Please wait a minute...
Journal of Arid Land  2020, Vol. 12 Issue (4): 545-560    DOI: 10.1007/s40333-020-0125-3     CSTR: 32276.14.s40333-020-0125-3
Research article     
Integrating water use systems and soil and water conservation measures into a hydrological model of an Iranian Wadi system
MAHMOODI Nariman1,*(), KIESEL Jens1,2, D WAGNER Paul1, FOHRER Nicola1
1 Department of Hydrology and Water Resources Management, Institute for Natural Resource Conservation, Kiel University, Kiel 24118, Germany
2 Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin 12489, Germany
Download: HTML     PDF(1478KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Water resources are precious in arid and semi-arid areas such as the Wadis of Iran. To sustainably manage these limited water resources, the residents of the Iranian Wadis have been traditionally using several water use systems (WUSs) which affect natural hydrological processes. In this study, WUSs and soil and water conservation measures (SWCMs) were integrated in a hydrological model of the Halilrood Basin in Iran. The Soil and Water Assessment Tool (SWAT) model was used to simulate the hydrological processes between 1993 and 2009 at daily time scale. To assess the importance of WUSs and SWCMs, we compared a model setup without WUSs and SWCMs (Default model) with a model setup with WUSs and SWCMs (WUS-SWCM model). When compared to the observed daily stream flow, the number of acceptable calibration runs as defined by the performance thresholds (Nash-Sutcliffe efficiency (NSE)≥0.68, -25%≤percent bias (PBIAS)≤25% and ratio of standard deviation (RSR)≤0.56) is 177 for the Default model and 1945 for the WUS-SWCM model. Also, the average Kling-Gupta ef?ciency (KGE) of acceptable calibration runs for the WUS-SWCM model is higher in both calibration and validation periods. When WUSs and SWCMs are implemented, surface runoff (between 30% and 99%) and water yield (between 0 and 18%) decreased in all sub-basins. Moreover, SWCMs lead to a higher contribution of groundwater flow to the channel and compensate for the extracted water by WUSs from the shallow aquifer. In summary, implementing WUSs and SWCMs in the SWAT model enhances model plausibility significantly.



Key wordsSWAT model      stream flow      Wadis      multi-metric framework      water use systems      soil and water conservation measures      Halilrood Basin     
Received: 11 September 2019      Published: 10 July 2020
Corresponding Authors:
About author: *Corresponding author: Nariman MAHMOODI (E-mail: nmahmoodi@hydrology.uni-kiel.de)
Cite this article:

Nariman MAHMOODI, Jens KIESEL, Paul D WAGNER, Nicola FOHRER. Integrating water use systems and soil and water conservation measures into a hydrological model of an Iranian Wadi system. Journal of Arid Land, 2020, 12(4): 545-560.

