Research article |
|
|
|
|
Assessing the collapse risk of Stipa bungeana grassland in China based on its distribution changes |
QIAO Xianguo1,2, GUO Ke1,2,*(), LI Guoqing3,4, ZHAO Liqing5, LI Frank Yonghong5, GAO Chenguang1 |
1 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China 4 Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China 5 Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China |
|
|
Abstract The criteria used by International Union for Conservation of Nature (IUCN) for its Red List of Ecosystems (RLE) are the global standards for ecosystem-level risk assessment, and they have been increasingly used for biodiversity conservation. The changed distribution area of an ecosystem is one of the key criteria in such assessments. The Stipa bungeana grassland is one of the most widely distributed grasslands in the warm-temperate semi-arid regions of China. However, the total distribution area of this grassland was noted to have shrunk and become fragmented because of its conversion to cropland and grazing-induced degradation. Following the IUCN-RLE standards, here we analyzed changes in the geographical distribution of this degraded grassland, to evaluate its degradation and risk of collapse. Past (1950-1980) distribution areas were extracted from the Vegetation Map of China (1:1,000,000). Present realizable distribution areas were equated to these past areas minus any habitat area losses. We then predicted the grassland's present and future (under the Representative Concentration Pathway 8.5 scenario) potential distribution areas using maximum entropy algorithm (MaxEnt), based on field survey data and nine environmental layers. Our results showed that the S. bungeana grassland was mainly distributed in the Loess Plateau, Hexi Corridor, and low altitudes of the Qilian Mountains and Longshou Mountain. This ecosystem occurred mainly on loess soils, kastanozems, steppe aeolian soils and sierozems. Thermal and edaphic factors were the most important factors limiting the distribution of S. bungeana grassland across China. Since 56.1% of its past distribution area (4.9×104 km2) disappeared in the last 50 a, the present realizable distribution area only amounts to 2.2×104 km2. But only 15.7% of its present potential distribution area (14.0×104 km2) is actually occupied by the S. bungeana grassland. The future potential distribution of S. bungeana grassland was predicted to shift towards northwest, and the total area of this ecosystem will shrink by 12.4% over the next 50 a under the most pessimistic climate change scenario. Accordingly, following the IUCN-RLE criteria, we deemed the S. bungeana grassland ecosystem in China to be endangered (EN). Revegetation projects and the establishment of protected areas are recommended as effective ways to avert this looming crisis. This empirical modeling study provides an example of how IUCN-RLE categories and criteria may be valuably used for ecosystem assessments in China and abroad.
|
Received: 13 June 2018
Published: 10 March 2020
|
Corresponding Authors:
|
About author: *Corresponding author: GUO Ke (E-mail: guoke@ibcas.ac.cn) |
|
|
[1] |
Akiyama T, Kawamura K. 2007. Grassland degradation in China: Methods of monitoring, management and restoration. Grassland Science, 53(1): 1-17.
|
|
|
[2] |
Anderson R P, Lew D, Peterson A T. 2003. Evaluating predictive models of species' distributions: Criteria for selecting optimal models. Ecological Modelling, 162(3): 211-232.
|
|
|
[3] |
Bland L M, Keith D A, Miller R M, et al. 2015. Guidelines for the application of IUCN Red List of Ecosystems Categories and Criteria, Version 1.0. Gland, Switzerland: The International Union for Conservation of Nature, 1-50.
doi: 10.1098/rstb.2014.0003
pmid: 25561664
|
|
|
[4] |
Brites-Neto J, Duarte K. 2015. Modeling of spatial distribution for scorpions of medical importance in the São Paulo State, Brazil. Veterinary World, 8(7): 823-830.
doi: 10.14202/vetworld.2015.823-830
pmid: 27047160
|
|
|
[5] |
Burns E L, Lindenmayer D B, Stein J, et al. 2015. Ecosystem assessment of mountain ash forest in the central highlands of Victoria, south-eastern Australia. Austral Ecology, 40(4): 386-399.
