Please wait a minute...
Journal of Arid Land  2020, Vol. 12 Issue (1): 104-114    DOI: 10.1007/s40333-019-0019-4
Research article     
A look into the past, present and future potential distributions of Talinopsis frutescens, a North American endemic lineage closely related to Cactaceae
Mónica I MIGUEL-VÁZQUEZ1, Yasser S LÓPEZ DE OLMOS R2, Gilberto OCAMPO1,*()
1 Department of Biology, Basic Sciences Center, Autonomous University of Aguascalientes, 940 University Avenue, Aguascalientes 20130, Mexico
2 Biological and Health Sciences PhD Program, Department of Biology, Biological and Health Sciences Division, Autonomous Metropolitan University, Iztapalapa 09340, Mexico
Download: HTML     PDF(317KB)
Export: BibTeX | EndNote (RIS)      


Talinopsis frutescens (Anacampserotaceae, a family that is close related to Cactaceae) is a succulent species endemic to North America. The aim of this study was to explore, using Ecological Niche Modeling (ENM), changes in potential distribution ranges considering different climate scenarios: past conditions during the Last Inter Glacial (LIG) and the Last Glacial Maximum (LGM), the present and projections for 2070 (RCP 2.6 to 8.5). A pattern of contraction is observed during the LIG, which agrees with other studies focused in species from arid environments. This pattern was followed by a migration towards the south during the LGM and a possible recent expansion to the north as is observed in the present scenario. All future projections show the same contraction and fragmentation patterns, resulting in three discontinuous areas: the northern part of the Chihuahuan Desert, the southern-central part of the Mexican Plateau, and the smallest one in the Tehuacán-Cuicatlán Valley. Our projections for future scenarios agree with other studies and support that global climate change tends to alter the current distribution of arid environment species.

Key wordsAnacampserotaceae      Caryophyllales      ecological niche modeling      succulent plants      potential distribution     
Received: 08 October 2018      Published: 10 February 2020
Corresponding Authors: OCAMPO Gilberto     E-mail:
About author: *Corresponding author: Gilberto OCAMPO (E-mail:
Cite this article:

Mónica I MIGUEL-VÁZQUEZ, Yasser S LÓPEZ DE OLMOS R, Gilberto OCAMPO. A look into the past, present and future potential distributions of Talinopsis frutescens, a North American endemic lineage closely related to Cactaceae. Journal of Arid Land, 2020, 12(1): 104-114.

URL:     OR

Fig. 1 Current known distribution of Talinopsis frutescens, including relevant biogeographic regions mentioned

in the text

Country State City/County Record
United States of America New Mexico Doña Ana P. J. Alexander 941 (SP); F. R. Fosberg 53581 (RSA); R. D. Worthington 14310, 17204, 17214 (SP).
Otero E. Ward and R. Soreng 81/545 (SP).
Texas Brewster A. M. Powell and B. Turner 6457 (SP); Sherman et al. 123 (GBIF).
Culberson Y. Chauvin 07YC027-DS11 (SP); R. D. Worthington 23377 (SP).
El Paso R. D. Worthington 19892 (SP); R. D. Worthington 18335 (SP); R. D. Worthington 18345 (SP); R. D. Worthington 25171 (SP).
Hudspeth R. D. Worthington s.n. (SP).
Presidio W. R. Carr 31783 (SP); E. J. Lott et al. 4717 (SP); A. C. Sanders 4169 (SP); R. D. Worthington 22592 (RSA).
Mexico Aguascalientes Aguascalientes M. de la Cerda 1216 (HUAA); G. García 4516 (HUAA); G. González A. 310 (HUAA); G. Ocampo A. 1949 (HUAA).
Asientos G. García 5490a (HUAA).
Calvillo M. de la Cerda and G. García 1119 (HUAA); G. González A. 1073 (HUAA); M. C. Macías 311 (HUAA).
Cosío M. E. Siqueiros D. 2510 (HUAA).
Jesús María M. de la Cerda 6232 (HUAA); G. García 5453 (HUAA).
Rincón de Romos M. de la Cerda 1608 (HUAA); G. García 5526 (HUAA).
San José de Gracia M. de la Cerda and G. García 1058 (HUAA).
Chihuahua Ahumada E. Lehto et al. L-21487 (S. P.).
Aldama M. Miguel V. et al. 771, 772 (HUAA); C. Yen and E. Estrada 8693 (ANSM).
Allende E. Aldrete M. s.n. (INEGI).
Aquiles Serdán E. Lehto et al. L-21555 (SP).
