Please wait a minute...
Journal of Arid Land  2018, Vol. 10 Issue (2): 249-263    DOI: 10.1007/s40333-018-0097-8
Orginal Article     
Efficiency of soil and water conservation practices in different agro-ecological environments in the Upper Blue Nile Basin of Ethiopia
DagnenetSULTAN1,2,*(), TSUNEKAWA Atsushi3, HAREGEWEYN Nigussie4, ADGO Enyew5, TSUBO Mitsuru6, T MESHESHA Derege3,5, MASUNAGA Tsugiyuki7, AKLOG Dagnachew8, A FENTA Ayele1, EBABU Kindiye1,5
1 The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
2 School of Civil and Water Resource Engineering, Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
3 Arid Land Research Center, Tottori University, Tottori 680-0001, Japan
4 International Platform for Dryland Research and Education, Tottori University, Tottori 680-0001, Japan
5 Department of Natural Resources Management, Bahir Dar University, Bahir Dar, Ethiopia
6 Institute for Soil, Climate and Water, Agricultural Research Council, Pretoria 0083, South Africa
7 Faculty of Life and Environmental Science, Shimane University, Shimane Matsue 690-0823, Japan
8 Center for International Affairs, Tottori University, Tottori 680-8550, Japan
Download: HTML     PDF(662KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In developing countries such as Ethiopia, research to develop and promote soil and water conservation practices rarely addressed regional diversity. Using a water-balance approach in this study, we used runoff plots from three sites, each representing a different agro-ecological environment, e.g.,high, mid and low in both elevation and rainfall, in the Upper Blue Nile Basin of Ethiopiato examine the runoff response and runoff conservation efficiency of a range of different soil and water conservation measures and their impacts on soil moisture. The plots at each site represented common land use types (cultivated vs. non-agricultural land use types) and slopes (gentle and steep). Seasonal runoff from control plots in the highlands ranged 214-560 versus 253-475 mm at midlands and 119-200 mm at lowlands. The three soil and water conservation techniques applied in cultivated land increased runoff conservation efficiency by 32% to 51%, depending on the site. At the moist subtropical site in a highland region, soil and water conservation increased soil moisture enough to potentially cause waterlogging, which was absent at the low-rainfall sites. Soil bunds combined with Vetiveriazizanioides grass in cultivated land and short trenches in grassland conserved the most runoff (51% and 55%, respectively). Runoff responses showed high spatial variation within and between land use types, causing high variation in soil and water conservation efficiency. Our results highlight the need to understand the role of the agro-ecological environment in the success of soil and water conservation measures to control runoff and hydrological dynamics. This understanding will support policy development to promote the adoption of suitable techniques that can be tested at other locations with similar soil, climatic, and topographic conditions.



Key wordsagro-ecology      drought-prone      runoff coefficient      runoff conservation efficiency      Ethiopia     
Received: 19 May 2017      Published: 10 April 2018
Corresponding Authors:
About author:

The first and fourth authors contributed equally to this work.

Cite this article:

DagnenetSULTAN, TSUNEKAWA Atsushi, HAREGEWEYN Nigussie, ADGO Enyew, TSUBO Mitsuru, T MESHESHA Derege, MASUNAGA Tsugiyuki, AKLOG Dagnachew, A FENTA Ayele, EBABU Kindiye. Efficiency of soil and water conservation practices in different agro-ecological environments in the Upper Blue Nile Basin of Ethiopia. Journal of Arid Land, 2018, 10(2): 249-263.

URL:

http://jal.xjegi.com/10.1007/s40333-018-0097-8     OR     http://jal.xjegi.com/Y2018/V10/I2/249

