Please wait a minute...
Journal of Arid Land  2025, Vol. 17 Issue (4): 457-480    DOI: 10.1007/s40333-025-0098-3    
Research article     
Accuracy assessment of cloud removal methods for Moderate-resolution Imaging Spectroradiometer (MODIS) snow data in the Tianshan Mountains, China
WANG Qingxue1,2, MA Yonggang2,3,4,5,*(), XU Zhonglin1,2,4, LI Junli6,7,8
1College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
2Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China
3College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
4Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830046, China
5Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830046, China
6Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
7University of Chinese Academy of Sciences, Beijing 100049, China
8Key Laboratory of GIS & RS Application, Xinjiang Uygur Autonomous Region, Urumqi 830011, China
Download: HTML     PDF(2968KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Snow cover plays a critical role in global climate regulation and hydrological processes. Accurate monitoring is essential for understanding snow distribution patterns, managing water resources, and assessing the impacts of climate change. Remote sensing has become a vital tool for snow monitoring, with the widely used Moderate-resolution Imaging Spectroradiometer (MODIS) snow products from the Terra and Aqua satellites. However, cloud cover often interferes with snow detection, making cloud removal techniques crucial for reliable snow product generation. This study evaluated the accuracy of four MODIS snow cover datasets generated through different cloud removal algorithms. Using real-time field camera observations from four stations in the Tianshan Mountains, China, this study assessed the performance of these datasets during three distinct snow periods: the snow accumulation period (September-November), snowmelt period (March-June), and stable snow period (December-February in the following year). The findings showed that cloud-free snow products generated using the Hidden Markov Random Field (HMRF) algorithm consistently outperformed the others, particularly under cloud cover, while cloud-free snow products using near-day synthesis and the spatiotemporal adaptive fusion method with error correction (STAR) demonstrated varying performance depending on terrain complexity and cloud conditions. This study highlighted the importance of considering terrain features, land cover types, and snow dynamics when selecting cloud removal methods, particularly in areas with rapid snow accumulation and melting. The results suggested that future research should focus on improving cloud removal algorithms through the integration of machine learning, multi-source data fusion, and advanced remote sensing technologies. By expanding validation efforts and refining cloud removal strategies, more accurate and reliable snow products can be developed, contributing to enhanced snow monitoring and better management of water resources in alpine and arid areas.



Key wordsreal time camera      cloud removal algorithm      snow cover      Moderate-resolution Imaging Spectroradiometer (MODIS) snow data      snow monitoring     
Received: 27 November 2024      Published: 30 April 2025
Corresponding Authors: *MA Yonggang (E-mail: mayg@xju.edu.cn)
Cite this article:

WANG Qingxue, MA Yonggang, XU Zhonglin, LI Junli. Accuracy assessment of cloud removal methods for Moderate-resolution Imaging Spectroradiometer (MODIS) snow data in the Tianshan Mountains, China. Journal of Arid Land, 2025, 17(4): 457-480.

URL:

http://jal.xjegi.com/10.1007/s40333-025-0098-3     OR     http://jal.xjegi.com/Y2025/V17/I4/457