Ascención V. M. López S. V5.4 (INEGI).
Camargo R. Aguirre C. s.n. (INEGI).
Jiménez J. Henrickson 5954b (MEXU); M. Miguel V. et al. 773 (HUAA).
Coahuila Múzquiz R. Morán 6264 (MEXU).
Ramos Arizpe J. A. Villarreal and M. A. Carranza 4526 (ANSM).
Torreón E. Estrada 20689 (ANSM).
Durango Gómez Palacio H. S. Gentry and R. G. Engard 23096 (GBIF); M. Miguel V. et al. 774 (HUAA).
Guadalupe Victoria H. S. Gentry 8401 (RSA).
Hidalgo M. Miguel V. et al. 770 (HUAA); E. Morales 14 (CIIDIR).
Lerdo H. H. Iltis 101 (UNIBIO); M. C. Johnston et al. *258619 LL (REMIB); J. A. Villarreal *258615 TEX (REMIB).
Mezquital M. C. González G. 652 (CIIDIR); Y. Herrera 137 (CIIDIR); M. Miguel V. et al. 768 (HUAA).
Nuevo Ideal N. Almaraz A. 39 (CIIDIR); M. Miguel V. et al. 769 (HUAA).
Santiago Papasquiaro R. Corral D. and R. D. Worthington 500 (GBIF).
Tlahualilo A. García A. 3009, 3048, 3255, 3340, 3737 (CIIDIR)
Guanajuato Comonfort S. Zamudio 5663 (RSA).
Dolores Hidalgo M. Miguel V. et al. 756 (HUAA); R. Ocampo 51 (IEB); E. Ventura and E. López 6068 (IEB).
Ocampo E. Carranza and L. Torres R. 4107 (IEB); M. Miguel V. et al. 755 (HUAA); J. Rzedowski 52260 (IEB).
San Diego de la Unión J. Rzedowski 52110 (IEB).
San Felipe J. Rzedowski 38658, 43650 (IEB).
San José Iturbide J. Gutiérrez G. and A. Ramírez 152, 386 (IEB).
San Luis de la Paz J. N. Labat and E. Carranza G. 2525 (GBIF); M. Miguel V. et al. 757 (HUAA); E. Ventura 9372 (IEB); S. Zamudio R. et al. 11599 (IEB).
San Miguel de Allende G. Ocampo A. and N. Sandoval 1937 (HUAA).
Tarimoro J. Rzedowski 40538 (IEB).
Victoria M. Miguel V. et al. 758 (HUAA).
To be continued
Country State City/County Record
Hidalgo Ajacuba M. Miguel V. et al. 762 (HUAA).
Epazoyucan J. Rzedowski s.n. (REMIB).
Tizayuca M. E. Castilla and D. Tejero s.n. (REMIB).
Jalisco Lagos de Moreno R. McVaugh s.n. (REMIB); M. Miguel V. et al. 754 (HUAA).
Ojuelos de Jalisco P. Carrillo-Reyes et al. 465, 505 (IEB); G. López D. et al. 17 (IEB).
Nuevo León Aramberri GSH s.n. (GBIF); M. Miguel V. et al. 775 (HUAA).
Galeana Hinton et al. 25675 (IEB); s.n. (REMIB).
Rayones Hinton et al. 20816 (GBIF).
Santa Catarina J. A. Villarreal and D. Jasso 9055 (GBIF).
Puebla San José Miahuatlán F. Chiang C. F-2236 (MEXU); M. Miguel V. et al. 764 (HUAA); A. Salinas T. 4070 (MEXU).
Zapotitlán M. Miguel V. et al. 763 (HUAA).
Querétaro Cadereyta de Montes M. Miguel V. et al. 760 (HUAA); O. Rubio G. 329 (IEB); S. Zamudio R. 3183 (IEB).
Colón J. Rzedowski 48818 (IEB); S. Zamudio R. 7383 (IEB).
El Marqués G. Ocampo and D. García 1003 (IEB).
Peñamiller M. Miguel V. et al. 759 (HUAA); G. Ocampo A. and E. Pérez C. 1024 (RSA); S. Zamudio R. 3689 (IEB).
San Juan del Río M. Miguel V. et al. 765 (HUAA).
Tequisquiapan M. Miguel V. et al. 761 (HUAA).
Tolimán G. Ocampo A. and E. Pérez C. 1218 (RSA); S. Zamudio R. 12200 (IEB).
San Luis Potosí Ciudad Fernández F. Chiang et al. 8205 (GBIF).