URL:

http://jal.xjegi.com/10.1007/s40333-020-0125-3     OR     http://jal.xjegi.com/Y2020/V12/I4/545

Fig. 1 Location of Halilrood Basin in Kerman Province of Iran (a) and water use systems, and climatic and hydrometric stations in the Halilrood Basin (b)
WUSs Number Number of deactivated SWAT-variables affected Hydrological components affected Implemented scale Total annual extracted water
(×104 m3)
Average daily discharge (L/s) Drilling period
1966-1980 1981-1994 1995-2011
Qanats 347 85 WUSHAL Groundwater, baseflow Sub-basin 16.67 1.52 * * *
Springs 184 14 WUSHAL Groundwater, baseflow Sub-basin 9.99 1.36 * * *
Wells 422 93 WUSHAL Groundwater, baseflow Sub-basin 48.56 * 65 59 268
Table 1 Characteristics of the water use systems (WUSs) in the study area
Parameter Unit Description Baft Rabor
SUB-BASIN - Number of the sub-basin in which the reservoir is located 169 198
IYRES - The operational year 2007 2009
RES_ESA hm2 Reservoir surface area when the reservoir is filled to the emergency spillway 8.0 85.0
RES_EVOL ×104 m3 Volume of water needed to fill the reservoir to the emergency spillway 70 4000
RES_PSA hm2 Reservoir surface area when the reservoir is filled to the principal spillway 7.4 32.0
RES_PVOL ×104 m3 Volume of water needed to fill the reservoir to the principal spillway 65 3500
RES_VOL ×104 m3 Initial reservoir volume 30 2000
Table 2 Hydrological details of the two reservoirs (Baft and Rabor dams)
SWCMs Number of sub-basins SWAT-variables affected Hydrological components and processes affected
Semi-circular bunds 17 Curve number Surface runoff and infiltration
Soil bunds 53 Curve number Surface runoff and infiltration
Table 3 Characteristics of the soil and water conservation measures (SWCMs) in the study area
Parameter Description Unit Calibration range Type
Minimum Maximum
CN2 Initial soil conservation service runoff curve number for moisture condition II - -30 -15 Add
SOL_AWC Available water capacity of soil layer mm H2O/mm soil -0.5 0.5 Add
ESCO Soil evaporation compensation factor - 0.90 0.96 Replace
GW_DELAY Ground water delay time d 4 10 Replace
RCHRG_DP Deep aquifer percolation fraction - 0.5 0.9 Replace
ALPHA_BF Base flow alpha factor Per day 0.08 0.20 Replace
SOL_K Saturated hydraulic conductivity mm/h 30 40 Add
EVRCH Reach evaporation adjustment factor - 0.5 0.8 Replace
Table 4 Selected parameters for calibration in the SWAT model
Fig. 2 Number (n) of acceptable calibration runs for each performance metric (black points) for the Default model in the left column and the WUS-SWCM model in the right column. Default model, a model setup without water use systems and water conservation measures; WUS-SWCM model, a model setup with water use systems and water conservation measures. The gray points represent the range of the KGE (Kling-Gupta ef?ciency) for the complete dataset of the 3000 model runs. The last row of both columns shows the selection of acceptable calibration runs after the application of all thresholds for the different performance metrics. NSE, Nash-Sutcliffe efficiency; PBIAS, percent bias; RSR, ratio of standard deviation.
Fig. 3 Comparison of the 150 best calibration runs for the KGE values of the Default model and the WUS-SWCM model setups in the calibration (solid lines) and validation (dashed lines) periods
Fig. 4 Flow duration curves (FDCs) of the selected 150 best calibration runs for the WUS-SWCM model (light green) and Default model (pink) in the calibration (1995-2003; a-f) and validation (2004-2009; g-l) periods. The common FDCs between the two model setups are shown in dark green. Different segments of the hydrograph are separated by dotted vertical lines.
Model setup Calibration period (1995-2003) Validation period (2004-2009)
Performance metrics Performance metrics
KGE RSR KGE RSR
Very high High Middle Low Very low Very high High Middle Low Very low
Default model 0.77 0.22 0.42 0.38 3.10 3.71 0.58 0.32 0.53 0.87 3.44 0.99
WUS-SWCM model 0.82 0.29 0.22 0.70 2.60 3.71 0.61 0.28 1.04 0.81 3.44 0.99
Relative changes + - + - + * + + - + * *
Table 5 Summary of the application of the ratio of standard deviation (RSR) for each flow duration curve (FDC) segment for the average of the 150 best calibration runs of each model setup in calibration (1995-2003) and validation (2004-2009) periods
Model setup Number of model runs Parameters
CN2
(add)
SOL_AWC
(add)
ESCO
(replace)
GW_DELAY
(replace)
RCHRG_DP
(replace)
ALPHA_BF
(replace)
SOL_K
(add)
EVRCH
(replace)
Default model 292 -24.610 0.005 0.956 8.345 0.527 0.143 32.359 0.655
WUS-SWCM model 2868 -20.917 -0.008 0.954 4.791 0.508 0.191 36.070 0.798
Table 6 Parameter sets that lead to the best model performance for each model setup
Fig. 5 Comparison of observed and simulated stream flow from the Default model (a) and the WUS-SWCM model (b) setups in the calibration (1995-2003) and validation (2004-2009) periods
Fig. 6 Detailed comparison of observed and simulated stream flow from the Default model and the WUS-SWCM model setups for the period of January-June in 2001
Fig. 7 Spatial distribution of sub-basins with or without WUSs and SWCMs (a) and changes of hydrological components when WUSs and SWCMs are implemented (b-d). (b), water yield; (c), groundwater flow; (d), surface runoff. Decreasing change is shown as negative value (red) while increasing change is shown as positive value (blue).