Fig. 1 Schematic diagram of the study area and locations of four real-time cameras observation stations. DEM, digital elevation model.
Station Geographic
coordinate
Elevation (m) Elevation type Monitoring period
(yyyy-mm-dd)
Surface
Luotuobozi Station 42°36′12′′N, 84°39′11′′E 2395.19 Mid- to high-altitude 2016-09-06-
2020-07-01
Grassland
Shuidian
Station
43°06′38′′N, 83°58′45′′E 2955.58 Mid- to high-altitude 2016-09-06-
2020-07-01
Grassland
Shenglidaoban Station 43°08′39′′N, 85°45′53′′E 3317.75 High-altitude 2016-09-06-
2018-05-05
Grassland
Chahanwusu Station 42°22′48′′N, 85°28′07′′E 1962.19 Mid- to high-altitude 2016-09-06-
2020-07-01
Barren or sparsely vegetated land
Table 1 Background information about the each real-time camera station
MODIS product
Snow Snow-free
Observation Snow TP FN
Snow-free FP TN
Table 2 Confusion matrix for precision validation
Station Dataset Type TP FN FP TN Accuracy Precision Recall f OE UE
Luotuobozi Station Dataset 1 Clear-sky 269 29 1 382 0.948 0.996 0.902 0.947 0.004 0.098
Cloudy 366 54 6 288 0.907 0.984 0.874 0.925 0.028 0.126
All sky 635 83 7 670 0.926 0.989 0.885 0.934 0.014 0.115
Dataset 2 Clear-sky 274 24 2 381 0.955 0.993 0.919 0.955 0.007 0.081
Cloudy 372 48 11 283 0.909 0.971 0.888 0.928 0.051 0.112
All sky 646 72 13 664 0.930 0.980 0.901 0.939 0.026 0.099
Dataset 3 Clear-sky 270 28 5 378 0.942 0.982 0.906 0.942 0.018 0.094
Cloudy 379 41 20 274 0.906 0.950 0.905 0.927 0.092 0.095
All sky 649 69 25 652 0.923 0.963 0.905 0.933 0.051 0.095
Dataset 4 Clear-sky 87 21 4 153 0.888 0.956 0.798 0.870 0.033 0.202
Cloudy 97 31 2 115 0.852 0.980 0.764 0.858 0.022 0.236
All sky 184 52 6 268 0.871 0.968 0.780 0.864 0.028 0.220
Shuidian Station Dataset 1 Clear-sky 257 58 4 136 0.864 0.985 0.816 0.892 0.029 0.184
Cloudy 482 93 9 169 0.865 0.982 0.838 0.904 0.051 0.162
All sky 739 151 13 305 0.864 0.983 0.830 0.900 0.041 0.170
Dataset 2 Clear-sky 271 44 6 134 0.890 0.978 0.860 0.916 0.043 0.140
Cloudy 536 39 13 165 0.931 0.976 0.932 0.954 0.073 0.068
All sky 807 83 19 299 0.916 0.977 0.907 0.941 0.060 0.093
Dataset 3 Clear-sky 262 53 13 127 0.855 0.953 0.832 0.888 0.093 0.168
Cloudy 477 98 28 150 0.833 0.945 0.830 0.883 0.157 0.170
All sky 739 151 41 277 0.841 0.947 0.830 0.885 0.129 0.170
Dataset 4 Clear-sky 100 32 0 54 0.828 1.000 0.758 0.862 0.000 0.242
Cloudy 121 23 2 46 0.870 0.984 0.840 0.906 0.042 0.160
All sky 221 55 2 100 0.849 0.991 0.801 0.886 0.020 0.199
Shenglidaoban Station Dataset 1 Clear-sky 95 22 0 103 0.882 1.000 0.812 0.896 0.000 0.188
Cloudy 291 17 0 79 0.953 1.000 0.945 0.972 0.000 0.055
All sky 386 39 0 182 0.928 1.000 0.908 0.952 0.000 0.092
Dataset 2 Clear-sky 97 20 0 103 0.893 1.000 0.829 0.907 0.000 0.171
Cloudy 300 8 4 75 0.966 0.987 0.974 0.980 0.080 0.026
All sky 397 28 4 178 0.941 0.990 0.934 0.961 0.033 0.066
Dataset 3 Clear-sky 94 23 0 103 0.877 1.000 0.803 0.891 0.000 0.197
Cloudy 297 11 6 73 0.953 0.980 0.964 0.972 0.120 0.036
All sky 391 34 6 176 0.927 0.985 0.920 0.951 0.050 0.080
Dataset 4 Clear-sky 85 22 0 98 0.878 1.000 0.802 0.890 0.000 0.198
Cloudy 218 14 0 77 0.954 1.000 0.944 0.971 0.000 0.056
All sky 303 36 0 175 0.925 1.000 0.899 0.947 0.000 0.101
Chahanwusu Station Dataset 1 Clear-sky 17 1 7 813 0.990 0.739 0.944 0.829 0.009 0.056
Cloudy 28 16 22 490 0.926 0.583 0.636 0.609 0.045 0.364
All sky 45 17 29 1303 0.964 0.634 0.726 0.677 0.023 0.274
Chahanwusu Station Dataset 2 Clear-sky 13 5 5 815 0.990 0.722 0.722 0.722 0.005 0.278
Cloudy 35 9 28 484 0.924 0.556 0.795 0.654 0.063 0.205
All sky 48 14 33 1299 0.968 0.593 0.774 0.671 0.024 0.226
Dataset 3 Clear-sky 14 4 9 811 0.987 0.609 0.778 0.683 0.009 0.222
Cloudy 27 17 18 494 0.928 0.600 0.614 0.607 0.041 0.386