Guadalcázar McGill et al. P-13527 (SP); O. J. Soto A. s.n. (INEGI).
Salinas de Hidalgo G. Ocampo A. et al. 1943 (HUAA).
Santa María del Río V. W. Steinmann et al. 3777 (IEB).
Villa de Reyes J. A. Villarreal and J. Zavala B. 8449 (GBIF); J. García et al. 1277 (GBIF).
Zaragoza T. Reeves R-6274 (GBIF).
Zacatecas Cañitas de Felipe Pescador J. J. Balleza and M. Adame G. 13557 (GBIF).
Cuauhtémoc M. Miguel V. et al. 766 (HUAA).
Fresnillo M. Miguel V. et al. 767 (HUAA); E. J. Rodríguez-Pérez 1610 (UAZ).
Guadalupe E. J. Rodríguez-Pérez 894 (UAZ).
Loreto J. J. Balleza and M. Adame G. 13944 (GBIF).
Luis Moya E. J. Rodríguez-Pérez 1603 (UAZ).
Mazapil F. Chiang C. et al. 7911 (GBIF); M. Miguel V. et al. 776 (HUAA); E. J. Rodríguez-Pérez 1641 (UAZ).
Melchor Ocampo M. C. Johnson et al. 11536-B (GBIF).
Ojocaliente E. J. Rodríguez-Pérez 1604 (UAZ).
Pinos M. Miguel V. et al. 778 (HUAA).
Río Grande F. Chiang C. et al. 10422-A (GBIF); E. J. Rodríguez-Pérez 1606, 1607 (UAZ).
Trancoso G. Ocampo A. et al. 1948 (HUAA).
Villa de Cos McGill et al. P-13505 (SP).
Villa García J. J. Balleza and M. Adame G. 14051 (GBIF).
Villa Hidalgo E. J. Rodríguez-Pérez 1608, 1609 (UAZ).
Table S1 Data sources
Name of the variable Contribution (%)
LIG LGM Present Future RCP 2.6 Future RCP 4.5 Future RCP 6.0 Future RCP 8.5
BIO 1 Annual mean temperature 3.8
BIO 2 Mean diurnal range 4.8 8.6 1.4 3.0 5.4 7.7
BIO 3 Isothermality 32.9 9.2 33.5 27.8 29.2 25.7
BIO 4 Temperature seasonality 24.7 8.5 22.4 9.4 9.4 9.0 13.1
BIO 5 Maximum temperature of warmest month 1.3 2.0 1.1
BIO 6 Minimim temperature of coldest month 7.5
BIO 7 Temperature annual range 2.7 2.8 4.9 4.9 2.2
BIO 8 Mean temperature of wettest quarter 1.2
BIO 9 Mean temperature of driest quarter 9.0 15.3 12.3 12.2 11.1 11.0
BIO 10 Mean temperature of warmest quarter 11.3 6.8 1.2
BIO 11 Mean temperature of coldest quarter 1.9
BIO 12 Annual precipitation 1.1 2.8
BIO 13 Precipitation of wettest month 6.7 2.5 4.3 1.1
BIO 14 Precipitation of driest month 10.5 2.8 1.8 5.4 6.9 2.8
BIO 15 Precipitation seasonality 9.3 1.5 13.4 5.9 8.5 6.9 6.4
BIO 16 Precipitation of wettest quarter 1.9 1.5 3.6 1.6 3.2
BIO 17 Precipitation of driest quarter 11.0 2.0 3.9 2.0
BIO 18 Precipitation of warmest quarter 9.2
BIO 19 Precipitation of coldest quarter 1.2 18.7 18.9 21.4 19.4 23.9 23.0
Table 1 Relative contributions of environmental variables to the Maxent model under different scenarios
Scenario B1 B2
LIG 0.2200 0.9231
LGM 0.1893 0.8875
Present 0.1839 0.9101
Future RCP 2.6 0.2055 0.9154
Future RCP 4.5 0.2012 0.9136
Future RCP 6.0 0.2110 0.9163
Future RCP 8.5 0.2079 0.9156
Table 2 Niche breadth metrics obtained for each one of the scenarios included in this study
Fig. 2 Ecological niche modeling of Talinopsis frutescens under different scenarios. a and b, Past: (a) Last Interglacial; (b) Last Glacial Maximum. (c) Present. d-g, Future, year 2070: (d) RCP 2.6; (e) RCP 4.5; (f) RCP 6.0; (g) RCP 8.5. Probabilities of occurrence are presented in color ramp, where the highest values are represented in red, and the lowest value in black. The present scenario includes the biogeographic regions mentioned in the text.
