Please wait a minute...
Journal of Arid Land  2022, Vol. 14 Issue (10): 1069-1085    DOI: 10.1007/s40333-022-0076-y
Review article     
Antelope adaptations to counteract overheating and water deficit in arid environments
David BLANK1, LI Yaoming1,2,3,*()
1Research Center for Ecology and Environment of Central Asia, Bishkek, Kyrgyzstan
2State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
3University of Chinese Academy of Sciences, Beijing 100049, China
Download: HTML     PDF(424KB)
Export: BibTeX | EndNote (RIS)      


Many arid areas have very severe climates with extremely high summer temperatures, strong solar radiation, and a lack of drinking water during the driest season. Therefore, antelopes living in arid areas are forced to solve two main problems: avoiding overheating and maintaining water balance. Generally, there are physiological, morphological, and behavioral mechanisms for antelope adaptations to arid environments. Among the mechanisms, behavioral adjustments have a minimal cost and are activated first, while physiological mechanisms are the most energetically costly and involve adaptations to high temperatures when other mechanisms are insufficient. In previous publications, some examples of the antelope behavioral adaptations have been described only rarely, while in this review, we try to clarify all available information on the adaptations of antelopes living in arid areas to their native environments, paying particular attention to behavioral adjustments. Behavioral mechanisms, especially daily activity, diet and microclimate selection, and migrations, are so important and commonly used by antelopes in natural conditions, in which physiological mechanisms are usually not involved. Antelopes adjust their behaviors according to environmental changes so successfully that purely physiological mechanisms are discovered under laboratory conditions; for example, adaptive heterothermia or selective brain cooling phenomenon is difficult to observe in their natural habitats. This review provides a better understanding of the main behavioral mechanisms of antelope adaptations to arid environments and allows for the identification of the key factors for successful conservation of antelopes in their natural habitats.

Key wordsantelopes      desert antelopes      behavioral mechanisms      drinking water      water loss      behaviors      arid environments     
Received: 04 June 2022      Published: 31 October 2022
Corresponding Authors: *LI Yaoming (E-mail:
Cite this article:

David BLANK, LI Yaoming. Antelope adaptations to counteract overheating and water deficit in arid environments. Journal of Arid Land, 2022, 14(10): 1069-1085.

URL:     OR

[1]   Baharav D. 1980. Habitat utilization of the dorcas gazelle in a desert saline area. Journal of Arid Environments, 3(2): 161-167.
doi: 10.1016/S0140-1963(18)31664-1
[2]   Baharav D. 1982. Desert habitat partitioning by the dorcas gazelle. Journal of Arid Environments, 5(4): 323-335.
doi: 10.1016/S0140-1963(18)31614-8
[3]   Bärmann E V, Klappert A N, Chen A. 2021. Litocranius walleri (Artiodactyla: Bovidae). Mammalian Species, 53(1005): 65-77.
doi: 10.1093/mspecies/seab007
[4]   Ben-Shahar R, Fairall N. 1987. Comparison of the diurnal activity patterns of blue wildebeest and red hartebeest. South African Journal of Wildlife Research, 17(2): 49-54.
[5]   Berry H H, Siegfried W R, Crowe T M. 1982. Activity patterns in a population of free ranging wildebeest Connochaetes taurinus at Etosha National Park. Zeitschrift für Tierpsychologie, 59(3): 229-246.
doi: 10.1111/j.1439-0310.1982.tb00340.x
[6]   Bigalke R C. 1972. Observations on the behaviour and feeding habits of the springbok, Antidorcas marsupialis. Zoologica Africana, 7(1): 333-359.
[7]   Blank D A. 1990. Persian gazelle. In: In: Kovshar A F. Rare Animals of Desert Regions. Alma-Ata: Publication of Nauka Kazakh SSR, 56-80. (in Russian)
[8]   Blank D A. 1996. Acacia gazelle: Extinction of subspecies. Gnusletter (Antelope Specialist Group, IUCN), 15(2): 7-9.
[9]   Blank D A. 1998. Mating behavior of the Persian gazelle Gazella subgutturosa Guldenstaedt, 1780. Mammalia, 62(4): 409-419.
