Please wait a minute...
Journal of Arid Land  2022, Vol. 14 Issue (1): 82-101    DOI: 10.1007/s40333-021-0071-8     CSTR: 32276.14.s40333-021-0071-8
Geography, geology and natural resources in Central Asia (Guest Editorial Board Member: Prof. Dr. XIAO Wenjiao)     
Neoproterozoic I-type granites in the Central Tianshan Block (NW China): geochronology, geochemistry, and tectonic implications
SONG Yujia1, LIU Xijun1,2,3,*(), XIAO Wenjiao2, ZHANG Zhiguo1, LIU Pengde1, XIAO Yao1, LI Rui1, WANG Baohua1, LIU Lei1,3, HU Rongguo1
1Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration, College of Earth Sciences, Guilin University of Technology, Guilin 541004, China
2Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
3Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resource, Guilin University of Technology, Guilin 541004, China
Download: HTML     PDF(2387KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The Central Tianshan Block is one of numerous microcontinental blocks within the Central Asian Orogenic Belt (CAOB) that overlies Precambrian basement rocks. Constraining the evolution of these ancient basement rocks is central to understanding the accretionary and collisional tectonics of the CAOB, and their place within the Rodinia supercontinent. However, to date, the timing and tectonic settings in which the basement rocks in the Central Tianshan Block formed are poorly constrained, with only sparse geochemical and geochronological data from granitic rocks within the northern segment of the block. Here, we present a systematic study combining U-Pb geochronology, whole-rock geochemistry, and the Sr-Nd isotopic compositions of newly-identified granitic gneisses from the Bingdaban area of Central Tianshan Block. The analyzed samples yield a weighted mean Neoproterozoic 206Pb/238U ages of 975-911 Ma. These weakly-peraluminous granitic rocks show a common geochemical I-type granite affinity. The granitic gneisses are calc-alkaline and enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), but they are depleted in high field strength elements (HFSEs); these characteristics are similar to those of typical subduction-related magmatism. All samples show initial (87Sr/86Sr)(t) ratios between 0.705136 and 0.706745. Values for ƐNd(t) in the granitic gneisses are in the range from -5.7 to -1.2, which correspond to Nd model ages of 2.0-1.7 Ga, indicating a role for Mesoproterozoic to Paleoproterozoic rocks in the generation of the granitic protoliths. The documented geochemical features indicate that the protoliths for the gneisses have a similar petrogenesis and magmatic source, which may reflect partial melting of thickened crust with the addition of small amounts of mantle-derived material. The Central Tianshan Block probably constitute part of an exterior orogen that developed along the margin of the Rodinian supercontinent during the Early Neoproterozoic and underwent a transition from subduction to syn-collision compression at 975-911 Ma.



Key wordsNeoproterozoic I-type granites      geochronology      Central Tianshan Block      Rodinian supercontinent      Central Asian Orogenic Belt (CAOB)     
Received: 31 October 2020      Published: 31 January 2022
Corresponding Authors: * LIU Xijun (E-mail: xijunliu@glut.edu.cn)
Cite this article:

SONG Yujia, LIU Xijun, XIAO Wenjiao, ZHANG Zhiguo, LIU Pengde, XIAO Yao, LI Rui, WANG Baohua, LIU Lei, HU Rongguo. Neoproterozoic I-type granites in the Central Tianshan Block (NW China): geochronology, geochemistry, and tectonic implications. Journal of Arid Land, 2022, 14(1): 82-101.

URL:

http://jal.xjegi.com/10.1007/s40333-021-0071-8     OR     http://jal.xjegi.com/Y2022/V14/I1/82

Fig. 1 Geological map of the Central Tianshan Block and adjacent regions (a), and tectonic map of the Central Asian Orogenic Belt (b) as well as sample locations (c). CTB, Central Tianshan Block; KYB, Kazakhstan-Yili Block; NTB, North Tianshan Belt; STB, South Tianshan Belt (modified after Gao et al. (2015) and Liu et al. (2020)).
Fig. 2 Simplified geologic map of the Bingdaban area, Central Tianshan Block (modified after Yang et al. (2008) and Liu et al. (2020))
Fig. 3 Field and petrographic photographs of the studied Neoproterozoic granitic gneisses in the Bingdaban area. (a), field photograph; (b), hand specimens; (c)-(d), photomicrographs. Qtz, Quartz; Pl, Plagioclase; Bt, Biotite.