[1] Adgo E, Teshome A, Mati B.2013. Impacts of long-term soil and water conservation on agricultural productivity: The case of Anjenie watershed, Ethiopia. Agricultural Water Management, 117: 55-61.
[2] Adimassu Z, Haile N.2011. Runoff, soil loss and their relationships under different land uses in the central highlands of Ethiopia. Ethiopian Journal of Applied Sciences & Technology, 2(1): 39-49.
[3] Adimassu Z, Mekonnen K, Yirga C, et al.2014. Effect of soil bunds on runoff, soil and nutrient losses, and crop yield in the central highlands of Ethiopia. Land Degradation & Development, 25(6): 554-564.
[4] Allen RG, Pereira LS, Raes D, et al.1998. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56. Rome: FAO, 1-15.
[5] Amare T, Zegeye AD, Yitaferu B, et al.2014. Combined effect of soil bund with biological soil and water conservation measures in the northwestern Ethiopian highlands. Ecohydrology& Hydrobiology, 14(3): 192-199.
[6] Bayabil HK, Tilahun SA, Collick AS, et al.2010. Are runoff processes ecologically or topographically driven in the (sub) humid Ethiopian highlands? The case of the Maybar watershed. Ecohydrology, 3(4): 457-466.
[7] Bekele-Tesemma A, Sjohom H, Bekalo I, et al.2005. Managing Land: A Practical Guidebook for Development Agents in Ethiopia. Nairobi: Regional Land Management Unit, World Agroforestry Centre, Eastern and Central Africa Regional Programme,Addis Ababa: Ministry of Agriculture and Rural Development, 282.
[8] Bergkamp G.1998. A hierarchical view of the interactions of runoff and infiltration with vegetation and microtopography in semiarid shrublands. CATENA, 33(3-4): 201-220.
[9] Castillo V M, Martinez-Mena M, Albaladejo J.1997. Runoff and soil loss response to vegetation removal in a semiarid environment. Soil Science Society of America Journal, 61(4): 1116-1121.
[10] Dagnew DC, Guzman CD, Zegeye AD, et al.2015. Impact of conservation practices on runoff and soil loss in the sub-humid Ethiopian Highlands: The DebreMawi watershed. Journal of Hydrology and Hydromechanics, 63(3): 210-219.
[11] Descheemaeker K, Nyssen J, Poesen J, et al.2006. Runoff on slopes with restoring vegetation: a case study from the Tigray highlands, Ethiopia. Journal of Hydrology, 331(1-2): 219-241.
[12] Descroix L, Viramontes D, Vauclin M, et al.2001. Influence of soil surface features and vegetation on runoff and erosion in the Western Sierra Madre (Durango, Northwest Mexico). CATENA, 43(2): 115-135.
[13] Dingman SL.2015. Physical Hydrology (3rded.). USA: Waveland Press, 17-39.
[14] Ebabu K.2016. Effects of land management practices on soil and nutrient losses: A case study in paired watersheds of Guder, in the Upper Blue Nile Basin, Ethiopia. MSc Thesis. Tottori, Japan: Tottori University, 108.
[15] Fenta A A, Yasuda H, Shimizu Ket al., 2017a. Spatial distribution and temporal trends of rainfall and erosivity in the Eastern Africa region. Hydrological Processes, 31(15): 4555-4567.
[16] Fenta A A, Yasuda H, Shimizu Ket al., 2017b. Response of streamflow to climate variability and changes in human activities in the semiarid highlands of northern Ethiopia. Regional Environmental Change, 17(4): 1229-1240.
[17] Girmay G, Singh B R, Nyssen J, et al.2009. Runoff and sediment-associated nutrient losses under different land uses in Tigray, Northern Ethiopia. Journal of Hydrology, 376(1-2): 70-80.
[18] Haregeweyn N, Tsunekawa A, Nyssen J, et al.2015. Soil erosion and conservation in Ethiopia: A review. Progress in Physical Geography, 39(6): 750-774.
[19] Haregeweyn N, Tsunekawa A, Tsubo M, et al.2016. Analyzing the hydrologic effects of region-wide land and water development interventions: a case study of the Upper Blue Nile basin. Regional Environmental Change, 16(4): 951-966.
[20] Haregeweyn N, Tsunekawa A, Poesen J, et al.2017. Comprehensive assessment of soil erosion risk for better land use planning in river basins: Case study of the Upper Blue Nile River. Science of the Total Environment, 574: 95-108.
[21] Hargreaves GH, Samani ZA.1985. Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1(2): 96-99.
[22] Herweg K, Ludi E.1999. The performance of selected soil and water conservation measures—case studies from Ethiopia and Eritrea. CATENA, 36(1-2): 99-114.
[23] Hurni H, Zeleke G, Kassie M, et al.2015. Economics of Land Degradation (ELD) Ethiopia case study. Soil degradation and sustainable land management in the Rainfed agricultural areas of Ethiopia: An assessment of the economic implications.In: Report for the Economics of Land Degradation Initiative. Bonn, Deutschland: Water and Land Resource Centre (WLRC); Centre for Development and Environment (CDE); Deutsche GesellschaftfürInternationaleZusammenarbeit(GIZ), 99.
