Please wait a minute...
Journal of Arid Land  2021, Vol. 13 Issue (10): 1054-1070    DOI: 10.1007/s40333-021-0020-6
Research article     
Disturbance of plateau zokor-made mound stimulates plant community regeneration in the Qinghai-Tibetan Plateau, China
XIANG Zeyu1, Arvind BHATT1, TANG Zhongbin1, PENG Yansong1, WU Weifeng1, ZHANG Jiaxin1, WANG Jingxuan1, David GALLACHER2, ZHOU Saixia1,*()
1Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
2School of Life and Environmental Sciences, The University of Sydney, Narrabri NSW 2390, Australia
Download: HTML     PDF(3110KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Mounds constructed by plateau zokors, which is widely distributed in alpine meadows significantly modified plant community structure. However, the variations of plant community structure under the disturbance of plateau zokor-made mound are less concerned. Therefore, we investigated the responses of plant community on zokor-made mound of different years (1 a and 3-4 a), and compared with undisturbed sites (no mound) in an alpine meadow in the eastern Qinghai-Tibetan Plateau (QTP), China. Species richness, coverage and Simpson diversity index were all significantly reduced by the presence of zokor-made mound, but plant heights were significantly increased, particularly in grasses and sedges. Several perennial forage species showed an increased importance value and niche breadth, including Koeleria macrantha, Elymus nutans and Poa pratensis. The effect of zokor-made mound on niche overlap showed that more intense interspecific competition produced a greater utilization of environmental resources. And this interspecific niche overlap was strengthened as succession progressed. The bare mound created by zokor burrowing activities provided a colonizing opportunity for non-dominant forage species, resulting in abundant plant species and plant diversity during the succession period. We concluded that presence of zokor-made mound was conducive to regeneration and vitality of plant community in alpine meadows, thus improving their resilience to anthropogenic stress.



Key wordsrodent      mound      zokor disturbance      alpine meadow      vegetation recovery      niche     
Received: 20 January 2021      Published: 10 October 2021
Corresponding Authors: *ZHOU Saixia (E-mail: zhousx@lsbg.cn)
Cite this article:

XIANG Zeyu, Arvind BHATT, TANG Zhongbin, PENG Yansong, WU Weifeng, ZHANG Jiaxin, WANG Jingxuan, David GALLACHER, ZHOU Saixia. Disturbance of plateau zokor-made mound stimulates plant community regeneration in the Qinghai-Tibetan Plateau, China. Journal of Arid Land, 2021, 13(10): 1054-1070.

URL:

http://jal.xjegi.com/10.1007/s40333-021-0020-6     OR     http://jal.xjegi.com/Y2021/V13/I10/1054

Index Mound type Statistical result
1 a 3-4 a No mound F or H P
Species richness 18.44±4.50ab 13.56±6.86a 21.56±6.93b F2,24=3.81 0.037
Coverage (%) 82.56±3.17a 91.56±4.82b 97.44±1.33b H=20.25 <0.001
Height (cm) 13.48±0.72a 13.50±1.08a 12.43±0.69b F2,24=4.70 0.019
Simpson diversity index 0.958±0.005a 0.941±0.013a 0.967±0.001b H=21.08 <0.001
Shannon-Wiener diversity index 2.355±0.428 1.906±0.623 2.538±0.518 F2,24=3.40 0.050
Pielou evenness index 0.810±0.080 0.756±0.077 0.831±0.084 F2,24=2.05 0.151
Table 1 Effect of zokor-made mound on plant community structure
Fig. 1 Species richness (a-d), coverage (e-h) and height (i-l) for each plant functional group and zokor-made mound type. Different lowercase letters indicate significant differences among different types of zokor-made mound at P<0.05 level.