Sample
spot
Th
(10-6)
U
(10-6)
Th/
U
Isotopic ratio Age (Ma)
207Pb/
206Pb
±1σ 207Pb/
235U
±1σ 206Pb/
238U
±1σ 207Pb/
206Pb
±1σ 207Pb/
235U
±1σ 206Pb/
238U
±1σ
Sample BD-01-18
01 833 5167 0.16 0.0708 0.0009 1.6045 0.0262 0.1637 0.0015 954 25 972 10 977 9
02 1051 7802 0.13 0.0698 0.0009 1.5692 0.0268 0.1627 0.0017 924 27 958 11 972 9
03 351 6771 0.05 0.0712 0.0011 1.6006 0.0290 0.1628 0.0016 963 31 970 11 972 9
04 1007 3442 0.29 0.0667 0.0015 1.4980 0.0352 0.1618 0.0018 828 46 930 14 967 10
05 153 624 0.25 0.0675 0.0018 1.5425 0.0434 0.1658 0.0021 854 56 948 17 989 11
06 497 2238 0.22 0.0695 0.0014 1.5588 0.0382 0.1615 0.0019 915 47 954 15 965 11
07 987 10,876 0.09 0.0717 0.0014 1.6177 0.0382 0.1630 0.0023 989 39 977 15 974 12
08 1032 5441 0.19 0.0747 0.0017 1.7052 0.0421 0.1652 0.0017 1061 46 1010 16 986 10
09 2281 7064 0.32 0.0731 0.0013 1.6637 0.0384 0.1645 0.0024 1017 32 995 15 982 13
10 636 1622 0.39 0.0723 0.0017 1.6264 0.0388 0.1629 0.0018 994 47 980 15 973 10
Sample BD-06-18
01 330 9571 0.03 0.0738 0.0025 1.5996 0.0448 0.1585 0.0028 1037 67 970 18 948 16
02 739 13,358 0.06 0.0686 0.0013 1.5346 0.0331 0.1612 0.0019 887 40 944 13 963 10
03 601 3840 0.16 0.0676 0.0018 1.4961 0.0422 0.1591 0.0020 855 55 929 17 952 11
04 1985 9660 0.21 0.0686 0.0016 1.5409 0.0373 0.1620 0.0019 887 47 947 15 968 11
05 613 3185 0.19 0.0714 0.0016 1.5762 0.0409 0.1591 0.0022 969 47 961 16 952 12
06 958 6379 0.15 0.0695 0.0016 1.5319 0.0390 0.1589 0.0021 915 48 943 16 951 12
07 1050 3678 0.29 0.0678 0.0015 1.4934 0.0354 0.1589 0.0018 861 44 928 14 951 10
08 605 3224 0.19 0.0671 0.0014 1.4759 0.0348 0.1586 0.0018 843 44 921 14 949 10
09 324 6249 0.05 0.0690 0.0016 1.5170 0.0458 0.1592 0.0036 898 48 937 18 952 20
10 510 8641 0.06 0.0709 0.0015 1.5589 0.0359 0.1588 0.0016 954 44 954 14 950 9
11 1075 6424 0.17 0.0702 0.0017 1.5807 0.0406 0.1626 0.0020 1000 48 963 16 971 11
12 536 3584 0.15 0.0660 0.0018 1.4514 0.0411 0.1589 0.0021 807 56 910 17 951 12
13 279 1944 0.14 0.0674 0.0032 1.4266 0.0618 0.1551 0.0025 850 98 900 26 929 14
14 855 6150 0.14 0.0669 0.0016 1.4688 0.0364 0.1589 0.0019 835 49 918 15 951 11
15 560 16,520 0.03 0.0665 0.0014 1.4306 0.0372 0.1553 0.0027 833 39 902 16 931 15
16 506 7731 0.07 0.0658 0.0014 1.4460 0.0346 0.1590 0.0023 798 44 908 14 951 13
17 2874 7997 0.36 0.0660 0.0014 1.4514 0.0356 0.1590 0.0024 806 44 910 15 951 13
18 362 5416 0.07 0.0630 0.0014 1.3894 0.0401 0.1588 0.0030 709 46 884 17 950 17
19 409 5139 0.08 0.0707 0.0015 1.5532 0.0363 0.1588 0.0020 950 44 952 14 950 11
20 678 4453 0.15 0.0674 0.0017 1.5004 0.0388 0.1611 0.0021 852 52 931 16 963 12
21 650 2156 0.30 0.0677 0.0021 1.4826 0.0462 0.1587 0.0021 861 65 923 19 950 11
22 607 1743 0.35 0.0672 0.0022 1.4931 0.0502 0.1612 0.0023 856 67 928 20 964 13
23 950 6663 0.14 0.0671 0.0014 1.4762 0.0356 0.1590 0.0023 843 43 921 15 951 13
24 763 7414 0.10 0.0667 0.0013 1.4362 0.0319 0.1559 0.0019 828 45 904 13 934 11
25 451 4732 0.10 0.0661 0.0012 1.4480 0.0306 0.1588 0.0019 809 44 909 13 950 11
26 2977 9476 0.31 0.0675 0.0012 1.4795 0.0304 0.1587 0.0018 854 42 922 12 949 10
27 709 2595 0.27 0.0686 0.0016 1.4998 0.0389 0.1587 0.0020 887 82 930 16 950 11
28 377 16,764 0.02 0.0686 0.0012 1.5018 0.0325 0.1588 0.0020 887 37 931 13 950 11
29 1719 10,931 0.16 0.0686 0.0014 1.5505 0.0357 0.1630 0.0018 887 43 951 14 974 10
30 359 9742 0.04 0.0689 0.0014 1.5157 0.0374 0.1588 0.0024 894 44 937 15 950 13
31 694 3330 0.21 0.0687 0.0016 1.5585 0.0426 0.1630 0.0023 900 48 954 17 973 13
