granites in the Yili Block, Central Asian Orogenic Belt: Petrogenesis and tectonic implications. Precambrian Research, 328:235-249.
doi: 10.1016/j.precamres.2019.04.017
[82]
Yang T N, Li J Y, Sun G H, et al. 2008. Mesoproterozoic continental arc type granite in the Central Tianshan Mountalins: Zircon SHRIMP U-Pb dating and geochemical analyses. Acta Geologica Sinica (English Edition), 82(1):117-125.
doi: 10.1111/acgs.2008.82.issue-1
[83]
Yin J Y, Chen W, Xiao W J, et al. 2017. Geochronology, petrogenesis, and tectonic significance of the latest Devonian-early Carboniferous I-type granites in the Central Tianshan, NW China. Gondwana Research, 47:188-199.
doi: 10.1016/j.gr.2016.02.012
[84]
Zhang D Y, Zhang Z C, Encarnación J, et al. 2012. Petrogenesis of the Kekesai composite intrusion, western Tianshan, NW China: Implications for tectonic evolution during late Paleozoic time. Lithos, 146-147:65-79.
doi: 10.1016/j.lithos.2012.04.002
[85]
Zhang Z Z, Gu L X, Yang H, et al. 2005. Characteristics and genesis of the Pingdingshan mega-augen gneissic granite in the eastern Tianshan Mountain areas. Acta Petrologica Sinica, 21(3):879-908. (in Chinese)
[86]
Zhong L L, Wang B, Alexeiev D V, et al. 2017. Paleozoic multi-stage accretionary evolution of the SW Chinese Tianshan: New constraints from plutonic complex in the Nalati Range. Gondwana Research, 45:254-274.
doi: 10.1016/j.gr.2016.12.012
[87]
Zhu W B, Charvet J, Xiao W J, et al. 2011. Continental accretion and intra-continental deformation of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 42(5):769-773.
doi: 10.1016/j.jseaes.2011.07.021
[88]
Zhu X Y, Wang B, Cluzel D, et al. 2019. Early Neoproterozoic gneissic granitoids in the southern Yili Block (NW China): Constraints on microcontinent provenance and assembly in the SW Central Asian Orogenic Belt. Precambrian Research, 325:111-131.
doi: 10.1016/j.precamres.2019.02.019
[89]
Zhu Y F, Zhou J, Zeng Y. 2007. The Tianger (Bingdaban) shear zone hosted gold deposit, west Tianshan, NW China: Petrographic and geochemical characteristics. Ore Geology Reviews, 32(1-2):337-365.
doi: 10.1016/j.oregeorev.2006.10.006