No. Species Functional group Life
cycle
1 a 3-4 a No mound
IV Oik IV Oik IV Oik
S1 Koeleria macrantha (Ledeb.) Schult. Grass P 0.067 11.909 0.090 7.422 0.029 6.962
S2 Elymus nutans Griseb. Grass P 0.048 9.767 0.076 12.948 0.014 -10.019
S3 Avena fatua L. Grass A 0.007 -10.809 - - - -
S4 Poa pratensis L. Grass P 0.043 6.442 0.073 15.020 0.013 -10.020
S5 Festuca rubra L. Grass P 0.016 -0.683 0.010 -8.317 0.051 8.599
S6 Festuca ovina L. Grass P - - 0.038 -1.328 0.011 -10.134
S7 Kobresia capillifolia (Decne.) C. B. Clarke Sedge P 0.011 -7.626 - - 0.044 2.442
S8 Trichophorum distigmaticum (Kük.) T. V. Egorova Sedge P 0.030 0.733 0.054 -4.205 0.031 0.686
S9 Carex kansuensis Nelmes Sedge P 0.026 1.543 0.087 -0.848 0.037 7.012
S10 Astragalus craibianus G. Simpson Legume P 0.025 6.854 0.012 -4.787 0.025 4.189
S11 Tibetia himalaica (Baker) H. P. Tsui Legume P 0.015 -2.189 0.013 0.836 0.045 9.453
S12 Oxytropis ochrocephala Bunge Legume P - - - - 0.033 9.053
S13 Artemisia annua L. Forb A 0.104 7.983 0.008 -4.603 - -
S14 Anaphalis lactea Maxim. Forb P 0.047 5.788 0.004 -8.326 0.045 8.129
S15 Saussurea nigrescens Maxim. Forb P 0.026 6.589 0.014 1.703 0.062 10.708
S16 Taraxacum lugubre Dahlst. Forb P 0.003 -10.802 - - 0.009 -5.799
S17 Cirsium periacanthaceum C. Shih Forb P 0.011 -10.812 - - - -
S18 Leontopodium nanum (Hook.f. & Thomson ex Hook.f. & Thomson) Hand.-Mazz. Forb P - - 0.004 -8.314 - -
S19 Leontopodium stracheyi (Hook.f.) C. B. Clarke ex Hemsl. Forb P - - - - 0.012 -5.540
S20 Ajania tenuifolia Tzvelev Forb P - - - - 0.014 -0.940
S21 Saussurea graminea Dunn Forb P - - - - 0.005 -9.958
S22 Potentilla anserina L. Forb P 0.033 7.290 0.011 -8.363 0.029 9.214
S23 Potentilla nivea L. Forb P 0.004 -10.275 0.012 1.471 0.023 4.662
S24 Delphinium caeruleum Jacquem. ex Cambess. Forb P 0.011 -8.966 0.008 -8.318 0.018 -5.468
S25 Trollius farreri Stapf Forb P 0.015 2.063 0.010 1.871 0.006 -9.927
S26 Ranunculus tanguticus (Maxim.) Ovcz. Forb P 0.037 8.548 0.012 1.821 0.033 10.286
S27 Anemone rivularis Buch.-Ham. ex DC. Forb P 0.019 1.721 0.005 -8.314 0.035 11.582
No. Species Functional group Life
cycle
1 a 3-4 a No mound
IV Oik IV Oik IV Oik
S28 Gentianopsis paludosa (Hook. f.) Ma Forb A 0.007 -10.278 0.008 -4.527 0.007 -9.923
S29 Halenia elliptica D. Don Forb A 0.029 6.296 0.005 -8.319 0.017 -1.326
S30 Gentiana ornata (D.Don) Wall. ex Griseb. Forb P 0.008 -9.063 0.007 -4.538 0.036 6.973
S31 Gentiana leucomelaena Maxim. Forb A - - - - 0.014 2.500
S32 Gentiana abaensis T. N. Ho Forb A - - - - 0.006 -10.050
S33 Lancea tibetica Hook. f. & Thomson Forb P 0.011 -4.665 0.025 11.953 0.012 -0.878
S34 Veronica eriogyne H. Winkl. Forb P 0.031 5.965 0.012 1.923 0.017 -5.860
S35 Pedicularis kansuensis Maxim. Forb A - - 0.004 -8.327 0.005 -9.936
S36 Epilobium royleanum Hausskn. Forb P 0.010 -9.068 - - - -
S37 Plantago depressa Willd. Forb A 0.020 2.053 0.024 5.694 0.010 -5.725
S38 Stellaria infracta Maxim. Forb P 0.027 8.462 0.037 14.024 - -
S39 Equisetum arvense L. Forb P 0.006 -7.658 0.006 -4.123 - -
S40 Geranium pylzowianum Maxim. Forb P 0.022 2.887 - - 0.009 -5.624
S41 Allium sikkimense Baker Forb P - - 0.030 5.650 0.026 4.678
Table 2 Importance value (IV) and ecological attribute value (ΔOik) for each plant species under different types of zokor-made mound
Fig. 2 Shannon-Wiener niche breadth index (a), Levins niche breadth index (b) and Hurlbert niche breadth index (c) of plant species under different types of zokor-made mound. S1-S41 indicate plant species.