32 1694 6807 0.25 0.0693 0.0017 1.5252 0.0399 0.1588 0.0019 907 56 941 16 950 11
33 2182 7524 0.29 0.0690 0.0017 1.5258 0.0416 0.1589 0.0021 898 50 941 17 951 12
Sample
spot
Th
(10-6)
U
(10-6)
Th/
U
Isotopic ratio Age (Ma)
207Pb/
206Pb
±1σ 207Pb/
235U
±1σ 206Pb/
238U
±1σ 207Pb/
206Pb
±1σ 207Pb/
235U
±1σ 206Pb/
238U
±1σ
Sample BD-46-18
01 1012 3661 0.28 0.0702 0.0017 1.4782 0.0451 0.1519 0.0027 1000 51 921 18 911 15
02 397 3350 0.12 0.0741 0.0023 1.5592 0.0535 0.1515 0.0026 1044 58 954 21 910 15
03 1435 6293 0.23 0.0711 0.0017 1.4983 0.0404 0.1515 0.0020 961 50 930 16 909 11
04 488 2787 0.18 0.0700 0.0019 1.4765 0.0425 0.1516 0.0020 929 56 921 17 910 11
05 577 3918 0.15 0.0662 0.0017 1.4019 0.0402 0.1516 0.0024 813 50 890 17 910 14
06 411 3481 0.12 0.0688 0.0018 1.4625 0.0424 0.1518 0.0024 892 54 915 17 911 14
07 469 3019 0.16 0.0690 0.0012 1.4507 0.0296 0.1519 0.0015 900 38 910 12 911 9
08 403 4058 0.10 0.0690 0.0012 1.4496 0.0289 0.1518 0.0015 900 69 910 12 911 9
09 315 3412 0.09 0.0726 0.0018 1.5150 0.0374 0.1516 0.0020 1003 50 936 15 910 11
10 609 5710 0.11 0.0700 0.0016 1.4673 0.0490 0.1516 0.0040 928 47 917 20 910 22
11 457 3872 0.12 0.0702 0.0011 1.4746 0.0280 0.1517 0.0014 1000 33 920 11 910 8
12 1312 2902 0.45 0.0690 0.0018 1.4458 0.0327 0.1531 0.0019 898 53 908 14 918 11
13 362 2747 0.13 0.0678 0.0013 1.4264 0.0325 0.1519 0.0018 861 41 900 14 912 10
14 737 2481 0.30 0.0681 0.0014 1.4290 0.0303 0.1517 0.0016 872 45 901 13 911 9
15 252 1892 0.13 0.0699 0.0015 1.4681 0.0357 0.1515 0.0015 928 46 917 15 910 9
16 641 2534 0.25 0.0683 0.0012 1.4326 0.0297 0.1516 0.0017 880 37 903 12 910 9
17 739 4140 0.18 0.0696 0.0014 1.4575 0.0328 0.1515 0.0019 917 45 913 14 909 10
18 2718 5361 0.51 0.0716 0.0016 1.5030 0.0387 0.1517 0.0020 973 46 932 16 911 11
19 1084 5033 0.22 0.0695 0.0013 1.4598 0.0316 0.1517 0.0015 917 39 914 13 910 9
20 796 5149 0.15 0.0705 0.0015 1.4765 0.0340 0.1516 0.0016 943 43 921 14 910 9
21 617 2884 0.21 0.0719 0.0017 1.5041 0.0392 0.1518 0.0019 983 49 932 16 911 11
22 311 2349 0.13 0.0703 0.0015 1.4729 0.0364 0.1517 0.0019 1000 44 919 15 910 10
23 565 3314 0.17 0.0705 0.0013 1.4980 0.0331 0.1540 0.0019 943 44 930 13 923 10
24 540 3194 0.17 0.0707 0.0014 1.4812 0.0355 0.1516 0.0021 948 40 923 15 910 12
25 752 2950 0.26 0.0706 0.0019 1.4767 0.0431 0.1516 0.0022 946 56 921 18 910 12
26 433 2502 0.17 0.0706 0.0015 1.4826 0.0330 0.1526 0.0018 946 43 923 13 915 10
27 368 3469 0.11 0.0685 0.0012 1.4412 0.0307 0.1524 0.0018 883 32 906 13 914 10
28 226 3699 0.06 0.0746 0.0021 1.5603 0.0447 0.1517 0.0018 1057 58 955 18 910 10
29 652 3893 0.17 0.0729 0.0020 1.5259 0.0444 0.1513 0.0021 1013 49 941 18 908 12
30 1351 3107 0.43 0.0734 0.0022 1.5441 0.0497 0.1517 0.0019 1026 61 948 20 911 11
31 419 3153 0.13 0.0714 0.0023 1.4935 0.0499 0.1518 0.0023 970 67 928 20 911 13
32 218 2382 0.09 0.0719 0.0025 1.5051 0.0531 0.1521 0.0024 983 71 932 22 913 14
Table 1 LA-ICP-MS zircon U-Pb isotopic analysis of the granitic gneisses from the Bingdaban area in the Central Tianshan Block
Element Granitic gneisses
Sample BD-01-18 Sample BD-06-18 Sample BD-46-18
Major element (%)
SiO2 70.89 69.21 70.08
TiO2 0.32 0.36 0.36
Al2O3 14.90 16.30 14.16
Fe2O3T 2.04 2.33 2.65
MnO 0.03 0.03 0.06
MgO 0.74 0.86 0.69
CaO 1.69 3.07 1.35
Na2O 4.57 4.63 3.55
K2O 3.16 2.32 4.70
P2O5 0.08 0.12 0.04
LOI 1.48 0.93 1.46
Total 99.92 100.17 99.10
FeOT/MgO 2.47 2.44 3.46
K2O/Na2O 0.69 0.50 1.32