|
|
|
[6] |
Byrne K M, Adler P B, Lauenroth W K. 2017. Contrasting effects of precipitation manipulations in two Great Plains plant communities. Journal of Vegetation Science, 28(2): 238-249.
doi: 10.1111/jvs.2017.28.issue-2
|
|
|
[7] |
Chen L Z, Sun H, Guo K. 2014. Flora and Vegetation Geography of China. Beijing: Science Press, 304-312. (in Chinese)
|
|
|
[8] |
Chen Y, Liang Y, Cheng J. 2002. The zonal character of vegetation construction on Loess Plateau. Acta Phytoecologica Sinica, 26(3): 339-345. (in Chinese)
doi: 10.1111/j.1745-7254.2005.00040.x
pmid: 15715931
|
|
|
[9] |
Cheng J, Hu T M, Cheng J M, et al. 2010. Distribution of biomass and diversity of Stipa bungeana community to climatic factors in the Loess Plateau of northwestern China. African Journal of Biotechnology, 9(40): 6733-6739.
|
|
|
[10] |
Cheng M, An S S. 2015. Response of soil nitrogen, phosphorous and organic matter to vegetation succession on the Loess Plateau of China. Journal of Arid Land, 7(2): 216-223.
|
|
|
[11] |
Costanza R, de Groot R, Sutton P, et al. 2014. Changes in the global value of ecosystem services. Global Environmental Change-Human and Policy Dimensions, 26: 152-158.
|
|
|
[12] |
Curtis J T, Mclntosh R P. 1951. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology, 32(3): 476-496.
|
|
|
[13] |
ECVC (The Editorial Committee of Vegetation of China). 1980. Vegetation of China. Beijing: Science Press, 505-546. (in Chinese)
|
|
|
[14] |
ECVIM (The Editorial Committee of Vegetation of Inner Mongolia). 1985. Vegetation of Inner Mongolia. Beijing: Science Press, 547-560. (in Chinese)
|
|
|
[15] |
ECVMC (The Editorial Committee of Vegetation Map of China). 2007. Vegetation Map of China. Xi'an: Geological Publishing House, 330-350. (in Chinese)
|
|
|
[16] |
Elith J, Graham C H, Anderson R P, et al. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29(2): 129-151.
|
|
|
[17] |
Elith J, Kearney M, Phillips S. 2010. The art of modelling range-shifting species. Methods in Ecology and Evolution, 1(4): 330-342.
|
|
|
[18] |
Elith J, Phillips S J, Hastie T, et al. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1): 43-57.
|
|
|
[19] |
Fang J Y, Lechowicz M J. 2006. Climatic limits for the present distribution of beech (Fagus L.) species in the world. Journal of Biogeography, 33(10): 1804-1819.
doi: 10.1111/jbi.2006.33.issue-10
|
|
|
[20] |
Feng X M, Fu B J, Piao S L, et al. 2016. Revegetation in China's Loess Plateau is approaching sustainable water resource limits. Nature Climate Change, 6: 1019-1022.
|
|
|
[21] |
Fick S E, Hijmans R J. 2017. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12): 4302-4315.
|
|
|
[22] |
Franklin J. 2009. Mapping Species Distributions: Spatial Inference and Prediction. Cambridge: Cambridge University Press, 21-160.
|
|
|
[23] |
Fu B J. 1989. Soil erosion and its control in the Loess Plateau of China. Soil Use and Management, 5(2): 76-82.
|
|
|
[24] |
Gaston K J. 2003. The Structure and Dynamics of Geographic Ranges. Oxford: Oxford University Press, 8-32.
|
|
|
[25] |
Guisan A, Thuiller W. 2005. Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8(9): 993-1009.
|
|
|
[26] |
Guisan A, Tingley R, Baumgartner J B, et al. 2013. Predicting species distributions for conservation decisions. Ecology Letters, 16(12): 1424-1435.