[1]   Abouabdillah A, White J, Arnold J G, et al. 2014. Evaluation of soil and water conservation measures in a semi-arid river basin in Tunisia using SWAT. Soil Use and Management, 30(4): 539-549.
doi: 10.1111/sum.12146
[2]   Adimassu Z, Mekonnen K, Yirga C, et al. 2014. Effect of soil bunds on runoff, soil and nutrient losses, and crop yield in the central highlands of Ethiopia. Land Degradation & Development, 25(6): 554-564.
[3]   Aghsaei H, Dinan N M, Moridi A, et al. 2020. Effects of dynamic land use and land cover change on water resources and sediment yied in the Anzali wetland catchment, Gilan, Iran. Science of the Total Environment, 712: 136449, doi: 10.1016/j.scitotenv.2019.136449.
doi: 10.1016/j.scitotenv.2019.136449 pmid: 32050376
[4]   Al-Qurashi A, McIntyre N, Wheater H, et al. 2008. Application of the Kineros2 rainfall-runoff model to an arid catchment in Oman. Journal of Hydrology, 355(1-4): 91-105.
doi: 10.1016/j.jhydrol.2008.03.022
[5]   Arabi M, Frankenberger J, Engel A B, et al. 2007. Representation of agricultural conservation practices with SWAT. Hydrological Processes, 22(16): 3045-3052.
[6]   Arnold J G, Srinivasan R, Muttiah R S, et al. 1998. Large area hydrologic modeling and assessment part I: Model development. JAWRA Journal of the American Water Resources Association, 34(1): 73-89.
doi: 10.1111/jawr.1998.34.issue-1
[7]   Arnold J G, Moriasi D N, Gassman P W, et al. 2012. SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4): 1491-1508.
[8]   Ben S N C, Abida H. 2016. Runoff and sediment yield modeling using SWAT model: Case of Wadi Hatab Basin, Central Tunisia. Arabian Journal of Geosciences, 9: 579, doi: 10.1007/s12517-016-2607-3.
doi: 10.1007/s12517-016-2607-3
[9]   Boustani F. 2008. Sustainable water utilization in arid region of Iran by qanats. International Journal of Civil and Environmental Engineering, 2(7): 152-155.
[10]   Cheng M, Wang Y, Engel B, et al. 2017. Performance assessment of spatial interpolation of precipitation for hydrological process simulation in the three Gorges basin. Water, 9(11): 838, doi: 10.3390/w9110838.
doi: 10.3390/w9110838
[11]   Dile Y T, Daggupati P, George C, et al. 2016. Introducing a new open source GIS user interface for the SWAT model. Environmental Modelling and Software, 85: 129-138.
doi: 10.1016/j.envsoft.2016.08.004
[12]   ESA (the European Space Agency). 2010. Globcover 2009 (Global Land Cover Map), V2.3, 300 m resolution. [2019-09-01]. https://www.esa.int/ESA.
[13]   FAO/IIASA/ISRIC/ISS-CAS/JRC. 2009. Harmonized World Soil Database (version 1.1). FAO, Rome, Italy and IIASA, Laxenburg, Austria. [2019-09-01]. http://www.fao.org.