Mg# 45.90 46.24 37.74
A/CNK 1.06 1.04 1.06
Trace element (×10-6)
Ga 44.10 31.83 30.69
Rb 42.14 32.11 92.32
Sr 87.52 141.29 50.71
Y 4.18 4.08 24.33
Zr 108.96 96.98 133.73
Nb 4.60 4.69 17.13
Ba 417.63 287.87 499.06
La 24.94 21.34 47.81
Ce 49.98 43.07 109.04
Pr 5.35 4.55 12.23
Nd 18.76 15.65 43.40
Sm 3.06 2.57 8.90
Eu 0.69 0.94 0.79
Gd 2.83 2.45 9.63
Tb 0.33 0.32 1.63
Dy 1.45 1.51 8.99
Ho 0.29 0.30 1.71
Er 0.78 0.76 4.78
Tm 0.12 0.11 0.74
Yb 0.82 0.70 5.02
Lu 0.10 0.08 0.60
Hf 4.56 4.06 7.34
Ta 0.86 0.60 4.00
Pb 18.58 33.51 66.35
Th 12.48 8.02 45.63
U 2.73 2.86 12.01
a(La/Yb)N 21.71 22.02 6.84
a(La/Sm)N 5.26 5.37 3.47
a(Gd/Yb)N 2.84 2.91 1.59
∑REE 109.52 94.32 255.27
LREE 102.78 88.11 222.17
HREE 6.74 6.22 33.10
LREE/HREE 15.25 14.17 6.71
δEu 0.71 1.14 0.26
Table 2 Major and trace element compositions of the granitic gneisses from the Bingdaban area in the Central Tianshan Block
Element Granitic gneisses
Sample BD-01-18 Sample BD-06-18 Sample BD-46-18
Rb (×10-6) 42.10 32.10 92.30
Sr (×10-6) 87.50 141.0 40.70
Sm (×10-6) 3.06 2.57 8.90
Nd (×10-6) 18.80 15.70 43.40
87Sr/86Sr(i) 0.706745 0.706647 0.705136
147Sm/144Nd 0.100223 0.100817 0.126137
143Nd/144Nd(t) 0.511959 0.511977 0.511924
ƐNd(t) -2.16 -1.20 -5.72
fSm/Nd -0.49 -0.49 -0.36
TDM1 (Ma) 1606 1589 2143
TDM2 (Ma) 1730 1704 2038
Table 3 Sr-Nd isotopic analysis results of the granitic gneisses from the Bingdaban area in the Central Tianshan Block
Fig. 4 Concordia diagrams showing zircon U-Pb isotopic analyses (a, c, and e) and chondrite-normalized REE patterns (b, d, and f) from the Bingdaban granitic gneisses in the Central Tianshan Block. REE, rare earth element; MSWD, mean square of weighted deviate.
Fig. 5 Total-alkali versus silica diagram (Middlemost, 1994) (a), A/NK versus A/CNK diagram (b) (Maniar and Piccoli, 1989), P2O5 versus SiO2 diagram (c) (Chappell and White, 1992), and SiO2 versus K2O diagram (d) (Peccerillo and Taylor, 1976)
Fig. 6 Chondrite-normalized REE (a) and primitive mantle-normalized trace element diagrams (b) for the studied granitic gneisses. Normalizing values for chondrite and primitive mantle are from Taylor and McLennan (1985) and Sun and McDonough (1989), respectively (reference data from Gao et al. (2015)). N-MORB, normal mid-ocean ridge basalt; E-MORB, enriched mid-ocean ridge basalt; OIB, ocean island basalt. Grey shaded area represents data source from Gao et al. (2015).
Fig. 7 Plots of ƐNd(t) versus age for zircons from the studied granitic gneisses in the Central Tianshan Block. The granitoid or continental ''slope'' is defined with the parameter fSm/Nd=0.4 (indicating the average continental or granitoid isotopic evolution). The Tianshan dashed field represents the isotopic region of Tianshan basement rocks (reference data from the basement rocks in the northern Xinjiang; after Hu et al. (2000)). The isotope fields for the four terranes are distinguished by different colored lines. CHUR, chondritic uniform reservoir.
Fig. 8 Major and trace element tectonic discrimination diagrams for the studied granitic gneisses. (a), R1 versus R2 diagram of Batchelor and Bowden (1985); (b), Nb versus Y diagram (Pearce et al., 1984). WPG, within plate granitoid; VAG, volcanic arc granitoid; Syn-COLG, syn-collision granitoid; ORG, ocean ridge granitoid. R1=1000×(4×SiO2/60.09-11×(Na2O×2/61.98+K2O×2/94.2)-2×(Fe2O3T×2/159.69+TiO2/79.9)) (Batchelor and Bowden, 1985); R2=1000×(6×CaO/56.08+2×MgO/40.3+Al2O3×2/101.96) (Batchelor and Bowden, 1985).