doi: 10.1111/ele.12189
pmid: 24134332
|
|
|
[27] |
Guo K. 2000. Cyclic succession of Artemisia ordosica krash community in the Mu Us sandy grassland. Acta Phytoecologica Sinica, 24(2): 243-247. (in Chinese)
|
|
|
[28] |
Guo K, Liu C C, Xie Z Q, et al. 2018. China vegetation classification: Concept, approach and applications. Phytocoenologia, 48(2): 113-120.
|
|
|
[29] |
Han F P, Dong L N, Luo W L, et al. 2008. Effects of Stipa bungeana on soil water contents and nutrients of sloping lands in Loess Plateau of China. Acta Agrestia Sinica, 16(4): 403-407. (in Chinese)
|
|
|
[30] |
Hao W, Liang Z, Chen C, et al. 2005. Study of the different succession stage community dynamic and the evolution of soil characteristics of the old-field in Loess Hills gully. Chinese Agricultural Science Bulletin, 21(8): 226-232. (in Chinese)
|
|
|
[31] |
Harpole W S, Tilman D. 2007. Grassland species loss resulting from reduced niche dimension. Nature, 446: 791-793.
doi: 10.1038/nature05684
pmid: 17384633
|
|
|
[32] |
Harris R B. 2010. Rangeland degradation on the Qinghai-Tibetan Plateau: A review of the evidence of its magnitude and causes. Journal of Arid Environments, 74(1): 1-12.
|
|
|
[33] |
Hoekstra J M, Boucher T M, Ricketts T H, et al. 2005. Confronting a biome crisis: Global disparities of habitat loss and protection. Ecology Letters, 8(1): 23-29.
|
|
|
[34] |
Hutchinson G E. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22: 415-427.
|
|
|
[35] |
IPCC (The Intergovernmental Panel on Climate Change). 2013. Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 1-29.
|
|
|
[36] |
Jiao J Y, Tzanopoulos J, Xofis P, et al. 2008. Factors affecting distribution of vegetation types on abandoned cropland in the hilly-gullied Loess Plateau region of China. Pedosphere, 18(1): 24-33.
|
|
|
[37] |
Keith D A, Rodriguez J P, Rodriguez-Clark K M, et al. 2013. Scientific foundations for an IUCN red list of ecosystems. PLoS ONE, 8(5): e62111, doi: 10.1371/journal.pone.0062111.
doi: 10.1371/journal.pone.0062111
pmid: 23667454
|
|
|
[38] |
Keith D A, Rodriguez J P, Brooks T M, et al. 2015. The IUCN red list of ecosystems: Motivations, challenges, and applications. Conservation Letters, 8(3): 214-226.
doi: 10.1111/conl.2015.8.issue-3
|
|
|
[39] |
Kira T. 1976. Terrestrial Ecosystem: A General Survey. Tokyo: Kyorisu Shuppan, 100-166.
|
|
|
[40] |
Li G Q, Du S, Wen Z M. 2016a. Mapping the climatic suitable habitat of oriental arborvitae (Platycladus orientalis) for introduction and cultivation at a global scale. Scientific Reports, 6: 30009, doi: 10.1038/srep30009.
doi: 10.1038/srep30009
pmid: 27443221
|
|
|
[41] |
Li G Q, Xu G H, Guo K, et al. 2016b. Geographical boundary and climatic analysis of Pinus tabulaeformis in China: Insights on its afforestation. Ecological Engineering, 86: 75-84.
|
|
|
[42] |
Liu X D, Chen B D. 2000. Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20(14): 1729-1742.
doi: 10.1371/journal.pone.0088178
pmid: 24505418
|
|
|
[43] |
Liu X D, Cheng Z G, Yan L B, et al. 2009. Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Global and Planetary Change, 68(3): 164-174.