[10]   Blank D A. 2005. Diet and feeding behavior of Acacia gazelles (Gazella gazella acacia) in Israel. Selevinia, 2005: 147-155.
[11]   Blank D A. 2020. Using microclimate of arid landscape as a resource in goitered gazelle comfort behavior. Journal of Arid Environments, 180: 104201, doi: 10.1016/j.jaridenv.2020.104201.
doi: 10.1016/j.jaridenv.2020.104201
[12]   Bohra H C, Goyal S P, Ghosh P K, et al. 1992. Studies on ethology and eco-physiology of the antelopes of the Indian desert. Annals of Arid Zone, 31(2): 83-96.
[13]   Boyers M, Parrini F, Owen-Smith N, et al. 2019. How free-ranging ungulates with differing water dependencies cope with seasonal variation in temperature and aridity. Conservation Physiology, 7(1): coz064, doi: 10.1093/conphys/coz064.
doi: 10.1093/conphys/coz064
[14]   Bracke M B M. 2011. Review of wallowing in pigs: description of the behaviour and its motivational basis. Applied Animal Behaviour Science, 132(1-2): 1-13.
doi: 10.1016/j.applanim.2011.01.002
[15]   Bucklin R A, Turner L W, Beede D K, et al. 1991. Methods to relieve heat stress for dairy cows in hot, humid climates. Applied Engineering in Agriculture, 7(2): 241-247.
doi: 10.13031/2013.26218
[16]   Cain J W, Krausman P R, Germaine H L. 2004. Antidorcas marsupialis. Mammalian Species, 753: 1-7.
doi: 10.1644/753
[17]   Cain J W, Krausman P R, Rosenstock S S, et al. 2006. Mechanisms of thermoregulation and water balance in desert ungulates. Wildlife Society Bulletin, 34(3): 570-581.
doi: 10.2193/0091-7648(2006)34[570:MOTAWB]2.0.CO;2
[18]   Chagas J, Ferreira M D, Azevedo M D, et al. 2015. Feeding management strategy for sheep in feedlot in hot and humid region. Bioscience Journal, 31(4): 1164-1173.
doi: 10.14393/BJ-v31n4a2015-26154
[19]   Chammem M, Selmi S, Nouira S, et al. 2008. Factors affecting the distribution of Dorcas gazelle. Journal of Zoology, 275(2): 146-152.
doi: 10.1111/j.1469-7998.2008.00421.x
[20]   Child G, Parris R, Le Riche E. 1971. Use of mineralised water by Kalahari wildlife and its effects on habitats. East African Wildlife Journal, 9(1): 124-143.
[21]   du Toit J T, Yetman C A. 2005. Effects of body size on the diurnal activity budgets of African browsing ruminants. Oecologia, 143(2): 317-325.
pmid: 15605272
[22]   Dunbar R I M. 1979. Energetics, thermoregulation and the behavioural ecology of klipspringer. African Journal of Ecology, 17(4): 217-230.
doi: 10.1111/j.1365-2028.1979.tb00258.x
[23]   Estes R D. 1974. Social organization of the African Bovidae. In: Geist V, Walther F. The behavior of ungulates and its relation to management. 2-5 November 1971. Morges, Switzerland: International Symposium at the University of Calgary, 166-205.
[24]   Estes R D. 1991. The behavior guide to African Mammals. Berkeley-Los Angeles: University of California Press, 1-601.
[25]   Fadeev V A, Sludski A A. 1982. The Saiga in Kazakhstan. Alma-Ata: Publication of Nauka Kazakh SSR, 1-158. (in Russian)
[26]   Farhadinia M S, Esfandabad S, Karami M, et al. 2009. Goitered Gazelle, Gazella subgutturosa: its habitat preference and conservation needs in Miandasht Wildlife Refuge, north-eastern Iran (Mammalia: Artiodactyla). Zoology in the Middle East, 46(1): 9-18.
doi: 10.1080/09397140.2009.10638322
[27]   Fedosenko A K. 2000. Argali in Russia and adjacent countries: Status, ecology, behavior, conservation and economic use. Moscow: GU Centrokhotcontrol, 1-291. (in Russian)
[28]   Feldhamer G A, Drickamer L C, Vessey S H, et al. 1999. Mammalogy:Adaptation, Diversity, and Ecology. Boston: WCB McGraw-Hill, 1-529.