[1]   Angulo D F, Amarilla L D, Anton A M, et al. 2017. Colonization in North American arid lands: the journey of agarito (Berberis trifoliolata) revealed by multilocus molecular data and packrat midden fossil remains. PLoS ONE, 12(2): e0168933.
[2]   Ballesteros-Barrera C. 2008. Effect of global climate change on the distribution of Chihuahuan Desert species. PhD Dissertation. México: National Autonomous University of Mexico. (in Spanish)
[3]   Cevallos-Ferriz S R S, González-Torres E A, Calvillo-Canadell L. 2012. Paleobotanical and geological perspective of the biodiversity in Mexico. Acta Botanica Mexicana, 100: 317-350. (in Spanish)
[4]   Dávila P, del Coro Arizmendi M, Valiente-Banuet A, et al. 2002. Biological diversity in the Tehuacán-Cuicatlán Valley, Mexico. Biodiversity and Conservation, 11(3): 421-442.
[5]   Dávila, P, Téllez O, Lira R. 2013. Impact of climate change on the distribution of populations of an endemic Mexican columnar cactus in the Tehuacán-Cuicatlán Valley, Mexico. Plant Biosystems, 147(2): 376-386.
[6]   De-Nova J A, Sánchez-Reyes L L, Eguiarte L E, et al. 2018. Recent radiation and dispersal of an ancient lineage: The case of Fouquieria (Fouquiericeae, Ericales) in North American deserts. Molecular Phylogenetics and Evolution, 126: 92-104.
[7]   Duran K L, Lowrey T K, Parmenter R R, et al. 2005. Genetic diversity in Chihuahuan Desert populations of creosotebush (Zygophyllaceae: Larrea tridentata). American Journal of Botany, 92(4): 722-729.
[8]   Ferrari L, López-Martínez M, Aguirre-Díaz G, et al. 1999. Space-time patterns of Cenozoic arc volcanism in central Mexico: from the Sierra Madre Occidental to the Mexican Volcanic Belt. Geology, 27(4): 303-306.
[9]   Gent P R, Danabasoglu G, Donner L J, et al. 2011. The community climate system model version 4. Journal of Climate, 24(19): 4973-4991.
[10]   Gómez-Tuena A, Orozco-Esquivel M T, Ferrari L. 2007. Igneous petrogenesis of the Trans-Mexican Volcanic Belt. Geological Society of America, 422: 129-181.
[11]   Hafner D J, Riddle B R. 2011. Boundaries and barriers of North American warm deserts: an evolutionary perspective. In: Upchurch P, McGowan A J, Slater C S C. Palaeogeography and Palaeobiogeography: Biodiversity in Space and Time. Boca Raton: Taylor and Francis Group, 74-101.
[12]   Hernández-Ledesma P, Berendsohn W G, Borsch T, et al. 2015. A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales. Willdenowia, 45(3): 281-383.
[13]   Hijmans R J, Cameron S E, Parra J L, et al. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15): 1965-1978.
[14]   Hoyt C. 2002. The Chihuahuan Desert: diversity at risk. Endangered Species Bulletin, 27(2): 16-17.
[15]   Hunter K L, Betancourt J L, Riddle B R, et al. 2001. Ploidy race distributions since the Last Glacial Maximum in the North American desert shrub, Larrea tridentata. Global Ecology and Biogeography, 10(5): 521-533.
[16]   IPCC. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 996.
[17]   Kelly A E, Goulden M L. 2008. Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences, 105(33): 11823-11826.
[18]   Kiger R W. 2003. Talinopsis. In: Flora of North America Editorial Committee, Flora of North America North of Mexico, Vol. 4. Magnoliophyta: Caryophyllidae, Pt. 1. New York: Oxford University Press, 501-502.
[19]   Levins R. 1968. Evolution in Changing Environments. Princeton: Princeton University Press, 132.
[20]   Loera I, Ickert-Bond S M, Sosa V. 2017. Pleistocene refugia in the Chihuahuan Desert: the phylogeographic and demographic history of the gymnosperm Ephedra compacta. Journal of Biogeography, 44(12): 2706-2716.
[21]   Metcalfe S E. 2006. Late quaternary environments of the northern deserts and Central Transvolcanic Belt of Mexico. Annals of the Missouri Botanical Garden, 93(2): 258-273.