[1]   Alexeiev D V, Biske Y S, Wang B, et al. 2015. Tectono-Stratigraphic framework and Palaeozoic evolution of the Chinese South Tianshan. Geotectonics, 49:93-122.
doi: 10.1134/S0016852115020028
[2]   Allen M B, Windley B F, Zhang C. 1993. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, Central Asia. Tectonophysics, 220(1-4):89-115.
doi: 10.1016/0040-1951(93)90225-9
[3]   Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3):605-626.
doi: 10.1016/S0024-4937(98)00085-1
[4]   Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48(1-4):43-55.
doi: 10.1016/0009-2541(85)90034-8
[5]   Bonin B. 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97(1-2):1-29.
doi: 10.1016/j.lithos.2006.12.007
[6]   Chappell B W, White A J R. 1974. Two contrasting granite types. Pacific Geology, 8:173-174.
[7]   Chappell B W, White A J R. 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1-2):1-26.
[8]   Chappell B W. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3):535-551.
doi: 10.1016/S0024-4937(98)00086-3
[9]   Chappell B W, White A J R. 2001. Two contrasting granite types: 25 years later. Journal of the Geological Society of Australia, 48(4):489-499.
[10]   Charvet J, Shu L S, Laurent-Charvet S, et al. 2011. Paleozoic tectonic evolution of the Tianshan belt, NW China. Science China Earth Sciences, 54(2):166-184.
doi: 10.1007/s11430-010-4138-1
[11]   Chen X Y, Wang Y J, Sun L H. 2009. Zircon SHRIMP U-Pb dating of the granitic gneisses from Bingdaban and Laerdundaban (Tianshan Orogen) and their geological significances. Geochimica, 38(5):424-431. (in Chinese)
[12]   Chen Y B, Hu A Q, Zhang G X, et al. 1999. Zircon U-Pb age and its geological significance in the Duku Highway granitic gneiss in the Western Tianshan Mountains. Chinese Science Bulletin, 44(21):217-325. (in Chinese)
[13]   Coleman R G. 1989. Continental growth of northwest China. Tectonics, 8(3):621-635.
doi: 10.1029/TC008i003p00621
[14]   Collins W J, Beams S D, White A J R, et al. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80:189-200.
doi: 10.1007/BF00374895
[15]   Du L, Long X P, Yuan C, et al. 2018. Petrogenesis of Late Paleozoic diorites and A-type granites in the central Eastern Tianshan, NW China: Response to post-collisional extension triggered by slab breakoff. Lithos, 318-319:47-59.
doi: 10.1016/j.lithos.2018.08.006
[16]   Foley S F, Barth M G, Jenner G A. 2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochimica et Cosmochimica Acta, 64(5):933-938.
doi: 10.1016/S0016-7037(99)00355-5
[17]   Frost B R, Barnes C G, Collins W J, et al. 2001. Transactions of the Royal Society of Edinburgh: Earth Sciences. Journal of Petrology, 42(11):2033-2048.
doi: 10.1093/petrology/42.11.2033
[18]   Gao J, Li M S, Xiao X C, et al. 1998. Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China. Tectonophysics, 287(1-4):213-231.
doi: 10.1016/S0040-1951(97)00211-4
[19]   Gao J, Klemd R. 2003. Formation of HP-LT rocks and their tectonic implications in the western Tianshan Orogen, NW China: geochemical and age constraints. Lithos, 66(1-2):1-22.
doi: 10.1016/S0024-4937(02)00153-6
[20]   Gao J, Long L L, Klemd R, et al. 2009. Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China: geochemical and age constraints of granitoid rocks. International Journal of Earth Sciences, 98(6):1221-1238.
doi: 10.1007/s00531-008-0370-8
[21]   Gao J, Wang X S, Klemd R, et al. 2015. Record of assembly and breakup of Rodinia in the Southwestern Altaids: Evidence from Neoproterozoic magmatism in the Chinese Western Tianshan Orogen. Journal of Asian Earth Sciences, 113:173-193.
doi: 10.1016/j.jseaes.2015.02.002
[22]   Gao Z J, Peng C W. 1985. The Precambrian of Tianshan, Xinjiang. Xinjiang Geology, 3(2):14-25. (in Chinese)
[23]   Goldstein S L, O'Nions R K, Hamilton P J. 1984. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters, 70(2):221-236.
doi: 10.1016/0012-821X(84)90007-4
[24]   Han B F, He G Q, Wang X C, et al. 2011. Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China. Earth-Science Reviews, 109(3-4):74-93.
doi: 10.1016/j.earscirev.2011.09.001
[25]   He Z Y, Zhang Z M, Zong K Q, et al. 2012. Neoproterozoic granulites from the northeastern margin of the Tarim Craton: Petrology, zircon U-Pb ages and implications for the Rodinia assembly. Precambrian Research, 212-213:21-33.
doi: 10.1016/j.precamres.2012.04.014
[26]   He Z Y, Zhang Z M, Zong K Q, et al. 2014. Zircon U-Pb and Hf isotopic studies of the Xingxingxia Complex from Eastern Tianshan (NW China): Significance to the reconstruction and tectonics of the southern Central Asian Orogenic Belt. Lithos, 190-191:485-499.
doi: 10.1016/j.lithos.2013.12.023
[27]   He Z Y, Klemd R, Zhang Z M, et al. 2015. Mesoproterozoic continental arc magmatism and crustal growth in the eastern Central Tianshan Arc Terrane of the southern Central Asian Orogenic Belt: Geochronological and geochemical evidence. Lithos, 236-237:74-89.
doi: 10.1016/j.lithos.2015.08.009
[28]   Hu A Q, Zhang G X, Zhang Q F, et al. 1998. Constraints on the age of basement and crustal growth in Tianshan Orogen by Nd isotopic composition. Science in China Series D: Earth Sciences, 41(6):648-657.