[29]   Frey R, Hofmann R R. 1996. Evolutionary morphology of the proboscideal nose of Guenther's dikdik (Rhynchotragus guentheri Thomas, 1894)(Mammalia, Bovidae). Zoologischer Anzeiger, 235: 31-51.
[30]   Fuller A, Moss D G, Skinner J D, et al. 1999. Brain, abdominal and arterial blood temperatures of free-ranging eland in their natural habitat. Pflugers Arch, 438: 671-680.
doi: 10.1007/s004240051092
[31]   Fuller A, Kamerman P R, Maloney S K, et al. 2005. A year in the thermal life of a free-ranging herd of springbok Antidorcas marsupialis. Journal of Experimental Biology, 208(15): 2855-2864.
doi: 10.1242/jeb.01714
[32]   Gaughan J B, Sejian V, Mader T L, et al. 2019. Adaptation strategies: ruminants. Animal Frontiers, 9(1): 47-53.
doi: 10.1093/af/vfy029 pmid: 32002239
[33]   Gauthier-Pilters H. 1984. Aspects of dromedary ecology and ethology. In: Cockrill W R. The Camelid. An all-purpose animal (vol. 1). Proceedings of the Khartoum Workshop on Camels. Uppsala: Scandinavian Institute of African Studies, 412-430.
[34]   Giotto J C, Gerard J F. 2010. The social and spatial organisation of the beira antelope (Dorcatragus megalotis): a relic from the past? European Journal of Wildlife Research, 56(4): 481-491.
doi: 10.1007/s10344-009-0326-8
[35]   Giotto N, Laurent A, Mohamed N, et al. 2008. Observations on the behaviour and ecology of a threatened and poorly known dwarf antelope: the beira (Dorcatragus megalotis). European Journal of Wildlife Research, 54: 539-547.
doi: 10.1007/s10344-008-0177-8
[36]   Gorelov U K. 1972. Breeding of goitered gazelle (Gazella subgutturosa Güldenstaedt) and problem of restoring of its number in the Badkhyz (SE Turkmenistan). In: Theriology (vol. 1). Novosibirsk: Nauka of Siberian Department of Academy of Sciences of USSR, 420-424. (in Russian)
[37]   Greenwald L I. 1967. Water economy of the desert dwelling springbok (Antidorcas marsupialis). MSc Thesis. Syracuse: Syracuse University.
[38]   Habibi K. 1992. Reproductive strategy of the Farasan gazelle Gazella gazella farasani. Journal of Arid Environments, 23: 351-353.
doi: 10.1016/S0140-1963(18)30524-X
[39]   Henley S R, Ward D, Schmidt I. 2007. Habitat selection by two desert-adapted ungulates. Journal of Arid Environments, 70(1): 39-48.
doi: 10.1016/j.jaridenv.2006.12.007
[40]   Hetem R S, Strauss W M, Fick L G, et al. 2010. Variation in the daily rhythm of body temperature of free-living Arabian oryx (Oryx leucoryx): does water limitation drive heterothermy? Journal of Comparative Physiology B, 180: 1111-1119.
doi: 10.1007/s00360-010-0480-z pmid: 20502901
[41]   Hetem R S, Strauss W M, Heusinkveld B G, et al. 2011. Energy advantages of orientation to solar radiation in three African ruminants. Journal of Thermal Biology, 36(7): 452-460.
doi: 10.1016/j.jtherbio.2011.07.012
[42]   Hofmeyr M D. 1985. Thermal properties of the pelages of selected African ungulates. African Zoology, 20(4): 179-189.
[43]   Hofmeyr M D, Louw G N. 1987. Thermoregulation, pelage conductance and renal function in the desert adapted springbok, Antidorcas marsupialis. Journal of Arid Environments, 13(2): 137-151.
[44]   Holcomb K E. 2017. Is shade for horses a comfort resource or a minimum requirement? Journal of Animal Science (Sofia), 95(9): 4206-4212.
[45]   Jessen C L, Laburn H P, Knight M H, et al. 1994. Blood and brain temperatures of free-ranging black wildebeest in their natural environment. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 267(6): 1528-1536.