Table S1 Coefficient of niche overlap in 1 a zokor-made mound
Table S2 Coefficient of niche overlap in 3-4 a zokor-made mound
Table S3 Coefficient of niche overlap in no mound
Fig. 3 Ecological response rates (R) of plant species under different types of zokor-made mound. R-NBSW, ecological response rate of Shannon-Wiener index (a); R-NBL, ecological response rate of Levins index (b); R-NBH, ecological response rate of Hurlbert index (c). S1-S41 indicate plant species.
Fig. 4 Principal components analysis (PCA) of niche breadth under different types of zokor-made mound. S1-S41 indicate plant species.
Fig. 5 Principal components analysis (PCA) of ecological response rate under different types of zokor-made mound. S1-S41 indicate plant species.
Fig. 6 Coefficients of niche overlap of plant species under different types of zokor-made mound. (a), 1 a mound; (b), 3-4 a mound; (c), no mound. Bars are standard errors. * indicates significant difference among plant species at P<0.05 level. S1-S41 indicate plant species.
[1]   Adler P B, HilleRisLambers J, Levine J M. 2007. A niche for neutrality. Ecology Letters, 10(2):95-104.
doi: 10.1111/ele.2007.10.issue-2
[2]   Bao G S, Wang H S, Zeng H, et al. 2016. The allocation pattern of soil nutrients in plateau zokor mounds of different ages. Acta Ecologica Sinica, 36(7):1824-1831. (in Chinese)
[3]   Bon M P, Inga K G, Jónsdóttir I S, et al. 2020. Interactions between winter and summer herbivory affect spatial and temporal plant nutrient dynamics in tundra grassland communities. Oikos, 129(8):1229-1242.
doi: 10.1111/oik.2020.v129.i8
[4]   Chu B, Ye G H, Yang S W, et al. 2020. Effect of plateau Zokor (Myospalax fontanierii) disturbance on plant community structure and soil properties in the eastern Qinghai-Tibet Plateau, China. Rangeland Ecology & Management, 73(4):520-530.
doi: 10.1016/j.rama.2020.02.004
[5]   Colwell R K, Futuyma D J. 1971. On the measurement of niche breadth and overlap. Ecology, 52(4):567-576.
doi: 10.2307/1934144 pmid: 28973805
[6]   Cutler N. 2010. Long-term primary succession: a comparison of non-spatial and spatially explicit inferential techniques. Plant Ecology, 208(1):123-136.
doi: 10.1007/s11258-009-9692-2
[7]   Davidson A D, Lightfoot D C. 2008. Burrowing rodents increase landscape heterogeneity in a desert grassland. Journal of Arid Environments, 72(7):1133-1145.
doi: 10.1016/j.jaridenv.2007.12.015
[8]   Dong S K, Zhang J, Li Y Y, et al. 2020. Effect of grassland degradation on aggregate-associated soil organic carbon of alpine grassland ecosystems in the Qinghai-Tibetan Plateau. European Journal of Soil Science, 71(1):69-79.
[9]   Dostál P, Fischer M, Prati D. 2016. Phenotypic plasticity is a negative, though weak, predictor of the commonness of 105 grassland species. Global Ecology and Biogeography, 25(4):464-474.
doi: 10.1111/geb.2016.25.issue-4
[10]   Fang J Y, Wang X P, Shen Z H, et al. 2009. Methods and protocols for plant community inventory. Biodiversity Science, 17(6):533-548. (in Chinese)
doi: 10.3724/SP.J.1003.2009.09253
[11]   Feng R Z, Long R J, Shang Z H, et al. 2010. Establishment of Elymus natans improves soil quality of a heavily degraded alpine meadow in Qinghai-Tibetan Plateau, China. Plant and Soil, 327(1-2):403-411.