[14]   Ghaffari G, Keesstra S, Ghodousi J, et al. 2009. SWAT-simulated hydrological impact of land-use change in the Zanjanrood Basin, Northwest Iran. Hydrological Process, 24(7): 892-903.
doi: 10.1002/hyp.v24:7
[15]   Ghobadi Y, Pradhan B, Sayyad G A, et al2015. Simulation of hydrological processes and effects of engineering projects on the Karkheh River Basin and its wetland using SWAT2009. Quaternary International, 374: 144-153.
doi: 10.1016/j.quaint.2015.02.034
[16]   Gupta H V, Sorooshian S, Yapo P O. 1999. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. Journal of Hydrologic Engineering, 4(2): 135-143.
doi: 10.1061/(ASCE)1084-0699(1999)4:2(135)
[17]   Gupta H V, Kling H, Yilmaz K K, et al. 2009. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1-2): 80-91.
doi: 10.1016/j.jhydrol.2009.08.003
[18]   Guse B, Pfannerstill M, Kiesel J, et al. 2019. Analysing spatio-temporal process and parameter dynamics in models to characterise contrasting catchments. Journal of Hydrology, 570: 863-874.
doi: 10.1016/j.jhydrol.2018.12.050
[19]   Haas M B, Guse B, Pfannerstill M, et al. 2016. A joined multi-metric calibration of river discharge and nitrate loads with different performance measures. Journal of Hydrology, 536: 534-545.
doi: 10.1016/j.jhydrol.2016.03.001
[20]   Hallouz F, Meddi M, Mahé G, et al. 2018. Modeling of discharge and sediment transport through the SWAT model in the basin of Harraza (northwest of Algeria). Water Science, 32(1): 79-88.
doi: 10.1016/j.wsj.2017.12.004
[21]   Hashemi H, Berndtsson R, Persson M. 2015. Artificial recharge by floodwater spreading estimated by water balances and groundwater modelling in arid Iran. Hydrological Sciences Journal, 60(2): 336-350.
doi: 10.1080/02626667.2014.881485
[22]   Hernandez M, Miller S N, Goodrich D C, et al. 2000. Modeling runoff response to land cover and rainfall spatial variability in semi-arid watersheds. Environmental Monitoring and Assessment, 64: 285-298.
doi: 10.1023/A:1006445811859
[23]   Hussain I, Abu-Rizaiza O S, Habib M A A, et al. 2008. Revitalizing a traditional dryland water supply system: The karezes in Afghanistan, Iran, Pakistan and the Kingdom of Saudi Arabia. Journal Water International, 33(3): 333-349.
[24]   Ignatius A R, Jones J W. 2017. High resolution water body mapping for SWAT evaporative modelling in the upper Oconee watershed of Georgia, USA. Hydrological Process, 32(1): 51-65.
doi: 10.1002/hyp.v32.1
[25]   IWPCO (Iran Water & Power Resources Development Company). 2018. Annual report of the being operational dams. Tehran: Ministry of Energy. http://www.iwpco.ir.
[26]   Izady A, Davary K, Alizadeh A, et al. 2015. Groundwater conceptualization and modeling using distributed SWAT-based recharge for the semi-arid agricultural Neishaboor Plain, Iran. Hydrogeology Journal, 23: 47-68.
doi: 10.1007/s10040-014-1219-9
[27]   Jamshidi M, Tajrishy M, Maghrebi M. 2010. Modeling of point and non-point source pollution of nitrate with SWAT in the Jajrood River watershed, Iran. International Agricultural Engineering Journal, 19(2): 23-31.
[28]   Jarvis A, Reuter H I, Nelson A, et al.2008. Hole-filled SRTM for the globe. Version 4, available from the CGIAR-CSI SRTM 90 m Database. [2019-09-01]. http://srtm.csi.cgiar.org.
[29]   Khalili A, Bazrafshan Z. 2004. A trend analysis of annual seasonal and monthly precipitation over Iran during the last 116 years. Desert, 9(1): 25-34.