All sky 41 21 27 1305 0.967 0.603 0.661 0.631 0.019 0.339
Dataset 4 Clear-sky 4 3 2 363 0.986 0.667 0.571 0.615 0.006 0.429
Cloudy 3 13 1 218 0.934 0.600 0.188 0.286 0.010 0.813
All sky 7 16 3 581 0.965 0.636 0.304 0.412 0.007 0.696
Table S1 Accuracy assessment of the four cloud removal methods
Station Dataset Type TP FN FP TN Accuracy Precision Recall f OE UE
Luotuobozi Station Dataset 1 Clear-sky 61 13 1 136 0.934 0.984 0.824 0.897 0.007 0.176
Cloudy 59 16 3 70 0.872 0.952 0.787 0.861 0.041 0.213
All sky 120 29 4 206 0.908 0.968 0.805 0.879 0.019 0.195
Dataset 2 Clear-sky 64 10 1 136 0.948 0.985 0.865 0.921 0.007 0.135
Cloudy 63 12 6 67 0.878 0.913 0.840 0.875 0.082 0.160
All sky 127 22 7 203 0.919 0.948 0.852 0.898 0.033 0.148
Dataset 3 Clear-sky 61 13 4 133 0.919 0.938 0.824 0.878 0.029 0.176
Cloudy 64 11 9 64 0.865 0.877 0.853 0.865 0.123 0.147
All sky 125 24 13 197 0.897 0.906 0.839 0.871 0.062 0.161
Dataset 4 Clear-sky 18 9 1 64 0.891 0.947 0.667 0.783 0.015 0.333
Cloudy 14 6 2 30 0.846 0.875 0.700 0.778 0.063 0.300
All sky 32 15 3 94 0.875 0.914 0.681 0.780 0.031 0.319
Shuidian Station Dataset 1 Clear-sky 58 25 3 86 0.837 0.951 0.699 0.806 0.034 0.301
Cloudy 87 41 7 52 0.743 0.926 0.680 0.784 0.119 0.320
All sky 145 66 10 138 0.788 0.935 0.687 0.792 0.068 0.313
Dataset 2 Clear-sky 61 22 5 84 0.843 0.924 0.735 0.819 0.056 0.265
Cloudy 111 17 5 54 0.882 0.957 0.867 0.910 0.085 0.133
All sky 172 39 10 138 0.864 0.945 0.815 0.875 0.068 0.185
Dataset 3 Clear-sky 59 24 10 79 0.802 0.855 0.711 0.776 0.112 0.289
Cloudy 97 31 15 44 0.754 0.866 0.758 0.808 0.254 0.242
All sky 156 55 25 123 0.777 0.862 0.739 0.796 0.169 0.261
Dataset 4 Clear-sky 27 17 0 38 0.793 1.000 0.614 0.761 0.000 0.386
Cloudy 20 1 0 1 0.955 1.000 0.952 0.976 0.000 0.048
All sky 47 18 0 39 0.827 1.000 0.723 0.839 0.000 0.277
Shenglidaoban Station Dataset 1 Clear-sky 29 3 0 53 0.965 1.000 0.906 0.951 0.000 0.094
Cloudy 57 5 0 30 0.946 1.000 0.919 0.958 0.000 0.081
All sky 86 8 0 83 0.955 1.000 0.915 0.956 0.000 0.085
Shenglidaoban Station Dataset 2 Clear-sky 30 2 0 53 0.976 1.000 0.938 0.968 0.000 0.063
Cloudy 60 2 3 27 0.946 0.952 0.968 0.960 0.100 0.032
All sky 90 4 3 80 0.960 0.968 0.957 0.963 0.036 0.043
Dataset 3 Clear-sky 29 3 0 53 0.965 1.000 0.906 0.951 0.000 0.094
Cloudy 60 2 4 26 0.935 0.938 0.968 0.952 0.133 0.032
All sky 89 5 4 79 0.949 0.957 0.947 0.952 0.048 0.053
Dataset 4 Clear-sky 26 3 0 51 0.963 1.000 0.897 0.945 0.000 0.103
Cloudy 53 3 0 29 0.965 1.000 0.946 0.972 0.000 0.054
All sky 79 6 0 80 0.964 1.000 0.929 0.963 0.000 0.071
Chahanwusu Station Dataset 1 Clear-sky 4 0 0 251 1.000 1.000 1.000 1.000 0.000 0.000
Cloudy 6 7 3 88 0.904 0.667 0.462 0.545 0.033 0.538
All sky 10 7 3 339 0.972 0.769 0.588 0.667 0.009 0.412
Dataset 2 Clear-sky 3 1 0 502 0.998 1.000 0.750 0.857 0.000 0.250
Cloudy 8 5 4 87 0.913 0.667 0.615 0.640 0.044 0.385
All sky 11 6 4 589 0.984 0.733 0.647 0.688 0.007 0.353
Dataset 3 Clear-sky 4 0 3 499 0.994 0.571 1.000 0.727 0.006 0.000
Cloudy 5 8 7 84 0.856 0.417 0.385 0.400 0.077 0.615
All sky 9 8 10 583 0.970 0.474 0.529 0.500 0.017 0.471
Dataset 4 Clear-sky 0 1 1 122 0.984 0.000 0.000 0.000 0.008 1.000
Cloudy 1 7 1 35 0.818 0.500 0.125 0.200 0.028 0.875
All sky 1 8 2 157 0.940 0.333 0.111 0.167 0.013 0.889
Table S2 Accuracy assessment of the four cloud removal methods during the snow accumulation period (September-November)
Station Dataset Type TP FN FP TN Accuracy Precision Recall f OE UE
Luotuobozi Station Dataset 1 Clear-sky 47 15 0 138 0.925 1.000 0.758 0.862 0.000 0.242
Cloudy 112 32 3 141 0.878 0.974 0.778 0.865 0.021 0.222
All sky 159 47 3 279 0.898 0.981 0.772 0.864 0.011 0.228