doi: 10.1007/s11104-009-0065-3
[12]   Guo Y J, Guo N, He Y J, et al. 2015. Cuticular waxes in alpine meadow plants: climate effect inferred from latitude gradient in Qinghai-Tibetan Plateau. Ecology and Evolution, 5(18):3954-3968.
doi: 10.1002/ece3.2015.5.issue-18
[13]   Harris R B. 2010. Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. Journal of Arid Environments, 74(1):1-12.
doi: 10.1016/j.jaridenv.2009.06.014
[14]   Hopping K A, Knapp A K, Dorji T, et al. 2018. Warming and land use change concurrently erode ecosystem services in Tibet. Global Change Biology, 24(11):5534-5548.
doi: 10.1111/gcb.14417 pmid: 30086187
[15]   Howe H F, Brown J S. 1999. Effects of birds and rodents on synthetic tallgrass communities. Ecology, 80(5):1776-1781.
doi: 10.1890/0012-9658(1999)080[1776:EOBARO]2.0.CO;2
[16]   Hu L, Zi H B, Ade L J, et al. 2017. Effects of zokors (Myospalax baileyi) on plant, on abiotic and biotic soil characteristic of an alpine meadow. Ecological Engineering, 103:95-105.
doi: 10.1016/j.ecoleng.2017.03.010
[17]   Hurlbert S H. 1978. The measurement of niche overlap and some relatives. Ecology, 59(1):67-77.
doi: 10.2307/1936632
[18]   Lande R. 1996. Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos, 76(1):5-13.
doi: 10.2307/3545743
[19]   Lara N, Sassi P, Borghi C E. 2007. Effect of herbivory and disturbances by Tuco-Tucos (Ctenomys Mendocinus) on a plant community in the southern Puna Desert. Arctic, Antarctic, and Alpine Research, 39(1):110-116.
doi: 10.1657/1523-0430(2007)39[110:EOHADB]2.0.CO;2
[20]   Li G Y, Liu Y Z, Frelich L E, et al. 2011. Experimental warming induces degradation of a Tibetan alpine meadow through trophic interactions. Journal of Applied Ecology, 48(3):659-667.
doi: 10.1111/j.1365-2664.2011.01965.x
[21]   Li X G, Zhang M L, Li Z T, et al. 2009. Dynamics of soil properties and organic carbon pool in topsoil of zokor-made mounds at an alpine site of the Qinghai-Tibetan Plateau. Biology and Fertility of Soils, 45(8):865-872.
doi: 10.1007/s00374-009-0398-3
[22]   Li X L, Gao J, Brierley G, et al. 2013. Rangeland degradation on the Qinghai-Tibet Plateau: Implications for rehabilitation. Land Degradation & Development, 24(1):72-80.
doi: 10.1002/ldr.v24.1
[23]   Liu M, Zhang Z C, Sun J, et al. 2020. One-year grazing exclusion remarkably restores degraded alpine meadow at Zoige, eastern Tibetan Plateau. Global Ecology and Conservation, 22:e00951.
doi: 10.1016/j.gecco.2020.e00951
[24]   Liu S B, Zamanian K, Schleuss P M, et al. 2018. Degradation of Tibetan grasslands: Consequences for carbon and nutrient cycles. Agriculture, Ecosystems and Environment, 252:93-104.
doi: 10.1016/j.agee.2017.10.011
[25]   Lu X Y, Kelsey K C, Yan Y, et al. 2017. Effects of grazing on ecosystem structure and function of alpine grasslands in Qinghai-Tibetan Plateau: a synthesis. Ecosphere, 8(1):e01656.
doi: 10.1002/ecs2.1656
[26]   Maron J L, Auge H, Pearson D E, et al. 2014. Staged invasions across disparate grasslands: effects of seed provenance, consumers and disturbance on productivity and species richness. Ecology Letters, 17(4):499-507.
doi: 10.1111/ele.12250 pmid: 24467348
[27]   Mu J P, Peng Y H, Xi X Q, et al. 2015. Artificial asymmetric warming reduces nectar yield in a Tibetan alpine species of Asteraceae. Annals of Botany, 116(6):899-906.