[30]   Khelifa W B, Hermassi T, Strohmeier S, et al. 2017. Parameterization of the effect of bench terraces on runoff and sediment yield by SWAT modeling in a small semi-arid watershed in northern Tunisia. Land Degradation & Development, 28(5): 1568-1578.
[31]   Kling H, Fuchs M, Paulin M. 2012. Runoff conditions in the upper Danube Basin under an ensemble of climate change scenarios. Journal of Hydrology, 424-425: 264-277.
[32]   Lesschen J P, Schoorl J M, Cammeraat L H. 2009. Modelling runoff and erosion for a semi-arid catchment using amulti-scale approach based on hydrological connectivity. Geomorphology, 109(3-4): 174-183.
doi: 10.1016/j.geomorph.2009.02.030
[33]   McIntyre N, Al-Qurashi A. 2009. Performance of ten rainfall-runoff models applied to an arid catchment in Oman. Environmental Modelling & Software, 24(6): 726-738.
[34]   McMichael C E, Hope A S, Loaiciga H A. 2006. Distributed hydrological modelling in California semi-arid shrublands: MIKE SHE model calibration and uncertainty estimation. Journal of Hydrology, 317(3-4): 307-324.
doi: 10.1016/j.jhydrol.2005.05.023
[35]   Moriasi D N, Arnold J G, van Liew M W, et al. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3): 885-900.
doi: 10.13031/2013.23153
[36]   Mostafaeipour A. 2010. Historical background, productivity and technical issues of qanats. Water History, 2: 61-80.
doi: 10.1007/s12685-010-0018-z
[37]   Motiee H, McBean E, Semsar A, et al. 2006. Assessment of the contributions of traditional qanats in sustainable water resources management. Water Resources Development, 22(4): 575-588.
doi: 10.1080/07900620600551304
[38]   Naghibi S A, Pourghasemi H R, Abbaspour K. 2018. A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS. Theoretical and Applied Climatology, 131: 967-984.
doi: 10.1007/s00704-016-2022-4
[39]   Nash J E, Sutcliffe J E. 1970. River flow forecasting through conceptual models Part I: A discussion of principles. Journal of Hydrology, 10(3): 282-290.
doi: 10.1016/0022-1694(70)90255-6
[40]   Nasiri F, Mafakheri M S. 2015. Qanat water supply systems: A revisit of sustainability perspectives. Environmental Systems Research, 4: 13, doi: 10.1186/s40068-015-0039-9.
doi: 10.1186/s40068-015-0039-9
[41]   Neitsch S L, Arnold J, Kiniry J, et al. 2011. Soil and Water Assessment Tool Theoretical Documentation Version 2009. Texas: Texas Water Resources Institute.
[42]   Ning J, Gao Z, Lu Q. 2015. Runoff simulation using a modified SWAT model with spatially continuous HRUs. Environmental Earth Sciences, 74(7): 5895-5905.
doi: 10.1007/s12665-015-4613-2
[43]   Ouessar M, Bruggeman A, Abdelli F, et al. 2009. Modelling water-harvesting systems in the arid south of Tunisia using SWAT. Hydrology and Earth System Sciences, 13(10): 2003-2021.
doi: 10.5194/hess-13-2003-2009
[44]   Peugeot C, Cappelaere B, Vieux B E, et al. 2003. Hydrologic process simulation of a semiarid, endoreic catchment in Sahelian West Niger. 1. Model-aided data analysis and screening. Journal of Hydrology, 279(1-4): 224-243.
doi: 10.1016/S0022-1694(03)00181-1
[45]   Pfannerstill M, Guse B, Fohrer N. 2013. A multi-storage groundwater concept for the SWAT model to emphasize nonlinear groundwater dynamics in lowland catchments. Journal of Hydrology, 28(22): 5599-5612.