Dataset 2 Clear-sky 49 13 1 137 0.930 0.980 0.790 0.875 0.007 0.210
Cloudy 120 24 5 139 0.899 0.960 0.833 0.892 0.035 0.167
All sky 169 37 6 276 0.912 0.966 0.820 0.887 0.021 0.180
Dataset 3 Clear-sky 50 12 1 137 0.935 0.980 0.806 0.885 0.007 0.194
Cloudy 120 24 11 133 0.878 0.916 0.833 0.873 0.076 0.167
All sky 170 36 12 270 0.902 0.934 0.825 0.876 0.043 0.175
Dataset 4 Clear-sky 13 11 3 56 0.831 0.813 0.542 0.650 0.051 0.458
Cloudy 30 17 0 56 0.835 1.000 0.638 0.779 0.000 0.362
All sky 43 28 3 112 0.833 0.935 0.606 0.735 0.026 0.394
Shuidian Station Dataset 1 Clear-sky 57 33 1 50 0.759 0.983 0.633 0.770 0.020 0.367
Cloudy 176 52 2 117 0.844 0.989 0.772 0.867 0.017 0.228
All sky 233 85 3 167 0.820 0.987 0.733 0.841 0.018 0.267
Dataset 2 Clear-sky 68 22 1 50 0.837 0.986 0.756 0.855 0.020 0.244
Cloudy 206 22 8 111 0.914 0.963 0.904 0.932 0.067 0.096
All sky 274 44 9 161 0.891 0.968 0.862 0.912 0.053 0.138
Shuidian Station Dataset 3 Clear-sky 61 29 3 48 0.773 0.953 0.678 0.792 0.059 0.322
Cloudy 162 66 13 106 0.772 0.926 0.711 0.804 0.109 0.289
All sky 223 95 16 154 0.773 0.933 0.701 0.801 0.094 0.299
Dataset 4 Clear-sky 25 15 0 16 0.732 1.000 0.625 0.769 0.000 0.375
Cloudy 27 22 2 45 0.750 0.931 0.551 0.692 0.043 0.449
All sky 52 37 2 61 0.743 0.963 0.584 0.727 0.032 0.416
Shenglidaoban Station Dataset 1 Clear-sky 33 19 0 17 0.725 1.000 0.635 0.776 0.000 0.365
Cloudy 87 12 0 20 0.899 1.000 0.879 0.935 0.000 0.121
All sky 120 31 0 37 0.835 1.000 0.795 0.886 0.000 0.205
Dataset 2 Clear-sky 34 18 0 17 0.739 1.000 0.654 0.791 0.000 0.346
Cloudy 93 6 1 19 0.941 0.989 0.939 0.964 0.050 0.061
All sky 127 24 1 36 0.867 0.992 0.841 0.910 0.027 0.159
Dataset 3 Clear-sky 32 20 0 17 0.710 1.000 0.615 0.762 0.000 0.385
Cloudy 90 9 2 18 0.908 0.978 0.909 0.942 0.100 0.091
All sky 122 29 2 35 0.835 0.984 0.808 0.887 0.054 0.192
Dataset 4 Clear-sky 28 18 0 15 0.705 1.000 0.609 0.757 0.000 0.391
Cloudy 56 10 0 20 0.884 1.000 0.848 0.918 0.000 0.152
All sky 84 28 0 35 0.810 1.000 0.750 0.857 0.000 0.250
Chahanwusu Station Dataset 1 Clear-sky 0 0 1 279 0.996 0.000 0.000 0.000 0.004 -
Cloudy 0 0 1 207 0.995 0.000 0.000 0.000 0.005 -
All sky 0 0 2 486 0.996 0.000 0.000 0.000 0.004 -
Dataset 2 Clear-sky 0 0 1 279 0.996 0.000 0.000 0.000 0.004 -
Cloudy 0 0 7 201 0.966 0.000 0.000 0.000 0.034 -
All sky 0 0 8 480 0.984 0.000 0.000 0.000 0.016 -
Dataset 3 Clear-sky 0 0 0 280 1.000 0.000 0.000 0.000 0.000 -
Cloudy 0 0 1 207 0.995 0.000 0.000 0.000 0.005 -
All sky 0 0 1 487 0.998 0.000 0.000 0.000 0.002 -
Dataset 4 Clear-sky 0 0 1 133 0.993 0.000 0.000 0.000 0.007 -
Cloudy 0 0 1 102 0.990 0.000 0.000 0.000 0.010 -
All sky 0 0 2 235 0.992 0.000 0.000 0.000 0.008 -
Table S3 Accuracy assessment of the four cloud removal methods during the snowmelt period (March-June)
Station Dataset Type TP FN FP TN Accuracy Precision Recall f OE UE
Luotuobozi Station Dataset 1 Clear-sky 160 1 0 0 0.994 1.000 0.994 0.997 - 0.006
Cloudy 195 5 0 0 0.975 1.000 0.975 0.987 - 0.025
All sky 355 6 0 0 0.983 1.000 0.983 0.992 - 0.017
Dataset 2 Clear-sky 160 1 0 0 0.994 1.000 0.994 0.997 - 0.006
Cloudy 189 11 0 0 0.945 1.000 0.945 0.972 - 0.055
All sky 349 12 0 0 0.967 1.000 0.967 0.983 - 0.033
Luotuobozi Station Dataset 3 Clear-sky 158 3 0 0 0.981 1.000 0.981 0.991 - 0.019
Cloudy 195 5 0 0 0.975 1.000 0.975 0.987 - 0.025
All sky 353 8 0 0 0.978 1.000 0.978 0.989 - 0.022
Dataset 4 Clear-sky 56 1 0 0 0.982 1.000 0.982 0.991 - 0.018
Cloudy 53 8 0 0 0.869 1.000 0.869 0.930 - 0.131
All sky 109 9 0 0 0.924 1.000 0.924 0.960 - 0.076
Shuidian Station Dataset 1 Clear-sky 142 0 0 0 1.000 1.000 1.000 1.000 - 0.000
Cloudy 219 0 0 0 1.000 1.000 1.000 1.000 - 0.000
All sky 361 0 0 0 1.000 1.000 1.000 1.000 - 0.000