doi: 10.1093/aob/mcv042
[28]   Niu K, Zhang S T, Zhao B B, et al. 2010. Linking grazing response of species abundance to functional traits in the Tibetan alpine meadow. Plant and Soil, 330(1-2):215-223.
doi: 10.1007/s11104-009-0194-8
[29]   Niu Y J, Zhou J W, Yang S W, et al. 2019. Plant diversity is closely related to the density of zokor mounds in three alpine rangelands on the Tibetan Plateau. PeerJ, 7:e6921.
doi: 10.7717/peerj.6921
[30]   Niu Y J, Yang S W, Zhu H M, et al. 2020. Cyclic formation of zokor mounds promotes plant diversity and renews plant communities in alpine meadows on the Tibetan Plateau. Plant and Soil, 446(1-2):65-79.
doi: 10.1007/s11104-019-04302-8
[31]   Nyima Y. 2017. Political-economic factors in official reports on rangeland degradation: A critical case study from the Tibet Autonomous Region. Area, 51(3):104-112.
doi: 10.1111/area.2019.51.issue-1
[32]   Pannek A, Manthey M, Diekmann M. 2016. Comparing resource-based and co-occurrence-based methods for estimating species niche breadth. Journal of Vegetation Science, 27(3):596-605.
doi: 10.1111/jvs.12374
[33]   Pielou E C. 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13:131-144.
doi: 10.1016/0022-5193(66)90013-0
[34]   Sheth S N, Naia M H, Angert A L. 2020. Determinants of geographic range size in plants. New Phytologist, 226(3):650-665.
doi: 10.1111/nph.v226.3
[35]   Shi C G, Silva L C R, Zhang H X, et al. 2015. Climate warming alters nitrogen dynamics and total non-structural carbohydrate accumulations of perennial herbs of distinctive functional groups during the plant senescence in autumn in an alpine meadow of the Tibetan Plateau, China. Agricultural and Forest Meteorology, 200:21-29.
doi: 10.1016/j.agrformet.2014.09.006
[36]   Su J H, Aryal A, Nan Z B, et al. 2015. Climate change-induced range expansion of a subterranean rodent: implications for rangeland management in Qinghai-Tibetan Plateau. PLoS ONE, 10(9):e0138969.
doi: 10.1371/journal.pone.0138969
[37]   Ter Braak C J F, Smilauer P. 2012. CANOCO reference manual and user's guide: software for ordination, version 5.0. Ithaca USA: Microcomputer Power.
[38]   Wang J, Wang X T, Liu G B, et al. 2020. Fencing as an effective approach for restoration of alpine meadows: Evidence from nutrient limitation of soil microbes. Geoderma, 363:114148.
doi: 10.1016/j.geoderma.2019.114148
[39]   Wang T C, Xiong Y C, Ge J P, et al. 2008. Four-year dynamic of vegetation on mounds created by zokors (Myospalax baileyi) in a subalpine meadow of the Qinghai-Tibet Plateau. Journal of Arid Environments, 72(2):84-96.
doi: 10.1016/j.jaridenv.2007.05.002
[40]   Wang W W, Yang H L, He K N, et al. 2012. Niche and ecological response of herb layer in spruce plantation of Qilian Mountains. Acta Agrestia Sinica, 20(4):626-630. (in Chinese)
[41]   Wang W Y, Wang Q J, Li S X, et al. 2006. Distribution and species diversity of plant communities along transect on the Northeastern Tibetan plateau. Biodiversity and Conservation, 15(5):1811-1828.
doi: 10.1007/s10531-004-6681-6
[42]   Wang X T, Michalet R, Liu Z Y, et al. 2019. Stature of dependent forbs is more related to the direct and indirect above- and below-ground effects of a subalpine shrub than are foliage traits. Journal of Vegetation Science, 30(3):403-412.
doi: 10.1111/jvs.2019.30.issue-3
[43]   Wang X Y, Yi S H, Wu Q B, et al. 2016. The role of permafrost and soil water in distribution of alpine grassland and its NDVI dynamics on the Qinghai-Tibetan Plateau. Global and Planetary Change, 147:40-53.
doi: 10.1016/j.gloplacha.2016.10.014
[44]   Wu R X, Chai Q, Zhang J Q, et al. 2015. Impacts of burrows and mounds formed by plateau rodents on plant species diversity on the Qinghai-Tibetan Plateau. The Rangeland Journal, 37(1):117-123.