[24] Hurni H, Berhe W A, Chadhokar P, et al.2016. Soil and Water Conservation in Ethiopia: Guidelines for Development Agents. Bern, Switzerland: Centre for Development and Environment (CDE), Bern Open Publishing (BOP), 1-50.
[25] Kassie M, Zikhali P, Pender J, et al.2009. Sustainable agricultural practices and agricultural productivity in Ethiopia: does agroecology matter?In: Working Papers in Economics No.406.G?teborg: University of Gothenburg.
[26] Lampkin N H, Pearce B D, Leake A R, et al.2015. The role of agroecology in sustainable intensification. In: Report for the Land Use Policy Group. Organic Research Centre, Elm Farm and Game & Wildlife Conservation Trust, Scottish.
[27] Lee JJ, Phillips DL, Dodson RF.1996. Sensitivity of the US corn belt to climate change and elevated CO2: II. Soil erosion and organic carbon. Agricultural Systems, 52(4): 503-521.
[28] Matou? P, Todo Y, Mojo D.2013. Roles of extension and ethno-religious networks in acceptance of resource-conserving agriculture among Ethiopian farmers. International Journal of Agricultural Sustainability, 11(4): 301-316.
[29] Melesse AM, Abtew W.2016. Landscape Dynamics, Soils and Hydrological Processes in Varied Climates. Cham: Springer International Publishing, 1-93.
[30] Morgan R P C, Finney H J, Lavee H, et al. 1986. Plant cover effects on hillslope runoff and erosion: evidence from two laboratory experiments. In: Abrahams A D. Hillslope Processes. Winchester, Mass: Allen and Urwin, 16: 77-90.
[31] Nigussie Z, Tsunekawa A, Haregeweyn N, et al.2017. Farmers' perception about soil erosion in Ethiopia. Land Degradation & Development, 28(2): 401-411.
[32] Nyssen J, Haile M, Moeyersons J, et al.2000. Soil and water conservation in Tigray (Northern Ethiopia): the traditional dagat technique and its integration with introduced techniques. Land Degradation & Development, 11(3): 199-208.
[33] Nyssen J, Poesen J, Moeyersons J, et al.2004. Human impact on the environment in the Ethiopian and Eritrean highlands—a state of the art. Earth-Science Reviews, 64(3-4): 273-320.
[34] Pathak P, Mishra P K, Rao K V, et al.2009. Best-bet options on soil and water conservation. In: Best-bet Options for Integrated Watershed Management Proceedings of the Comprehensive Assessment of Watershed Programs in India, 25-27 July 2007. Andhra Pradesh, India: ICRISAT Patancheru, 75-94.
[35] Pilgrim D H, Chapman T G, Doran D G.1988. Problems of rainfall-runoff modelling in arid and semiarid regions. Hydrological Sciences Journal, 33(4): 379-400.
[36] Rientjes T, Haile AT, Fenta AA.2013. Diurnal rainfall variability over the Upper Blue Nile Basin: A remote sensing based approach. International Journal of Applied Earth Observation and Geoinformation, 21: 311-325.
[37] Sahoo DC, Madhu MG, Bosu SS, et al.2016. Farming methods impact on soil and water conservation efficiency under tea [Camelliasinensis (L.)] plantation in Nilgiris of South India. International Soil and Water Conservation Research, 4(3): 195-198.
[38] Schmidt E, Zemadim B.2013. Hydrological modelling of sustainable land management interventions in the Mizewa watershed of the Blue Nile basin. In: Rainwater Management for Resilient Livelihoods in Ethiopia: Proceedings of the Nile Basin Development Challenge Science Meeting, Addis Ababa, 9-10 July 2013. NBDC Technical Report 5. Nairobi, Kenya: ILRI, 30.
[39] Sheldrick B, Wang C.1993. Particle size distribution. In: Carter M R. Soil Sampling and Methods of Analysis. Boca Raton, Florida, USA: Canadian Society of Soil Science, Lewis Publishers, 499-513.
[40] Sultan D, Tsunekawa A, Haregeweyn N, et al.2017. Analyzing the runoff response to soil and water conservation measures in a tropical humid Ethiopian highland. Physical Geography, 38(5): 423-447.
[41] Tadesse M, Belay K.2004. Factors influencing adoption of soil conservation measures in Southern Ethiopia: the case of Gununo area. Journal of Agriculture and Rural Development in the Tropics and Subtropics, 105(1): 49-62.
[42] Taye G, Poesen J, Van Wesemael B, et al.2013. Effects of land use, slope gradient, and soil and water conservation structures on runoff and soil loss in semi-arid Northern Ethiopia. Physical Geography, 34(3): 236-259.
[43] Tebebu TY, Steenhuis TS, Dagnew DC, et al.2015. Improving efficacy of landscape interventions in the (sub) humid Ethiopian highlands by improved understanding of runoff processes. Frontiers in Earth Science, 3: 49.
[1] Mitiku A WORKU, Gudina L FEYISA, Kassahun T BEKETIE, Emmanuel GARBOLINO. Projecting future precipitation change across the semi-arid Borana lowland, southern Ethiopia[J]. Journal of Arid Land, 2023, 15(9): 1023-1036.