Dataset 2 Clear-sky 142 0 0 0 1.000 1.000 1.000 1.000 - 0.000
Cloudy 219 0 0 0 1.000 1.000 1.000 1.000 - 0.000
All sky 361 0 0 0 1.000 1.000 1.000 1.000 - 0.000
Dataset 3 Clear-sky 142 0 0 0 1.000 1.000 1.000 1.000 - 0.000
Cloudy 218 1 0 0 0.995 1.000 0.995 0.998 - 0.005
All sky 360 1 0 0 0.997 1.000 0.997 0.999 - 0.003
Dataset 4 Clear-sky 48 0 0 0 1.000 1.000 1.000 1.000 - 0.000
Cloudy 74 0 0 0 1.000 1.000 1.000 1.000 - 0.000
All sky 122 0 0 0 1.000 1.000 1.000 1.000 - 0.000
Shenglidaoban Station Dataset 1 Clear-sky 33 0 0 0 1.000 1.000 1.000 1.000 - 0.000
Cloudy 147 0 0 0 1.000 1.000 1.000 1.000 - 0.000
All sky 180 0 0 0 1.000 1.000 1.000 1.000 - 0.000
Dataset 2 Clear-sky 33 0 0 0 1.000 1.000 1.000 1.000 - 0.000
Cloudy 147 0 0 0 1.000 1.000 1.000 1.000 - 0.000
All sky 180 0 0 0 1.000 1.000 1.000 1.000 - 0.000
Dataset 3 Clear-sky 33 0 0 0 1.000 1.000 1.000 1.000 - 0.000
Cloudy 147 0 0 0 1.000 1.000 1.000 1.000 - 0.000
All sky 180 0 0 0 1.000 1.000 1.000 1.000 - 0.000
Dataset 4 Clear-sky 31 0 0 0 1.000 1.000 0.939 0.969 - 0.061
Cloudy 109 0 0 0 1.000 1.000 0.741 0.852 - 0.259
All sky 140 0 0 0 1.000 1.000 0.778 0.875 - 0.222
Chahanwusu Station Dataset 1 Clear-sky 13 1 5 168 0.968 0.722 0.929 0.813 0.029 0.071
Cloudy 22 9 16 127 0.856 0.579 0.710 0.638 0.112 0.290
All sky 35 10 21 295 0.914 0.625 0.778 0.693 0.066 0.222
Dataset 2 Clear-sky 10 4 4 169 0.957 0.714 0.714 0.714 0.023 0.286
Cloudy 27 4 17 126 0.879 0.614 0.871 0.720 0.119 0.129
All sky 37 8 21 295 0.920 0.638 0.822 0.718 0.066 0.178
Dataset 3 Clear-sky 10 4 6 167 0.947 0.625 0.714 0.667 0.035 0.286
Cloudy 22 9 10 133 0.891 0.688 0.710 0.698 0.070 0.290
All sky 32 13 16 300 0.920 0.667 0.711 0.688 0.051 0.289
Dataset 4 Clear-sky 4 2 0 84 0.978 1.000 0.667 0.800 0.000 0.333
Cloudy 2 6 0 71 0.924 1.000 0.250 0.400 0.000 0.750
All sky 6 8 0 155 0.953 1.000 0.429 0.600 0.000 0.571
Table S4 Accuracy assessment of the four cloud removal methods during the stable snow period (December-February of the following year)
Fig. 2 Time series of snow data at Luotuobozi (a), Shuidian (b), Shenglidaoban (c), and Chahanwusu (d) stations located in the Tianshan Mountains, central Xinjiang. The white areas represent snow-free.
Fig. 3 Real-time camera image of Luotuobozi Station on 5 November 2017
Fig. 4 Diagram illustrating snow cover classification results of different datasets on 5 November 2017. (a), Dataset 1; (b), Dataset 2; (c), Dataset 3; (d), Dataset 4.
Fig. 5 Real-time camera image of Luotuobozi Station on 19 April 2018
Fig. 6 Diagram illustrating snow cover classification results of different datasets on 19 April 2018. (a), Dataset 1; (b), Dataset 2; (c), Dataset 3; (d), Dataset 4.
Fig. 7 Real-time camera image of Chahanwusu Station on 21 December 2016
Fig. 8 Diagram illustrating snow cover classification results of different datasets on 21 December 2016. (a), Dataset 1; (b), Dataset 2; (c), Dataset 3; (d), Dataset 4.
[1]   Bergeron J, Royer A, Turcotte R, et al. 2014. Snow cover estimation using blended MODIS and AMSR-E data for improved watershed-scale spring streamflow simulation in Quebec, Canada. Hydrological Processes, 28(16): 4626-4639.
[2]   Berman E E, Bolton D K, Coops N C, et al. 2018. Daily estimates of Landsat fractional snow cover driven by MODIS and dynamic time-warping. Remote Sensing of Environment, 216: 635-646.
[3]   Breen C, Vuyovich C, Odden J, et al. 2023. Evaluating MODIS snow products using an extensive wildlife camera network. Remote Sensing of Environment, 295: 113648, doi: 10.1016/j.rse.2023.113648.
[4]   Burgos V L, Gupta H V, Clark M. 2013. Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach. Hydrology and Earth System Sciences, 17(5): 1809-1823.
