Please wait a minute...
Journal of Arid Land  2014, Vol. 6 Issue (4): 488-497    DOI: 10.1007/s40333-014-0021-9     CSTR: 32276.14.s40333-014-0021-9
Research Articles     
Isolation and identification of desert habituated arbuscular mycorrhizal fungi newly reported from the Arabian Peninsula
Sarah SYMANCZIK1, Janusz B?ASZKOWSKI2, Sally KOEGEL1, Thomas BOLLER1, Andres WIEMKEN1, Mohamed N AL-YAHYA'EI1,3,4*
1 Zurich Basel Plant Science Center, Institute of Botany, University of Basel, Basel CH-4056, Switzerland;
2 Department of Plant Protection, West Pomeranian University of Technology, Szczecin PL-71434, Poland;
3 Soil and Water Research Center. Ministry of Agriculture and Fisheries, Al Khod 121, Sultanate of Oman;
4 Department of Aridland Agriculture, College of Food and Agriculture, United Arab Emirates University, Al Ain 15551, United Arab Emirates
Download:   PDF(378KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Arbuscular mycorrhizal fungi (AMF) are known to facilitate the growth and vigour of many plants, particularly in arid ecosystems. In a survey of AMF in a date palm plantation and two natural sites of a desert in Oman, we generated many single spore-derived cultures of AMF. We identified a number of these isolates based on spore morphotyping and molecular phylogenetic analysis using the sequence of the LSU-rDNA. Here, we presented the characteristics of four species of AMF recovered, namely Claroideoglomus drummondii, Diversispora aurantia, Diversispora spurca and Funneliformis africanum. The four species have been described previously, but for the Arabian Peninsula they are reported here for the first time. Our endeavor of isolation and characterization of some AMF habituated to arid sites of Arabia represents a first step towards application for environmental conservation and sustainable agriculture in this region.

Key wordsdrought tolerance      phreatophyte      hydraulic redistribution      root sap flow      Tamarix ramosissima     
Received: 19 June 2013      Published: 12 August 2014
Fund:  

The study was financed by the Oman’s Ministry of Agriculture and Fisheries, the University of Basel, the Polish National Centre of Science (N N304 061739 and DEC–2012/05/B/NZ8/ 00498) and the Swiss National Science Foundation (130794 to A.W.).

Corresponding Authors:
Cite this article:

Sarah SYMANCZIK, Janusz B?ASZKOWSKI, Sally KOEGEL, Thomas BOLLER, Andres WIEMKEN, Mohamed N AL-YAHYA'EI.. Isolation and identification of desert habituated arbuscular mycorrhizal fungi newly reported from the Arabian Peninsula. Journal of Arid Land, 2014, 6(4): 488-497.

URL:

http://jal.xjegi.com/10.1007/s40333-014-0021-9     OR     http://jal.xjegi.com/Y2014/V6/I4/488

Barea J M, Azcón R, Azcón-Aguilar C. 1993. Mycorrhiza and crops. In: Tommerup I. Advances in Plant Pathology, Vol. 9. Mycorrhiza: A Synthesis. London: Academic Press, 167–189.

B?aszkowski J. 2003. Arbuscular mycorrhizal fungi (Glomeromycota), Endogone and Complexipes species deposited in the Department of Plant Pathology, University of Agriculture in Szczecin, Poland. http://www.agro.ar.szczecin.pl/~jblaszkowski/.

B?aszkowski J, Blanke V, Renker C, et al. 2004. Glomus aurantium and G. xanthium, new species in Glomeromycota. Mycotaxon, 90(2): 447–467.

B?aszkowski J, Czerniawska B. 2006. The occurrence of arbuscular mycorrhizal fungi of the phylum Glomeromycota in Israeli soils. Acta Societatis Botanicorum Poloniae, 75(4): 339–350.

B?aszkowski J, Renker C, Buscot F. 2006. Glomus drummondii and G. walkeri, two new species of arbuscular mycorrhizal fungi (Glomeromycota). Mycological Research, 110(5): 555–566.

B?aszkowski J, Kovács G M, Balázs T, et. al. 2010. Glomus africanum and G. iranicum, two new species of arbuscular mycorrhizal fungi (Glomeromycota). Mycologia, 102(6): 1450–1462.

B?aszkowski J. 2012. Glomeromycota. Kraków: Polish Academy of Sciences.

Bothe H, Turnau K, Regvar, M. 2010. The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza, 20(7): 445–457.

Calvente R, Cano C, Ferrol N, et al. 2004. Analysing natural diversity of arbuscular mycorrhizal fungi in olive tree (Olea europaea L.) plan-tations and assessment of the effectiveness of native fungal isolates as inoculants for commercial cultivars of olive plantlets. Applied Soil Ecology, 26(1): 11–19.

Caravaca F, Barea J M, Palenzuela J, et al. 2003. Establishment of shrub species in a degraded semiarid site after inoculation with native or allochthonous arbuscular mycorrhizal fungi. Applied Soil Ecology, 22(2): 103–111.