[46]   Jhala Y V, Giles R H, Bhagwat Jr A M. 1992. Water in the ecophysiology of black buck. Journal of Arid Environments, 22(3): 261-269.
doi: 10.1016/S0140-1963(18)30644-X
[47]   Kihwele E S, Mchomvu V, Owen-Smith N, et al. 2020. Quantifying water requirements of African ungulates through a combination of functional traits. Ecological Monographs, 90(2): e01404, doi: 10.1002/ecm.1404.
doi: 10.1002/ecm.1404
[48]   Kingswood S C, Blank D A. 1996. Gazella subgutturosa. Mammalian Species, 518: 1-10.
[49]   Kingswood S C, Kumamoto A T. 1996. Madoqua guentheri. Mammalian Species, 539: 1-10.
[50]   Kingswood S C, Mallon D P. 2001. Antelopes: Part 4 - North Africa, the Middle East and Asia: Global Survey and Regional Action Plans (2nd ed.). Gland: World Conservation Union, 1-268.
[51]   Knight M H, Knight-Eloff A K, Bornman J J. 1988. The importance of borehole water and lick sites to Kalahari ungulates. Journal of Arid Environments, 15(3): 269-281.
doi: 10.1016/S0140-1963(18)31064-4
[52]   Lindsay A P. 2002. Tautragus oryx. Mammalian Species, 689: 1-5.
doi: 10.1644/1545-1410(2002)689<0001:TO>2.0.CO;2
[53]   Louw G N, Seely M. 1982. Ecology of Desert Organisms. London and New York:Longman Group, Burnt Mill, United Kingdom, 1-194.
[54]   Maloney S K, Moss G, Mitchell D. 2005. Orientation to solar radiation in black wildebeest (Connochaetes gnou). Journal of Comparative Physiology, 191: 1065-1077.
[55]   Mitchell D, Maloney S K, Jessen C, et al. 2002. Adaptive heterothermy and selective brain cooling in arid-zone mammals. Comparative Biochemistry and Physiology, 131(4): 571-585.
[56]   Nandintsetseg D, Bracis C, Leimgruber P, et al. 2019. Variability in nomadism: environmental gradients modulate the movement behaviors of dryland ungulates. Ecosphere, 10(11): e02924, doi: 10.1002/ecs2.2924.
doi: 10.1002/ecs2.2924
[57]   Newby J, Wacher T, Durant S M, et al. 2016. Desert antelopes on the brink: how resilient is the Sahelo-Saharan ecosystem? Antelope Conservation: From Diagnosis to Action, 253-279.
[58]   Ostrowski S, Williams J B, Ismail K. 2003. Heterothermy and the water economy of free-living Arabian oryx (Oryx leucoryx). Journal of Experimental Biology, 206(9): 1471-1478.
doi: 10.1242/jeb.00275
[59]   Ostrowski S, Mésochina P, Williams J B. 2006. Physiological adjustments of sand gazelles (Gazella subgutturosa) to a boom-or-bust economy: standard fasting metabolic rate, total evaporative water loss, and changes in the sizes of organs during food and water restriction. Physiological and Biochemical Zoology, 79(4): 810-819.
pmid: 16826507
[60]   Ostrowski S, Williams J B. 2006. Heterothermy of free-living Arabian sand gazelles (Gazella subgutturosa marica) in a desert environment. Journal of Experimental Biology, 209(8): 1421-1429.
doi: 10.1242/jeb.02151
[61]   Parker K L, Robbins C T. 2018. Thermoregulation in ungulates. In: Bioenergetics of wild herbivores. Boca Raton: CRC Press, 161-182.
[62]   Picard K, Festa-Bianchet M, Thomas D W. 1996. The cost of horniness: heat loss may counter sexual selection for large horns in temperate bovids. Ecoscience, 3(3): 280-284.
doi: 10.1080/11956860.1996.11682343
[63]   Picard K, Thomas D W, Festa-Bianchet M, et al. 1999. Differences in the thermal conductance of tropical and temperate bovid horns. Ecoscience, 6(2): 148-158.
doi: 10.1080/11956860.1999.11682515
[64]   Rahmani A R, Sankaran R. 1991. Blackbuck and chinkara in the Thar Desert: a changing scenario. Journal of Arid Environments, 21(3): 379-391.
doi: 10.1016/S0140-1963(18)30676-1
[65]   Roberts T J. 1977. The Mammals of Pakistan. London: Ernest Benn Limited, 1-361.