[5]   Chen K, Cao X G, Yang J H, et al. 2014. A method of generating national snow-cover model based on C4.5 algorithm of decision tree. Electronic Design Engineering, 22(17): 44-47. (in Chinese)
[6]   Chen S Y, Wang X Y, Guo H, et al. 2020. A conditional probability interpolation method based on a space-time cube for MODIS snow cover products gap filling. Remote Sensing, 12(21): 3577, doi: 10.3390/rs12213577.
[7]   Deng G, Tang Z G, Dong C Y, et al. 2024. Development and evaluation of a cloud-gap-filled MODIS normalized difference snow index product over High Mountain Asia. Remote Sensing, 16(1): 192, doi: 10.3390/rs16010192.
[8]   Deng J, Huang X D, Feng Q S, et al. 2015. Toward improved daily cloud-free fractional snow cover mapping with multi-source remote sensing data in China. Remote Sensing, 7(6): 6986-7006.
[9]   Dietz A J, Kuenzer C, Conrad C. 2013. Snow-cover variability in central Asia between 2000 and 2011 derived from improved MODIS daily snow-cover products. International Journal of Remote Sensing, 34(11): 3879-3902.
[10]   Dong C Y, Menzel L. 2016. Improving the accuracy of MODIS 8-day snow products with in situ temperature and precipitation data. Journal of Hydrology, 534: 466-477.
[11]   Dong C Y, Menzel L. 2017. Snow process monitoring in montane forests with time-lapse photography. Hydrological Processes, 31(16): 2872-2886.
[12]   Eastman R, Warren S G, Hahn C J. 2021. Climatic Atlas of Clouds Over Land and Ocean. Department of Atmospheric Sciences University of Washington. Seattle Washington 98195-1640. [2024-03-30]. http://www.atmos.washington.edu/CloudMap/index.html.
[13]   Gafurov A, Bárdossy A. 2009. Cloud removal methodology from MODIS snow cover product. Hydrology and Earth System Sciences, 13(7): 1361-1373.
[14]   Gao Y, Wang X T, Mou N X, et al. 2024. Evaluating MODIS cloud-free snow cover datasets using massive spatial benchmark data in the Tibetan Plateau. Science of the Total Environment, 949: 175245, doi: 10.1016/j.scitotenv.2024.175245.
[15]   Garvelmann J, Pohl S, Weiler M. 2013. From observation to the quantification of snow processes with a time-lapse camera network. Hydrology and Earth System Sciences, 17(4): 1415-1429.
[17]   Gurung R D, Kulkarni A V, Giriraj A, et al. 2011. Changes in seasonal snow cover in Hindu Kush-Himalayan Region. The Cryosphere Discussions, 5(2): 755-777.
[18]   Hall D K, Riggs G A, DiGirolamo N E, et al. 2019. Evaluation of MODIS and VIIRS cloud-gap-filled snow-cover products for production of an Earth science data record. Hydrology and Earth System Sciences, 23(12): 5227-5241.
[19]   Hall D K, Riggs G A, DiGirolamo N E, et al. 2024. Comparison of the NASA standard moderate-resolution imaging spectroradiometer and visible infrared imaging radiometer suite snow-cover products for creation of a climate data record: A case study in the Great Basin of the Western United States. Remote Sensing, 16(16): 3029, doi: 10.3390/rs16163029.
[20]   Hao X H, Huang G H, Zheng Z J, et al. 2022. Development and validation of a new MODIS snow-cover-extent product over China. Hydrology and Earth System Sciences, 26(8): 1937-1952.
[21]   Haq M A, Ahmed A, Ilyas K, et al. 2022. Analysis of environmental factors using AI and ML methods. Scientific Reports, 12(1): 13267, doi: 10.1038/s41598-022-16665-7.
pmid: 35918395
[22]   Hou J L, Huang C L, Zhang Y, et al. 2022. Reconstructing a gap-free MODIS normalized difference snow index product using a long short-term memory network. IEEE Transactions on Geoscience and Remote Sensing, 60: 4304914, doi: 10.1109/TGRS.2022.3178421.
[23]   Hu R J. 2004. Physical Geography of Tianshan Mountains in China. Beijing: China Environmental Science Press, 39-57. (in Chinese)
[24]   Huang X D, Hao X H, Wang W, et al. 2012. Algorithms for cloud removal in MODIS daily snow products. Journal of Glaciology and Geocryology, 34(5): 1118-1126. (in Chinese)
[25]   Huang Y, Xu J H, Xu J Y, et al. 2022. HMRFS-TP: long-term daily gap-free snow cover products over the Tibetan Plateau from 2002 to 2021 based on hidden Markov random field model. Earth System Science Data Discussions, 14(9): 4445-4462.
[26]   Ide R, Oguma H. 2013. A cost-effective monitoring method using digital time-lapse cameras for detecting temporal and spatial variations of snowmelt and vegetation phenology in alpine ecosystems. Ecological Informatics, 16: 25-34.
[27]   Jing Y H, Li X H, Shen H F. 2022. STAR NDSI collection: a cloud-free MODIS NDSI dataset (2001-2020) for China. Earth System Science Data, 14(7): 3137-3156.