[22]   Miguel-Vázquez M I, Ocampo G. 2017. Knowing more about Talinopsis frutescens (arroyo fameflower) a North American endemic succulent species. Cactus and Succulent Journal, 89(2): 88-91.
[23]   Morafka D J. 1977. A Biogeographical Analysis of the Chihuahuan Desert through its Herpetofauna. The Hague: Dr. W. Junk B.V., 321.
[24]   Morrone J J. 2005. Toward a synthesis of Mexican biogeography. Mexican Journal of Biodiversity, 76(2): 207-252. (in Spanish)
[25]   Nakazato T, Warren D L, Moyle L C. 2010. Ecological and geographic modes of species divergence in wild tomatoes. American Journal of Botany, 97(4): 680-693.
[26]   Nason J D, Hamrick J L, Fleming T H. 2002. Historical vicariance and postglacial colonization effects on the evolution of genetic structure in Lophocereus, a Sonoran Desert columnar cactus. Evolution, 56(11): 2214-2226.
[27]   Ocampo G, Columbus J T. 2010. Molecular phylogenetics of suborder Cactineae (Caryophyllales), including insights into photosynthetic diversification and historical biogeography. American Journal of Botany, 97(11): 1827-1847.
[28]   Ocampo G. 2011. Anacampserotaceae. Flora del Valle de Tehuacán-Cuicatlán, 84: 1-12.
[29]   Otto-Bliesner B L, Marshall S J, Overpeck J T, et al. 2006. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science, 311(5768): 1751-1753.
[30]   Phillips S J, Anderson R P, Dudík M, et al. 2017. Opening the black box: an open-source release of Maxent. Ecography, 40(7): 887-893.
[31]   Rolando A. 1990. On niche breadth and related concepts. Italian Journal of Zoology, 57(2): 145-148.
[32]   Ruiz-Sanchez E, Rodriguez-Gomez F, Sosa V. 2012. Refugia and geographic barriers of populations of the desert poppy, Hunnemannia fumariifolia (Papaveraceae). Organisms Diversity and Evolution, 12:133-143.
[33]   Rzedowski G C. 2005. Talinopsis. In: Rzedowski G C, Rzedowski J. Phanerogamic Flora of the Valley of Mexico. Pátzcuaro: Institute of Ecology, A. C., National Commission for the Knowledge and Use of Biodiversity, 147. (in Spanish)
[34]   Rzodowski J. 2006. Vegetation of Mexico (1st ed.). México: National Commission for the Knowledge and Use of Biodiversity, 504. (in Spanish)
[35]   Samour-Nieva O R. 2012. Nurse effect of Larrea tridentata and its impact on the diversity of perennial plant species in the Potosino plateau region, Mexico. Msc Thesis. Mexico: Potosino Institute of Scientific and Technological Research, A.C. (in Spanish)
[36]   Scheinvar E, Gámez N, Castellanos-Morales G, et al. 2017. Neogene and Pleistocene history of Agave lechuguilla in the Chihuahuan Desert. Journal of Biogeography, 44(2): 322-334.
[37]   Shreve F. 1942. The desert vegetation of North America. The Botanical Review, 8: 195-246.
[38]   Sosa V, De-Nova J A, Vásquez-Cruz M. 2018. Evolutionary history of the flora of Mexico: Dry forests cradles and museums of endemism. Journal of Systematics and Evolution, 56(5): 523-536.
[39]   Valiente-Banuet A, Solis-Rojas L, Dávila P, et al. 2009. Guide of the vegetation of the Tehuacán-Cuicatlán Valley (1st ed.). Mexico: National Autonomous University of Mexico, 208. (in Spanish)
[40]   Vásquez-Cruz M, Sosa V. 2016. New insights on the origin of the woody flora of the Chihuahuan Desert: The case of Lindleya, American Journal of Botany, 103(9): 1694-1707.
[41]   Walker J F, Yang Y, Feng T, et al. 2018. From cacti to carnivores: Improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales. American Journal of Botany, 105(3): 446-462.
[42]   Warren D L, Glor R E, Turelli M. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62(11): 2868-2883.
[43]   Wilson J S, Pitts J P. 2010. Illuminating the lack of consensus among descriptions of earth history data in the North American deserts: A resource for biologists. Progress in Physical Geography: Earth and Environment, 34(4): 419-441.
[1] QIAO Xianguo, GUO Ke, LI Guoqing, ZHAO Liqing, LI Frank Yonghong, GAO Chenguang. Assessing the collapse risk of Stipa bungeana grassland in China based on its distribution changes[J]. Journal of Arid Land, 2020, 12(2): 303-317.