[29]   Hu A Q, Jahn B M, Zhang G X, et al. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics, 328(1-2):15-51.
doi: 10.1016/S0040-1951(00)00176-1
[30]   Hu A Q, Wei G J, Deng W F, et al. 2006. 1.4 Ga SHRIMP U-Pb age for zircons of granodiorite and its geological significance from the eastern segment of the Tianshan Mountains, Xinjiang, China. Geochimica, 35(4):333-345. (in Chinese)
[31]   Hu A Q, Jian W G, Zhang J B, et al. 2008. SHRIMP U-Pb ages for zircons of the amphibolites and tectonic evolution significance from the Wenquan domain in the West Tianshan Mountains, Xinjiang, China. Acta Petrologica Sinica, 24(12):2731-2740. (in Chinese)
[32]   Hu A Q, Wei G J, Jahn B M, et al. 2010. Formation of the 0.9 Ga Neoproterozoic granitoids in the Tianshan Orogen, NW China: Constraints from the SHRIMP zircon age determination and its tectonic significance. Geochimica, 39(3):197-212. (in Chinese)
[33]   Huang B T, He Z Y, Zong K Q, et al. 2014. Zircon U-Pb and Hf isotopic study of Neoproterozoic granitic gneisses from the Alatage area, Xinjiang: constraints on the Precambrian crustal evolution in the Central Tianshan Block. Chinese Science Bulletin, 59(3):287-296.
[34]   Huang B T, He Z Y, Zhang Z M, et al. 2015a. Early Neoproterozoic granitic gneisses in the Chinese Eastern Tianshan: Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 113:339-352.
doi: 10.1016/j.jseaes.2014.08.021
[35]   Huang Z Y, Long X P, Kröner A, et al. 2015b. Neoproterozoic granitic gneisses in the Chinese Central Tianshan Block: Implications for tectonic affinity and Precambrian crustal evolution. Precambrian Research, 269:73-89.
doi: 10.1016/j.precamres.2015.08.005
[36]   Huang Z Y, Long X P, Wang X C, et al. 2017. Precambrian evolution of the Chinese Central Tianshan Block: Constraints on its tectonic affinity to the Tarim Craton and responses to supercontinental cycles. Precambrian Research, 295:24-37.
doi: 10.1016/j.precamres.2017.04.014
[37]   Jacobsen S B, Wasserburg G J. 1980. Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters, 50(1):139-155.
doi: 10.1016/0012-821X(80)90125-9
[38]   Jahn B M, Wu F Y, Chen B. 2000. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 23(2):82-92.
doi: 10.18814/epiiugs/2000/v23i2/001
[39]   Keto L S, Jacobsen S B. 1987. Nd and Sr isotopic variations of Early Paleozoic oceans. Earth and Planetary Science Letters, 84(1):27-41.
doi: 10.1016/0012-821X(87)90173-7
[40]   Klemd R, John T, Scherer E E, et al. 2011. Changes in dip of subducted slabs at depth: Petrological and geochronological evidence from HP-UHP rocks (Tianshan, NW-China). Earth and Planetary Science Letters, 310(1-2):9-20.
doi: 10.1016/j.epsl.2011.07.022
[41]   Kröner A, Alexeiev D V, Hegner E, et al. 2007. Accretionary growth and crust formation in the Central Asian Orogenic Belt and comparison with the Arabian-Nubian shield. Memoir of the Geological Society of America, 200:181-209.
[42]   Kröner A, Alexeiev D V, Hegner E, et al. 2012. Zircon and muscovite ages, geochemistry, and Nd-Hf isotopes for the Aktyuz metamorphic terrane: Evidence for an Early Ordovician collisional belt in the northern Tianshan of Kyrgyzstan. Gondwana Research, 21(4):901-927.
doi: 10.1016/j.gr.2011.05.010
[43]   Kröner A, Alexeiev D V, Rojas-Agramonte Y, et al. 2013. Mesoproterozoic (Grenville-age) terranes in the Kyrgyz North Tianshan: Zircon ages and Nd-Hf isotopic constraints on the origin and evolution of basement blocks in the southern Central Asian Orogen. Gondwana Research, 23(1):272-295.
doi: 10.1016/j.gr.2012.05.004
[44]   Kröner A, Kovach V, Belousova E, et al. 2014. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Research, 25(1):103-125.
doi: 10.1016/j.gr.2012.12.023
[45]   Li Z X, Bogdanova S V, Collins A S, et al. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160(1-2):179-210.
doi: 10.1016/j.precamres.2007.04.021
[46]   Liu X J, Zhang Z G, Xu J F, et al. 2020. The youngest Permian Ocean in Central Asian Orogenic Belt: Evidence from Geochronology and Geochemistry of Bingdaban Ophiolitic Melange in Central Tianshan, northwestern China. Geological Journal, 55(3):2062-2079.