[28]   Li X H, Jing Y H, Shen H F, et al. 2019. The recent developments in cloud removal approaches of MODIS snow cover product. Hydrology and Earth System Sciences, 23(5): 2401-2416.
[29]   Li Y P, Chen Y N, Li Z. 2020. Climate and topographic controls on snow phenology dynamics in the Tienshan Mountains, Central Asia. Atmospheric Research, 236: 104813, doi: 10.1016/j.atmosres.2019.104813.
[30]   Liang T G, Zhang X T, Xie H J, et al. 2008. Toward improved daily snow cover mapping with advanced combination of MODIS and AMSR-E measurements. Remote Sensing of Environment, 112(10): 3750-3761.
[31]   Liu C Y, Huang X D, Li X B, et al. 2020. MODIS fractional snow cover mapping using machine learning technology in a mountainous area. Remote Sensing, 12(6): 962, doi: 10.3390/rs12060962.
[32]   Liu J P, Zang W C, Liu T. 2017. Monitoring recent changes in snow cover in Central Asia using improved MODIS snow-cover products. Journal of Arid Land, 9(5): 763-777.
doi: 10.1007/s40333-017-0103-6
[33]   Luo J F, Dong C Y, Lin K R, et al. 2022. Mapping snow cover in forests using optical remote sensing, machine learning and time-lapse photography. Remote Sensing of Environment, 275: 113017, doi: 10.1016/j.rse.2022.113017.
[34]   NCDC (National Cryosphere Desert Data Center). 2021 Daily fractional snow cover dataset over High Asia during 2002 to 2018. [2024-11-03]. https://cstr.cn/CSTR:11738.11.ncdc.nieer.2020.1660.
[35]   Painter T H, Brodzik M J, Racoviteanu A, et al. 2012. Automated mapping of Earth's annual minimum exposed snow and ice with MODIS. Geophysical Research Letters, 39(20): L20501, doi: 10.1029/2012GL053340.
[36]   Pan F B, Jiang L M, Wang G X, et al. 2024. MODIS daily cloud-gap-filled fractional snow cover dataset of the Asian water tower region (2000-2022). Earth System Science Data, 16(5): 2501-2523.
[37]   Parajka J, Blöschl G. 2008. Spatio-temporal combination of MODIS images - potential for snow cover mapping. Water Resources Research, 44(3): W03406, doi: 10.1029/2007WR006204.
[38]   Parajka J, Pepe M, Rampini A, et al. 2010. A regional snow-line method for estimating snow cover from MODIS during cloud cover. Journal of Hydrology, 381(3-4): 203-212.
[39]   Parajka J, Haas P, Kirnbauer R, et al. 2012. Potential of time-lapse photography of snow for hydrological purposes at the small catchment scale. Hydrological Processes, 26(22): 3327-3337.
[40]   Qiu Y B, Zhang H, Chu D, et al. 2017. Cloud removing algorithm for the daily cloud free MODIS-based snow cover product over the Tibetan Plateau. Journal of Glaciology and Geocryology, 39(3): 515-526. (in Chinese)
doi: 10.7522/j.issn.1000-0240.2017.0058
[41]   Qu J, Ding J L, Sun Y M. 2013. Improved SVM for extracting snow cover in northern Xinjiang. Resources Science, 35(2): 422-429. (in Chinese)
[42]   Stillinger T, Rittger K, Raleigh M S, et al. 2023. Landsat, MODIS, and VIIRS snow cover mapping algorithm performance as validated by airborne lidar datasets. The Cryosphere, 17(2): 567-590.
[43]   Tang Z G, Wang J, Li H Y, et al. 2013. Accuracy validation and cloud obscuration removal of MODIS fractional snow cover products over Tibetan Plateau. Remote Sensing Technology and Application, 28(3): 423-430. (in Chinese)
[44]   Tang Z G, Wang X R, Wang J, et al. 2017. Spatiotemporal variation of snow cover in Tianshan Mountains, Central Asia, based on cloud-free MODIS fractional snow cover product, 2001-2015. Remote Sensing, 9(10): 1045, doi: 10.3390/rs9101045.
[45]   Tang Z G, Deng G, Hu G J, et al. 2022. Satellite observed spatiotemporal variability of snow cover and snow phenology over High Mountain Asia from 2002 to 2021. Journal of Hydrology, 613: 128438, doi: 10.1016/j.jhydrol.2022.128438.
[46]   Thirel G, Salamon P, Burek P, et al. 2011. Assimilation of MODIS snow cover area data in a distributed hydrological model. Hydrology Earth System Sciences Discussions, 8(1): 1329-1364.
[47]   Tian F. 2023. Research on snow-based cloud removal based on machine learning and spatio-temporal change analysis. MSc Thesis. Nanjing: Nanjing University of Information Science & Technology, 15-18. (in Chinese)
[48]   Tong J, Déry S J, Jackson P L. 2009a. Interrelationships between MODIS/Terra remotely sensed snow cover and the hydrometeorology of the Quesnel River Basin, British Columbia, Canada. Hydrology and Earth System Sciences, 13(8): 1439-1452.
[49]   Tong J, Déry S J, Jackson P L. 2009b. Topographic control of snow distribution in an alpine watershed of western Canada inferred from spatially-filtered MODIS snow products. Hydrology and Earth System Sciences, 11(3): 319-326.