doi: 10.1016/j.gloplacha.2009.03.017
|
|
|
[44] |
Ma K P. 2017. Red List of Ecosystems (RLE): Progress and challenges. Biodiversity Science, 25(5): 451-452. (in Chinese)
|
|
|
[45] |
Mclendon T, Redente E F. 1990. Succession patterns following soil disturbance in a sagebrush steppe community. Oecologia, 85(2): 293-300.
doi: 10.1007/BF00319415
pmid: 28312569
|
|
|
[46] |
Miles L, Newton A, Defries R, et al. 2006. A global overview of the conservation status of tropical dry forests. Journal of Biogeography, 33(3): 491-505.
|
|
|
[47] |
Mirzabaev A, Ahmed M, Werner J, et al. 2016. Rangelands of Central Asia: challenges and opportunities. Journal of Arid Land, 8(1): 93-108.
|
|
|
[48] |
Moisen G G, Frescino T S. 2002. Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling, 157(2-3): 209-225.
|
|
|
[49] |
Moss R H, Edmonds J A, Hibbard K A, et al. 2010. The next generation of scenarios for climate change research and assessment. Nature, 463: 747-756.
doi: 10.1038/nature08823
pmid: 20148028
|
|
|
[50] |
Nature Reserve Management Office of Yunwu Mountain in Ningxia. 2001. Collected works of scientific investigation and management of nature reserve on Yunwu Mountain in Ningxia. Yinchuan: Ningxia People Press, 50-263. (in Chinese)
|
|
|
[51] |
Pan Y, Li X, Gong P, et al. 2003. An integrative classification of vegetation in China based on NOAA AVHRR and vegetation-climate indices of the Holdridge life zone. International Journal of Remote Sensing, 24(5): 1009-1027.
|
|
|
[52] |
Parmesan C, Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421: 37-42.
doi: 10.1038/nature01286
pmid: 12511946
|
|
|
[53] |
Peterson A T, Soberon J, Pearson R G, et al. 2011. Ecological Niches and Geographic Distributions. Monographs in Population Biology No. 49. Princeton: Princeton University Press, 56-86.
|
|
|
[54] |
Phillips S J, Dudik M, Schapire R E. 2004. A maximum entropy approach to species distribution modeling. Proceedings of the Twenty-First International Conference on Machine Learning, 83: 655-662.
|
|
|
[55] |
Phillips S J, Anderson R P, Schapire R E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4): 231-259.
doi: 10.1016/j.ecolmodel.2005.03.026
|
|
|
[56] |
Phillips S J, Elith J. 2013. On estimating probability of presence from use-availability or presence-background data. Ecology, 94(6): 1409-1419.
|
|
|
[57] |
Phillips S J. 2017. A brief tutorial on MaxEnt. [2018-06-13]. http://biodiversityinformatics.amnh.org/open_source/maxent/.
|
|
|
[58] |
Phillips S J, Anderson R P, Dudík M, et al. 2017. Opening the black box: An open-source release of Maxent. Ecography, 40(7): 887-893.
|
|
|
[59] |
Prieto-Torres D A, Navarro-Sigüenza A G, Santiago-Alarcon D, et al. 2016. Response of the endangered tropical dry forests to climate change and the role of Mexican protected areas for their conservation. Global Change Biology, 22(1): 364-379.
doi: 10.1111/gcb.13090
pmid: 26367278
|
|
|
[60] |
Pulliam H R. 2000. On the relationship between niche and distribution. Ecology Letters, 3(4): 349-361.
|
|
|
[61] |
Riahi K, Rao S, Krey V, et al. 2011. RCP 8.5: A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109(1-2): 33-57.
|
|
|
[62] |
Rodríguez J P, Keith D A, Rodríguez-Clark K M, et al. 2015. A practical guide to the application of the IUCN Red List of Ecosystems criteria. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370(1662): 20140003.
doi: 10.1098/rstb.2014.0003
pmid: 25561664
|
|
|
[63] |
Root T L, Price J T, Hall K R, et al. 2003. Fingerprints of global warming on wild animals and plants. Nature, 421: 57-60.