doi: 10.1002/gj.v55.3
[47]   Long L L, Gao J, Klemd R, et al. 2011. Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen: Implications for continental growth in the southwestern Central Asian Orogenic Belt. Lithos, 126(3-4):321-340.
doi: 10.1016/j.lithos.2011.07.015
[48]   Lü Z, Zhang L, Du J, et al. 2008. Coesite inclusions in garnet from eclogitic rocks in western Tianshan, northwest China: Convincing proof of UHP metamorphism. American Mineralogist, 93(11-12):1845-1850.
doi: 10.2138/am.2008.2800
[49]   Ludwig K R. 2003. User's manual for a geochronological toolkit for Microsoft Excel (Isoplot/Ex version 3.0). Berkeley Geochronology Center, 4:1-71.
[50]   Ma X X, Shu L S, Santosh M, et al. 2013. Paleoproterozoic collisional orogeny in Central Tianshan: Assembling the Tarim Block within the Columbia supercontinent. Precambrian Research, 228:1-19.
doi: 10.1016/j.precamres.2013.01.009
[51]   Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5):635-643.
doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[52]   Meert J G, Torsvik T H. 2003. The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics, 375(1-4):261-288.
doi: 10.1016/S0040-1951(03)00342-1
[53]   Meng Y, Tang S L, Wang K, et al. 2018. Zircon U-Pb age, geochemistry and tectonic implications of Neoproterozoic granite from south of Dabaishitou, East Tianshan. Earth Science, 43(12):4427-4442. (in Chinese)
[54]   Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4):215-224.
doi: 10.1016/0012-8252(94)90029-9
[55]   Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4):956-983.
doi: 10.1093/petrology/25.4.956
[56]   Peccerillo A, Taylor S R. 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63-81.
doi: 10.1007/BF00384745
[57]   Peng M X, Zhong C G, Zuo Q H, et al. 2012. The ages of the gneissic granite from Kawabulag area in the Eastern Tianshan and their geological significances. Xinjiang Geology, 30:12-18. (in Chinese)
[58]   Peucat J J, Vidal P, Bernard-Griffiths J, et al. 1989. Sr, Nd and Pb isotopic systematics in the Archaean low- to high-grade transition zone of southern India: Synaccretion vs. post-accretion Granulites. Journal of Geology, 97(5):537-549.
doi: 10.1086/629333
[59]   Rojas-Agramonte Y, Kroner A, Demoux A, et al. 2011. Detrital and xenocrystic zircon ages from Neoproterozoic to Palaeozoic arc terranes of Mongolia: Significance for the origin of crustal fragments in the Central Asian Orogenic Belt. Gondwana Research, 19(3):751-763.
doi: 10.1016/j.gr.2010.10.004
[60]   Rudnick R L. 1995. Making continental crust. Nature, 378(6557):571-578.
doi: 10.1038/378571a0
[61]   Safonova I, Biske G, Romer R L, et al. 2016. Middle Paleozoic mafic magmatism and ocean plate stratigraphy of the South Tianshan, Kyrgyzstan. Gondwana Research, 30:236-256.
doi: 10.1016/j.gr.2015.03.006
[62]   Sengör A M C, Natal'in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435):299-307.
doi: 10.1038/364299a0
[63]   Sengör A M C, Natal'in B A. 1996. Turkic-type orogeny and its role in the making of the continental crust. Annual Review of Earth and Planetary Sciences, 24(1):263-337.
doi: 10.1146/earth.1996.24.issue-1
[64]   Shi W X, Liao Q A, Hu Y Q, et al. 2010. Characteristics of Mesoproterozoic granites and their geological significances from Middle Tianshan Block, East Tianshan district, NW China. Geological Science and Technology Information, 29(1):29-37. (in Chinese)
[65]   Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society London Special Publications, 42(1):313-345.
doi: 10.1144/GSL.SP.1989.042.01.19
[66]   Taylor S R, Mclennan S M. 1985. The continental crust: Its composition and evolution. Journal of Geology, 94(4):57-72.
[67]   Tretyakov A A, Degtyarev K E, Shatagin K N, et al. 2015. Neoproterozic anorogenic rhyolite-granite volcanoplutonic association of the Aktau-Mointy sialic massif (Central Kazakhstan): Age, source, and paleotectonic position. Petrology, 23(1):22-44.
doi: 10.1134/S0869591115010063
[68]   Wang B, Chen Y, Zhan S, et al. 2007a. Primary Carboniferous and Permian paleomagnetic results from the Yili Block (NW China) and their implications on the geodynamic evolution of Chinese Tianshan Belt. Earth and Planetary Science Letters, 263(3-4):288-308.
doi: 10.1016/j.epsl.2007.08.037
[69]   Wang B, Shu L S, Cluzel D, et al. 2007b. Geochemical constraints on Carboniferous volcanic rocks of the Yili Block (Xinjiang, NW China): Implication for the tectonic evolution of Western Tianshan. Journal of Asian Earth Sciences, 29(1):148-159.
doi: 10.1016/j.jseaes.2006.02.008
[70]   Wang B, Shu L S, Faure M, et al. 2011. Paleozoic tectonics of the southern Chinese Tianshan: Insights from structural, chronological and geochemical studies of the Heiyingshan ophiolitic mélange (NW China). Tectonophysics, 497(1-4):85-104.
doi: 10.1016/j.tecto.2010.11.004
[71]   Wang B, Liu H S, Shu L S, et al. 2014. Early Neoproterozoic crustal evolution in northern Yili Block: Insights from migmatite, orthogneiss and leucogranite of the Wenquan metamorphic complex in the NW Chinese Tianshan. Precambrian Research, 242:58-81.
doi: 10.1016/j.precamres.2013.12.006
[72]   Wang G H, Wang Z Z, Yan C M. 2019. A survey of the genesis classification and geochemical diagram discrimination of granite. Yunnan Geology, 38(1):28-37. (in Chinese)
[73]   Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy & Petrology, 95(4):407-419.