[50]   Wang Q X, Ma Y G, Li J L. 2023. Snow cover phenology in Xinjiang based on a novel method and MOD10A 1 data. Remote Sensing, 15(6): 1474, doi: 10.3390/rs15061474.
[51]   Wang X Y, Wang S Y, Yi H, et al. 2016. Snow phenology variability in the Qinghai-Tibetan Plateau and its response to climate change during 2002-2012. Journal of Geo-information Science, 18(11): 1573-1579. (in Chinese)
[52]   Wang Z Y, Che T. 2012. Spatiotemporal distribution of snow cover in arid regions in China. Arid Zone Research, 29(3): 464-471. (in Chinese)
[53]   Xia Q, Gao X G, Wei C, et al. 2012. Estimation of daily cloud-free, snow-covered areas from MODIS based on variational interpolation. Water Resources Research, 48(9): W09523, doi: 10.1029/2011WR011072.
[54]   Xin C, Sheng Y W. 2024. Enhancing glacier monitoring through adaptive smoothing of MODIS NDSI time series. Remote Sensing Letters, 15(10): 1047-1056.
[55]   Xing D, Hou J L, Huang C L, et al. 2022. Spatiotemporal reconstruction of MODIS normalized difference snow index products using U-net with partial convolutions. Remote Sensing, 14(8): 1795, doi: 10.3390/rs14081795.
[56]   Yu J Y, Zhang G Q, Yao T D, et al. 2016. Developing daily cloud-free snow composite products from MODIS Terra-Aqua and IMS for the Tibetan Plateau. IEEE Transactions on Geoscience and Remote Sensing, 54(4): 2171-2180.
[57]   Yuan Y C, Li B L, Gao X Z, et al. 2022. Validation of cloud-gap-filled snow cover of MODIS daily cloud-free snow cover products on the Qinghai-Tibetan Plateau. Remote Sensing, 14(22): 5642, doi: 10.3390/rs14225642.
[58]   Zhang H, Qiu Y B, Zheng Z J, et al. 2016. Comparative study of the feasibility of cloud removal methods based on MODIS seasonal snow cover data over the Tibetan Plateau. Journal of Glaciology and Geocryology, 38(3): 714-724. (in Chinese)
doi: 10.7522/j.issn.1000-0240.2016.0080
[59]   Zhang L H, Zhang H B, Sun X Y, et al. 2024. Combined use of multiple cloud-free snow cover products in China and its high-mountain region: implications from snow cover identification to snow phenology detection. Water Resources Research, 60(6): e2023WR036274, doi: 10.1029/2023WR036274.
[60]   Zhang X H, Qiu Z X, Peng C, et al. 2022a. Removing cloud cover interference from Sentinel-2 imagery in Google Earth Engine by fusing Sentinel-1 SAR data with a CNN model. International Journal of Remote Sensing, 43(1): 132-147.
[61]   Zhang Y, Gulimire H, Sulitan D, et al. 2022b. Monitoring and analysis of snow cover change in an alpine mountainous area in the Tianshan Mountains, China. Journal of Arid Land, 14(9): 962-977.
[1] ZHANG Yin, GULIMIRE Hanati, SULITAN Danierhan, HU Keke. Monitoring and analysis of snow cover change in an alpine mountainous area in the Tianshan Mountains, China[J]. Journal of Arid Land, 2022, 14(9): 962-977.
[2] HUANG Xiaoran, BAO Anming, GUO Hao, MENG Fanhao, ZHANG Pengfei, ZHENG Guoxiong, YU Tao, QI Peng, Vincent NZABARINDA, DU Weibing. Spatiotemporal changes of typical glaciers and their responses to climate change in Xinjiang, Northwest China[J]. Journal of Arid Land, 2022, 14(5): 502-520.
[3] SA Chula, MENG Fanhao, LUO Min, LI Chenhao, WANG Mulan, ADIYA Saruulzaya, BAO Yuhai. Spatiotemporal variation in snow cover and its effects on grassland phenology on the Mongolian Plateau[J]. Journal of Arid Land, 2021, 13(4): 332-349.
[4] Anlifeire ANNIWAER, SU Yangui, ZHOU Xiaobing, ZHANG Yuanming. Impacts of snow on seed germination are independent of seed traits and plant ecological characteristics in a temperate desert of Central Asia[J]. Journal of Arid Land, 2020, 12(5): 775-790.
[5] YAN Min, ZUO Hejun, WANG Haibing, DONG Zhi, LI Gangtie. Snow resisting capacity of Caragana microphylla and Achnatherum splendens in a typical steppe region of Inner Mongolia, China[J]. Journal of Arid Land, 2020, 12(2): 294-302.
[6] Yi ZHOU, Bing GUO, ShiXin WANG, HePing TAO. An estimation method of soil wind erosion in Inner Mongolia of China based on geographic information system and remote sensing[J]. Journal of Arid Land, 2015, 7(3): 304-317.
[7] Jun ZHAO, YinFang SHI, YongSheng HUANG, JieWen FU. Uncertainties of snow cover extraction caused by the nature of topography and underlying surface[J]. Journal of Arid Land, 2015, 7(3): 285-295.