doi: 10.1071/RJ14056
[45]   Wu R X, Wei X T, Liu K S, et al. 2017. Nutrient uptake and allocation by plants in recent mounds created by subterranean rodent, plateau zokor Eospalax baileyi. Polish Journal of Ecology, 65(1):132-143.
doi: 10.3161/15052249PJE2017.65.1.012
[46]   Xiang Y L, Wang Z K, Lyu X H, et al. 2020. Effects of rodent-induced disturbance on eco-physiological traits of Haloxylon ammodendron in the Gurbantunggut Desert, Xinjiang, China. Journal of Arid Land, 12(3):508-521.
doi: 10.1007/s40333-020-0015-8
[47]   Xu D H, Gao X G, Gao T P, et al. 2018. Interactive effects of nitrogen and silicon addition on growth of five common plant species and structure of plant community in alpine meadow. CATENA, 169:80-89.
doi: 10.1016/j.catena.2018.05.017
[48]   Xue X, Guo J, Han B S, et al. 2009. The effect of climate warming and permafrost thaw on desertification in the Qinghai-Tibetan Plateau. Geomorphology, 108(3-4):182-190.
doi: 10.1016/j.geomorph.2009.01.004
[49]   Xue X, You Q G, Peng F, et al. 2017. Experimental warming aggravates degradation-induced topsoil drought in alpine meadows of the Qinghai-Tibetan Plateau. Land Degradation & Development, 28(8):2343-2353.
doi: 10.1002/ldr.v28.8
[50]   Yang Y B, Weiner J, Wang G, et al. 2018. Convergence of community composition during secondary succession on Zokor rodent mounds on the Tibetan Plateau. Journal of Plant Ecology, 11(3):453-464.
doi: 10.1093/jpe/rtx016
[51]   Yuan Z Q, Epstein H, Li G Y. 2020. Grazing exclusion did not affect soil properties in alpine meadows in the Tibetan permafrost region. Ecological Engineering, 147:105657.
doi: 10.1016/j.ecoleng.2019.105657
[52]   Zhang J T. 2018. Quantitative Ecology (3rd ed.). Beijing: Science Press, 159-176. (in Chinese)
[53]   Zhang W, Liu C Y, Zheng X H, et al. 2014. The increasing distribution area of zokor mounds weaken greenhouse gas uptakes by alpine meadows in the Qinghai-Tibetan Plateau. Soil Biology and Biochemistry, 71:105-112.
doi: 10.1016/j.soilbio.2014.01.005
[54]   Zhang W G, Hang X L, Yan L, et al. 2009. Patterns of change amongst plant functional groups along a successional status of zokor mounds in the Qinghai-Tibetan plateau. New Zealand Journal of Agricultural Research, 52(3):299-305.
doi: 10.1080/00288230909510514
[55]   Zhang W J, Xue X, Peng F, et al. 2019. Meta-analysis of the effects of grassland degradation on plant and soil properties in the alpine meadows of the Qinghai-Tibetan Plateau. Global Ecology and Conservation, 20:e00774.
doi: 10.1016/j.gecco.2019.e00774
[56]   Zhang Y M, Liu J K. 2003. Effects of plateau zokors (Myospalax fontanierii) on plant community and soil in an alpine meadow. Journal of Mammalogy, 84(2):644-651.
doi: 10.1644/1545-1542(2003)084&lt;0644:EOPZMF&gt;2.0.CO;2
[57]   Zhang Y M, Zhang Z B, Liu J K. 2003. Burrowing rodents as ecosystem engineers: the ecology and management of plateau zokors Myospalax fontanierii in alpine meadow ecosystems on the Tibetan Plateau. Mammal Review, 33(3-4):284-294.
doi: 10.1046/j.1365-2907.2003.00020.x
[58]   Zhang Y M, Liu J K, Du Y R. 2004. The impact of plateau zokor Myospalax fontanierii burrows on alpine meadow vegetation on the Qinghai-Xizang (Tibetan) plateau. Acta Theriologica, 49(1):43-51.
doi: 10.1007/BF03192507
[59]   Zhong M Y, Wang J X, Liu K S, et al. 2014. Leaf morphology shift of three dominant species along altitudinal gradient in an alpine meadow of the Qinghai-Tibetan Plateau. Polish Journal of Ecology, 62(4):639-648.
doi: 10.3161/104.062.0409
[1] ZHANG Bingchang, ZHANG Yongqing, ZHOU Xiaobing, LI Xiangzhen, ZHANG Yuanming. Snowpack shifts cyanobacterial community in biological soil crusts[J]. Journal of Arid Land, 2021, 13(3): 239-256.