[74]   Xiao W J, Zhang L C, Qin K, et al. 2004. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): Implications for the continental growth of central Asia. American Journal of Science, 304(4):370-395.
doi: 10.2475/ajs.304.4.370
[75]   Xiao W J, Windley B F, Yong Y, et al. 2008a. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China. Journal of Asian Earth Sciences, 35(3-4):323-333.
doi: 10.1016/j.jseaes.2008.10.001
[76]   Xiao W J, Han C M, Yuan C, et al. 2008b. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences, 32(2-4):102-117.
doi: 10.1016/j.jseaes.2007.10.008
[77]   Xiao W J, Windley B F, Yuan C, et al. 2009a. Paleozoic multiple subduction-accretion processes of the southern Altaids. American Journal of Science, 309(3):221-270.
doi: 10.2475/03.2009.02
[78]   Xiao W J, Windley B, Huang B, et al. 2009b. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences, 98(6):1189-1217.
doi: 10.1007/s00531-008-0407-z
[79]   Xiao W J, Windley B F, Allen M B, et al. 2013. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Research, 23(4):1316-1341.
doi: 10.1016/j.gr.2012.01.012
[80]   Xiao W J, Windley B F, Sun S, et al. 2015. A tale of amalgamation of three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43(1):477-507.
doi: 10.1146/earth.2015.43.issue-1
[81]   Xiong F H, Hou M C, Cawood P A, et al. 2019. Neoproterozoic I-type and highly fractionated A-type granites in the Yili Block, Central Asian Orogenic Belt: Petrogenesis and tectonic implications. Precambrian Research, 328:235-249.
doi: 10.1016/j.precamres.2019.04.017
[82]   Yang T N, Li J Y, Sun G H, et al. 2008. Mesoproterozoic continental arc type granite in the Central Tianshan Mountalins: Zircon SHRIMP U-Pb dating and geochemical analyses. Acta Geologica Sinica (English Edition), 82(1):117-125.
doi: 10.1111/acgs.2008.82.issue-1
[83]   Yin J Y, Chen W, Xiao W J, et al. 2017. Geochronology, petrogenesis, and tectonic significance of the latest Devonian-early Carboniferous I-type granites in the Central Tianshan, NW China. Gondwana Research, 47:188-199.
doi: 10.1016/j.gr.2016.02.012
[84]   Zhang D Y, Zhang Z C, Encarnación J, et al. 2012. Petrogenesis of the Kekesai composite intrusion, western Tianshan, NW China: Implications for tectonic evolution during late Paleozoic time. Lithos, 146-147:65-79.
doi: 10.1016/j.lithos.2012.04.002
[85]   Zhang Z Z, Gu L X, Yang H, et al. 2005. Characteristics and genesis of the Pingdingshan mega-augen gneissic granite in the eastern Tianshan Mountain areas. Acta Petrologica Sinica, 21(3):879-908. (in Chinese)
[86]   Zhong L L, Wang B, Alexeiev D V, et al. 2017. Paleozoic multi-stage accretionary evolution of the SW Chinese Tianshan: New constraints from plutonic complex in the Nalati Range. Gondwana Research, 45:254-274.
doi: 10.1016/j.gr.2016.12.012
[87]   Zhu W B, Charvet J, Xiao W J, et al. 2011. Continental accretion and intra-continental deformation of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 42(5):769-773.
doi: 10.1016/j.jseaes.2011.07.021
[88]   Zhu X Y, Wang B, Cluzel D, et al. 2019. Early Neoproterozoic gneissic granitoids in the southern Yili Block (NW China): Constraints on microcontinent provenance and assembly in the SW Central Asian Orogenic Belt. Precambrian Research, 325:111-131.
doi: 10.1016/j.precamres.2019.02.019
[89]   Zhu Y F, Zhou J, Zeng Y. 2007. The Tianger (Bingdaban) shear zone hosted gold deposit, west Tianshan, NW China: Petrographic and geochemical characteristics. Ore Geology Reviews, 32(1-2):337-365.
doi: 10.1016/j.oregeorev.2006.10.006
[1] LIU Pengde, LIU Xijun, XIAO Wenjiao, ZHANG Zhiguo, SONG Yujia, XIAO Yao, LIU Lei, HU Rongguo, WANG Baohua. Geochronology, geochemistry, and Sr-Nd isotopes of Early Carboniferous magmatism in southern West Junggar, northwestern China: Implications for Junggar oceanic plate subduction[J]. Journal of Arid Land, 2021, 13(11): 1163-1182.