[66]   Savinov E F, Bekenov A B. 1983. Asiatic mouflon - Ovis orientalis Gmelin, 1774. In: Gvozdev E V, Kapitonov V I. Mammals of Kazakhstan (vol. 3, part 3) Bovidae. Alma-Ata: Publication of Nauka Kazakh SSR, 209-233. (in Russian)
[67]   Scheibe K M, Robinson T L, Scheibe A, et al. 2009. Variation of the phase of the 24-h activity period in different large herbivore species under European and African conditions. Biological Rhythm Research, 40(2): 169-179.
doi: 10.1080/09291010701875070
[68]   Skinner J D, Louw G N. 1996. The Springbok. In: Transvaal Museum Monograph, 10. Pretoria Transvaal: Museum, 1-50.
[69]   Sokolov V E. 1982. Mammal Skin. Berkley: University of California, 1-695.
[70]   Soldatova N V, Grazhdankin A V. 1989. The evaporative water losses in goitered gazelle (Gazella subgutturosa). Zoological Zhurnal, 68(4): 102-109. (in Russian)
[71]   Stanley-Price M R C. 1989. Animal Reintroductions:the Arabian oryx in Oman. Cambridge: Cambridge University Press, 1-291.
[72]   Strauss M W, Hetem R S, Mitchell D, et al. 2016. Three African antelope species with varying water dependencies exhibit similar selective brain cooling. Journal of Conservation Physiology B, 186(4): 527-540.
[73]   Strauss M W, Hetem R S, Mitchell D, et al. 2017. Body water conservation through selective brain cooling by the carotid rete: a physiological feature for surviving climate change? Journal of Conservation Physiology, 5(1): cow078, doi: 10.1093/conphys/cow078.
doi: 10.1093/conphys/cow078
[74]   Taylor C R. 1968. Hydroscopic food: a source of water for desert antelopes? Nature, 219: 181-182.
doi: 10.1038/219181a0
[75]   Taylor C R. 1970a. Dehydration and heat: effects on temperature regulation of East African ungulates. American Journal of Physiology, 219(4): 1136-1139.
doi: 10.1152/ajplegacy.1970.219.4.1136
[76]   Taylor C R. 1970b. Strategies of temperature regulation: effect on evaporation in East African ungulates. American Journal of Physiology, 219(4): 1131-1135.
doi: 10.1152/ajplegacy.1970.219.4.1131
[77]   Taylor C R. 1972. The desert gazelle: a paradox resolved. Symposium Zoological Society of London, 31: 215-227.
[78]   Taylor C R. 1977. Exercise and environmental heat loads:different mechanisms for solving different problems? In: Robertshaw D. International Review of Physiology (vol. 15): Environmental Physiology II. Baltimore: University Park, 119-146.
[79]   Tinley K L. 1969. Dikdik Madoqua kirki in South West Africa: notes on distribution, ecology and behaviour. Madoqua, 1: 7-33.
[80]   Williamson D T. 1987. Plant underground storage organs as a source of moisture for Kalahari wildlife. African Journal of Ecology, 25(1): 63-64.
doi: 10.1111/j.1365-2028.1987.tb01092.x
[81]   Williamson D T, Delima E. 1991. Water intake of Arabian gazelles. Journal of Arid Environments, 21(3): 371-378.
doi: 10.1016/S0140-1963(18)30675-X
[82]   Yom-Tov Y, Mendelssohn H, Groves C V. 1995. Gazella dorcas. Mammalian Species, 491: 1-6.
[83]   Zhevnerov V V, Bekenov A B, Sludskiy A A. 1983. Goitered gazelle - Gazella subgutturosa Güldenstaedt, 1780. In: Gvozdev E V, Kapitonov V I. Mammals of Kazakhstan (vol. 3, part 3) Bovidae. Alma-Ata: Publication of Nauka Kazakh SSR, 209-233. (in Russian)
No related articles found!