doi: 10.1038/nature01333
pmid: 12511952
|
|
|
[64] |
Segurado P, Araujo M B. 2004. An evaluation of methods for modelling species distributions. Journal of Biogeography, 31(10): 1555-1568.
doi: 10.1111/jbi.2004.31.issue-10
|
|
|
[65] |
Shi Y H, Zhou G S, Jiang Y L, et al. 2018. Sensitive indicators of Stipa bungeana response to precipitation under ambient and elevated CO2 concentration. International Journal of Biometeorology, 62(2): 141-151.
doi: 10.1007/s00484-017-1434-x
pmid: 28864884
|
|
|
[66] |
Song B, Niu S L, Wan S Q. 2016. Precipitation regulates plant gas exchange and its long-term response to climate change in a temperate grassland. Journal of Plant Ecology, 9(5): 531-541.
|
|
|
[67] |
Stephenson N L. 1990. Climatic control of vegetation distribution: The role of the water balance. American Naturalist, 135(5): 649-670.
doi: 10.1086/285067
|
|
|
[68] |
Stephenson N L. 1998. Actual evapotranspiration and deficit: Biologically meaningful correlates of vegetation distribution across spatial scales. Journal of Biogeography, 25(5): 855-870.
|
|
|
[69] |
Svenning J C, Skov F. 2004. Limited filling of the potential range in European tree species. Ecology Letters, 7(7): 565-573.
doi: 10.1111/ele.2004.7.issue-7
|
|
|
[70] |
Walther G-R, Post E, Convey P, et al. 2002. Ecological responses to recent climate change. Nature, 416: 389-395.
doi: 10.1038/416389a
pmid: 11919621
|
|
|
[71] |
Wang D. 1989. A Synthesis of Forage. Nanjing: Jiangsu Science and Technology Press, 130-145. (in Chinese)
|
|
|
[72] |
Wang H, Zhou G S, Jiang Y L, et al. 2017. Photosynthetic acclimation and leaf traits of Stipa bungeana in response to elevated CO2 under five different watering conditions. Photosynthetica, 55(1): 164-175.
|
|
|
[73] |
Wen Z M, He X H, Jiao F, et al. 2008. The predictive distribution of Stipa bungeana in Yanhe River catchment: GAM model and its application. Acta Ecological Sinica, 28(1): 192-201. (in Chinese)
|
|
|
[74] |
Wesche K, Ambarlı D, Kamp J, et al. 2016. The Palaearctic steppe biome: A new synthesis. Biodiversity and Conservation, 25(12): 2197-2231.
doi: 10.1007/s10531-016-1214-7
|
|
|
[75] |
Wu Z Y, Raven P H. 2013. Flora of China: Volume 22. Beijing: Science Press, 196-203. (in Chinese)
|
|
|
[76] |
Yost A C, Petersen S L, Gregg M, et al. 2008. Predictive modeling and mapping sage grouse (Centrocercus urophasianus) nesting habitat using Maximum Entropy and a long-term dataset from southern Oregon. Ecological Informatics, 3(6): 375-386.
doi: 10.1016/j.ecoinf.2008.08.004
|
|
|
[77] |
Young T P, Chase J M, Huddleston R T. 2001. Community succession and assembly: Comparing, contrasting and combining paradigms in the context of ecological restoration. Ecological Restoration, 19(1): 5-18.
doi: 10.3368/er.19.1.5
|
|
|
[78] |
Zhao H W, Guo K, Yang Y, et al. 2018. Stipa steppes in scantily explored regions of the Tibetan Plateau: Classification, community characteristics and climatic distribution patterns. Journal of Plant Ecology, 11(4): 585-594.
doi: 10.1093/jpe/rtx029
|
|
|
[79] |
Zhou Q P, Cheng J M, Wan H, et al. 2009. Study on the diurnal variations of photosynthetic characteristics and water use efficiency of Stipa bungeana Trin. under drought stress. Acta Agrestia Sinica, 17(4): 510-514. (in Chinese)
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|