[2] ZHANG Zhenchao, LIU Miao, SUN Jian, WEI Tianxing. Degradation leads to dramatic decrease in topsoil but not subsoil root biomass in an alpine meadow on the Tibetan Plateau, China[J]. Journal of Arid Land, 2020, 12(5): 806-818.
[3] WEN Jing, QIN Ruimin, ZHANG Shixiong, YANG Xiaoyan, XU Manhou. Effects of long-term warming on the aboveground biomass and species diversity in an alpine meadow on the Qinghai-Tibetan Plateau of China[J]. Journal of Arid Land, 2020, 12(2): 252-266.
[4] Mónica I MIGUEL-VÁZQUEZ, Yasser S LÓPEZ DE OLMOS R, Gilberto OCAMPO. A look into the past, present and future potential distributions of Talinopsis frutescens, a North American endemic lineage closely related to Cactaceae[J]. Journal of Arid Land, 2020, 12(1): 104-114.
[5] Yadong XUE, Jia LI, Guli SAGEN, Yu ZHANG, Yunchuan DAI, Diqiang LI. Activity patterns and resource partitioning: seven species at watering sites in the Altun Mountains, China[J]. Journal of Arid Land, 2018, 10(6): 959-967.
[6] BOMBI Pierluigi. Potential impacts of climate change on Welwitschia mirabilis populations in the Namib Desert, southern Africa[J]. Journal of Arid Land, 2018, 10(5): 663-672.
[7] AYARI Anas, TOUIHRI Moez, GHEMARI Chedlia, NASRI-AMMAR Karima. Hourly and monthly variations in the surface activity patterns of Hemilepistus reaumurii in arid environments of Tunisia[J]. Journal of Arid Land, 2018, 10(3): 470-481.
[8] WANG Haiming, SUN Jian, LI Weipeng, WU Jianbo, CHEN Youjun, LIU Wenhui. Effects of soil nutrients and climate factors on belowground biomass in an alpine meadow in the source region of the Yangtze-Yellow rivers, Tibetan Plateau of China[J]. Journal of Arid Land, 2016, 8(6): 881-889.
[9] XU Manhou, LIU Min, XUE Xian, ZHAI Datong. Warming effects on plant biomass allocation and correlations with the soil environment in an alpine meadow, China[J]. Journal of Arid Land, 2016, 8(5): 773-786.
[10] ManHou XU, Fei PENG, QuanGang YOU, Jian GUO, XiaFei TIAN, Min LIU, Xian XUE. Effects of warming and clipping on plant and soil properties of an alpine meadow in the Qinghai-Tibetan Plateau, China[J]. Journal of Arid Land, 2015, 7(2): 189-204.
[11] ZongQiang CHANG, XiaoQing LIU, Qi FENG, ZongXi CHE, HaiYang XI, YongHong SU, JianHua SI. Non-growing season soil CO2 efflux and its changes in an alpine meadow ecosystem of the Qilian Mountains, Northwest China[J]. Journal of Arid Land, 2013, 5(4): 488-499.
[12] Lora B PERKINS, Robert S NOWAK. Invasion syndromes: hypotheses on relationships among invasive species attributes and characteristics of invaded sites[J]. Journal of Arid Land, 2013, 5(3): 275-283.
[13] XiangYi LI, LiSha LIN, Qiang ZHAO, XiMing ZHANG, Frank M. THOMAS. Influence of groundwater depth on species composition and community structure in the transition zone of Cele oasis[J]. Journal of Arid Land, 2010, 2(4): 235-242.
[14] Amit Chakraborty, BaiLian Li. Plant-to-plant direct competition for belowground resource in an overlapping depletion zone[J]. Journal of Arid Land, 2009, 1(1): 9-15.