Carvalho L M, Correia P M, Martins-Loucao M A. 2004.  Arbuscular mycorrhizal fungal propagules in a salt marsh. Mycorrhiza, 14(3): 165–170.

Cui M, Nobel P S. 1992. Nutrient status, water uptake and gas exchange for three desert succulents infected with mycorrhizal fungi.  New Phytologist, 122(4): 643–649.

Daniels B A, Skipper H D. 1982. Methods for the recovery and quanti-tative estimation of propagules from soil. In: Schenck N C. Methods And Principles Of Mycorrhizal Research, Minnesota: The American Phytopathological Society, 29–35.

Douds D D, Nagahashi G, Pfeffer P E, et al. 2006. On-farm production of AM fungus inoculum in mixtures of compost and vermiculite. Bio-resource Technology, 97(6): 809–818.

Fisher M, Membery D A. 1998. Climate. In: Fisher M, Membery D A. Geobotany: Vegetation of the Arabian Peninsula. Dordrecht: Kluwer Academic Publishers, 5–38.

Gianinazzi S, Schüepp H, Barea J M, et al. 2002. Mycorrhizal Tech-nology in Agriculture, from Genes to Bioproducts, Basel. Switzer-land: Birkhäuser Verlag.

Glennie K W, Singhvi A K. 2002. Event stratigraphy, paleoenvironment and chronology of SE Arabian deserts. Quaternary Science Reviews, 22(7): 853–869.

Jacobson K M. 1997. Moisture and substrate stability determine VA-mycorrhizal fungal community distribution and structure in an arid grassland. Journal of Arid Environments, 35(1): 59–75.

Johnson N C, Wilson G W T, Bowker M A, et al. 2010. Resource limi-tation is a driver of local adaptation in mycorrhizal symbioses. Pro-ceedings of the National Academy of Sciences of the United States of America, 107(5): 2093–2098.

Kapulnik Y, Heuer B, Patterson N A, et al. 1994. Stunting syndrome in peanuts and agronomic approaches for its release. Symbiosis, 16(3): 267–278.

Kennedy L J, Stutz J C, Morton J B. 1999. Glomus eburneum and G. luteum, two new species of arbuscular mycorrhizal fungi, with emendation of G. spurcum. Mycologia, 91(6): 1083–1093.

Khaliel A S. 1989. Mycorrhizal status of some desert plants and corre-lation with edaphic factors. Nippon Kingakukai Kaiho, 30(2): 231–238.

Kiran B, Rao A V, Tarafdar J C. 1989. Occurrence of VAM associations in different plant species of the Indian desert. Arid Soil Research and Rehabilitation, 3(3): 391–396.

Koltai H. 2010. Mycorrhiza in floriculture: difficulties and opportunities. Symbiosis, 52: 55–63.

Krüger M, Stockinger H, Krüger C, et al. 2009. DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytologist, 183(1): 212–223.

López-Gutiérrez J C, Malcolm G M, Koide R T, et al. 2008. Ectomycorrhizal fungi from Alaska and Pennsylvania: adaptation of mycelial respiratory response to temperature? New Phytologist, 180(4): 741–744.

Marulanda A, Porcel R, Barea J M, et al. 2007. Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Microbial Ecology, 54(3): 543–552.

Mathur N, Vyas A. 1995. Mycorrhizal dependency of Prosopis cineraria in Indian Thar desert. Indian Journal of Forestry, 18(4): 263–266.

Mathur N, Singh J, Bohra S, et al. 2006. Increased nutrient uptake and productivity of Plantago ovata Forssk by AM fungi under field conditions. American-Eurasian Journal of Scientific Research, 1: 38–41.

Neumann E, George E. 2004. Colonisation with the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) enhanced phosphorus uptake from dry soil in Sorghum bicolor (L.). Plant and Soil, 261: 245–255.

Newsham K K, Fitter A H, Watkinson A R. 1995. Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends in Ecology & Evolution, 10: 407–411.

Omar M B, Bollan L, Heather W A. 1979. A permanent mounting medium for fungi. Bulletin of the British Mycological Society, 13: 31–32.

Panwar J, Vyas A. 2002. AM fungi: A biological approach towards conservation of endangered plants in Thar Desert, India. Current Science, 82(5): 576–578.

Patzelt A, Morris L, Al Harthi L, et al. 2008. The Oman Botanic Garden (1): the vision, early plant collections and propagation. Sibbaldia, 6: 41–77.

Pfeiffer C M, Walker C, Bloss H E. 1996. Glomus spurcum: a new endomycorrhizal fungus from Arizona. Mycotaxon, 59: 373–382.

Pickering H, Patzelt A. 2008. Field Guide to the Wild Plants of Oman. Royal Botanic Gardens Kew: Kew Publishing.

Pirozynski K A. 1968. Geographical distribution of fungi. In: Ainsworth G C, Sussman A S. The Fungi, New York: Academic Press, 487–504.

Preusser F, Radies D, Matter A. 2002. A 160,000-year record of dune development and atmospheric circulation in Southern Arabia. Sci-ence, 296(5575): 2018–2020.