[46]   Pfannerstill M, Guse B, Fohrer N. 2014. Smart low flow signature metrics for an improved overall performance. Journal of Hydrology, 510: 447-458.
doi: 10.1016/j.jhydrol.2013.12.044
[47]   Qi Z, Kang G, Chu C, et al. 2017. Comparison of SWAT and GWLF model simulation performance in humid south and semi-arid north of China. Water, 9(567): 2-19.
doi: 10.3390/w9010002
[48]   Rafiei E A, Kappas M, Hosseini S Z. 2015. Assessing the impact of climate change on water resources, crop production and land degradation in a semi-arid river basin. Hydrology Research, 46(6): 854-870.
doi: 10.2166/nh.2015.143
[49]   Riad S, Mania J, Bouchaou L, et al. 2004. Rainfall-runoff model using an artificial neural network approach. Mathematical and Computer Modelling, 40(7-8): 839-846.
doi: 10.1016/j.mcm.2004.10.012
[50]   Rostamian R, Jaleh A, AfyuniI M, et al. 2008. Application of a SWAT model for estimating runoff and sediment in two mountainous basins in central Iran. Hydrological Sciences Journal, 53(5): 977-988.
doi: 10.1623/hysj.53.5.977
[51]   Sadeghi-Tabas S, Samadi S Z, Akbarpour A. 2017. Sustainable groundwater modeling using single- and multi-objective optimization algorithms. Journal of Hydroinformatics, 19(1): 97-114.
doi: 10.2166/hydro.2016.006
[52]   Shrestha M K, Recknagel F, Frizenschaf J, et al. 2016. Assessing SWAT models based on single and multi-site calibration for the simulation of flow and nutrient loads in the semi-arid Onkaparinga catchment in South Australia. Agricultural Water Management, 175: 61-71.
doi: 10.1016/j.agwat.2016.02.009
[53]   Soetaert K, Petzoldt T. 2010. Inverse modelling, sensitivity and Monte Carlo analysis in R using package FME. Journal of Statistical Software, 33(3): 1-28.
[54]   Tavakoli A R, Oweis T, Farahani H, et al. 2010. Improving rainwater productivity with supplemental irrigation in upper Karkheh River basin of Iran. In: CPWF Project: Improving On-farm Agricultural Water Productivity in the Karkheh River Basin (PN8). Research Report No. 6. Semnan, Iran.
[55]   Taye G, Poesen J, van Wesemae B, et al. 2013. Effects of land use, slope gradient, and soil and water conservation structures on runoff and soil loss in semi-arid northern Ethiopia. Physical Geography, 34(3): 236-259.
doi: 10.1080/02723646.2013.832098
[56]   Tigabu T B, Wagner D P, Hörmann G, et al. 2019. Modeling the impact of agricultural crops on the spatial and seasonal variability of water balance components in the Lake Tana basin, Ethiopia. Hydrology Research Journal, 50(5): 1376-1396.
[57]   Voss K A, Famiglietti J S, Lo M H, et al. 2013. Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resources Research, 49(2): 904-914.
doi: 10.1002/wrcr.20078 pmid: 23658469
[58]   Yebdri D, Errih M, Hamlet A, et al. 2007. The water resources management study of the Wadi Tafna Basin (Algeria) using the SWAT model. African Water Journal, 1(1): 33-47.
[59]   Yilmaz K K, Gupta H V, Wagener T. 2008. A process-based diagnostic approach to model evaluation: Application to the NWS distributed hydrologic model. Water Resources Research, 44(9): 1-18.
[60]   Zahabiyoun B, Goodarzi A M, Massah B R R, et al. 2013. Assessment of climate change impact on the Gharesou River basin using SWAT hydrological model. Clean-Soil, Air, Water, 41(6): 601-609.
doi: 10.1002/clen.201100652
[61]   Zettam A, Taleb A, Sauvage S, et al. 2017. Modelling hydrology and sediment transport in a semi-arid and anthropized catchment using the SWAT model: The case of the Tafna River (Northwest Algeria). Water, 9(216): 1-18.
doi: 10.3390/w9010001
No related articles found!