Redecker D, Schüβler A, Stockinger H, et al. 2013. An evidence-based consensus for the clasification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza, 23(7): 515–531.

Requena N, Pérez-Solís E, Azcón-Aguilar C, et al. 2001. Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Applied and Environmental Microbiology, 67(2): 495–498.

Rillig M C, Mummey D L. 2006. Mycorrhizas and soil structure. New Phytologist, 171(1): 41–53.

Shen S K, Wang Y H. 2011. Arbuscular mycorrhizal (AM) status and seedling growth response to indigenous AM colonisation of Euryodendron excelsum in China: implications for restoring an endemic and critically endangered tree. Australian Journal of Botany, 59(5): 460–467.

Shi Z Y, Zhang L Y, Li X L, et al. 2007. Diversity of arbuscular mycorrhizal fungi associated with desert ephemerals in plant commu-nities of Junggar Basin, northwest China. Applied Soil Ecology, 35(1): 10–20.

Siddiqui Z A, Akhtar M S, Futai K. 2008. Mycorrhizae: Sustainable Agriculture and Forestry. Dordrecht: Springer.

Smith S E, Read D J. 2008. Mycorrhizal Symbiosis. 3rd ed. San Diego: Academic Press.

Sreenivasa M N, Bagyaraj D J. 1988. Selection of a suitable substrate for mass multiplication of Glomus fasciculatum. Plant and Soil, 109(1): 125–127.

Stutz J C, Copeman R, Martin C A, et al. 2000. Patterns of species composition and distribution of arbuscular mycorrhizal fungi in arid regions of southwestern North America and Namibia, Africa. Cana-dian Journal of Botany, 78(2): 237–245.

Swofford D L. 2001. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sunderland: Sinauer Associates.

Tchabi A, Coyned D, Hountondji F, et al. 2010. Efficacy of indigenous arbuscular mycorrhizal fungi for promoting white yam (Dioscorea rotundata) growth in West Africa. Applied Soil Ecology, 45(2): 92–100.

Trappe J W. 1977. Three new Endogonaceae: Glomus constrictus, Sclerocystis clavispora, and Acaulospora scrobiculata. Mycotaxon, 6(2): 359–366.

Uhlmann E, Görke C, Petersen A, et al. 2006. Arbuscular mycorrhizae from arid parts of Namibia. Journal of Arid Environments, 64(2): 221–237.

UNEP. 2006. Global Deserts Outlook. United Nations: United Nations Environmental Programme.

Walker C. 1986. Taxonomic concepts in the Endogonaceae. II. A fifth morphological wall type in endogonaceous spores. Mycotaxon, 25(1): 95–99.

White T J, Bruns T, Lee S, et al. 1990. Amplification and direct se-quencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M A, Gelfand D H, Sninsky J J, et al. PCR Protocols: A Guide to Methods and Applications, New York: Academic Press, 315–322.

Zhang T, Sun Y, Song Y, et al. 2011. On-site growth response of a desert ephemeral plant, Plantago minuta, to indigenous arbuscular my-corrhizal fungi in a central Asia desert. Symbiosis, 55(2): 77–84.
[1] SHEHZADI Anum, A AKRAM Nudrat, ALI Ayaz, ASHRAF Muhammad. Exogenously applied glycinebetaine induced alteration in some key physio-biochemical attributes and plant anatomical features in water stressed oat (Avena sativa L.) plants[J]. Journal of Arid Land, 2019, 11(2): 292-305.
[2] KRAMP Katja, SCHMITT Thomas, LANG Petra, JESCHKE Michael, SCH?FER Philipp, KULANEK Dustin, Ximing ZHANG, Ruide YU, M THOMAS Frank. Clones or no clones: genetic structure of riparian Populus euphratica forests in Central Asia[J]. Journal of Arid Land, 2018, 10(5): 750-766.
[3] A BOZOROV Tohir, M USMANOV Rustam, Honglan YANG, A HAMDULLAEV Shukhrat, MUSAYEV Sardorbek, SHAVKIEV Jaloliddin, NABIEV Saidgani, Daoyuan ZHANG, A ABDULLAEV Alisher. Effect of water deficiency on relationships between metabolism, physiology, biomass, and yield of upland cotton (Gossypium hirsutum L.)[J]. Journal of Arid Land, 2018, 10(3): 441-456.
[4] ShengChun XIAO, HongLang XIAO, XiaoMei PENG, QuanYan TIAN. Intra-annual stem diameter growth of Tamarix ramosissima and association with hydroclimatic factors in the lower reaches of China’s Heihe River[J]. Journal of Arid Land, 2014, 6(4): 498-510.
[5] TengFei YU, Qi FENG, JianHua SI, HaiYang XI, Wei LI. Patterns, magnitude, and controlling factors of hydraulic redistribution of soil water by Tamarix ramosissima roots[J]. Journal of Arid Land, 2013, 5(3): 396-407.
[6] Michael F Allen. Linking water and nutrients through the vadose zone: a fungal interface between the soil and plant systems[J]. Journal of Arid Land, 2011, 3(3): 155-163.