Please wait a minute...
Journal of Arid Land
Research Articles     
Two-way coupling of unsaturated-saturated flow by integrating the SWAT and MODFLOW models with application in an irrigation district in arid region of West China
Yi LUO, Marios SOPHOCLEOUS
1 Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; 2 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 3 Kansas Geological Survey, University of Kansas, Lawrence, Kansas 66047, USA
Download:   PDF(340KB)
Export: BibTeX | EndNote (RIS)      

Abstract  This paper presents the realization of two-way coupling of the unsaturated-saturated flow interactions of the SWAT2000 and MODFLOW96 models on the basis of the integrated surface/groundwater model SWATMOD99, and its application in Hetao Irrigation District (HID), Inner Mongolia, China. Major revisions and enhancements were made to the SWAT2000 and MODFLOW models for simulating the detailed hydrologic budget and coupled unsaturated and saturated interactions, and irrigation canal hydrology for the HID. The simulation results of seasonal groundwater recharge to and evaporate from the shallow groundwater, and the annual water budget over the district are presented and discussed. The results implied the necessity of two-way coupling of the unsaturated-saturated interactions when groundwater is shallow, and the feasibility of making comprehensive use of the information coming from both the surface water and groundwater models to make a more physically-based assessment of the coupled interactions.

Key wordsHolocene      climate variation      lake level      lake sediment      arid environment     
Received: 28 March 2011      Published: 07 September 2011
Corresponding Authors:
Cite this article:

Yi LUO, Marios SOPHOCLEOUS. Two-way coupling of unsaturated-saturated flow by integrating the SWAT and MODFLOW models with application in an irrigation district in arid region of West China. Journal of Arid Land, 2011, 3(3): 164-173.

URL:

http://jal.xjegi.com/10.3724/SP.J.1227.2011.00164     OR     http://jal.xjegi.com/Y2011/V3/I3/164

[1] MA Yunqiang, LI Zhizhong, TAN Dianjia, ZOU Xiaojun, TAO Tonglian. Grain size and surface micro-texture characteristics and their paleoenvironmental significance of Holocene sediment in southern margin of the Gurbantunggut Desert, China[J]. Journal of Arid Land, 2024, 16(5): 632-653.
[2] David BLANK, LI Yaoming. Antelope adaptations to counteract overheating and water deficit in arid environments[J]. Journal of Arid Land, 2022, 14(10): 1069-1085.
[3] LIU Bing, JIN Heling, SUN Zhong, ZHAO Shuang. Geochemical weathering of aeolian sand and its palaeoclimatic implications in the Mu Us Desert, northern China, since the Late Holocene[J]. Journal of Arid Land, 2016, 8(5): 647-659.
[4] SHI Peihong, YANG Taibao, TIAN Qingchun, LI Chengxiu. A warmer but drier Marine Isotope Stage 11 during the past 650 ka as revealed by the thickest loess on the western Chinese Loess Plateau[J]. Journal of Arid Land, 2016, 8(3): 315-330.
[5] WAN Honglian, HUANG Chunchang, PANG Jiangli. Major elements in the Holocene loess-paleosol sequence in the upper reaches of the Weihe River valley, China[J]. Journal of Arid Land, 2016, 8(2): 197-206.
[6] HAO Xingming, LI Weihong . Oasis cold island effect and its influence on air temperature: a case study of Tarim Basin, Northwest China[J]. Journal of Arid Land, 2016, 8(2): 172-183.
[7] WU Huawu, LI Xiaoyan, LI Jing, JIANG Zhiyun, LI Guangyong, LIU Lei. Evaporative enrichment of stable isotopes (δ18O and δD) in lake water and the relation to lake-level change of Lake Qinghai, Northeast Tibetan Plateau of China[J]. Journal of Arid Land, 2015, 7(5): 623-635.
[8] Jeff B LANGMAN. Spatial distribution of δ2H and δ18O values in the hydrologic cycle of the Nile Basin[J]. Journal of Arid Land, 2015, 7(2): 133-145.
[9] Zhi ZHANG, ZhiBao DONG, ChangZhen YAN, GuangYin HU. Change of lake area in the southeastern part of China’s Badain Jaran Sand Sea and its implications for recharge sources[J]. Journal of Arid Land, 2015, 7(1): 1-9.
[10] Yu LI, NaiAng WANG, ChengQi ZHANG, Yue WANG. Early Holocene environment at a key location of the northwest boundary of the Asian summer monsoon: a synthesis on chronologies of Zhuye Lake, Northwest China[J]. Journal of Arid Land, 2014, 6(5): 511-528.
[11] DongWei GUI, FanJiang ZENG, Zhen LIU, Bo ZHANG. Root characteristics of Alhagi sparsifolia seedlings in response to water supplement in an arid region, northwestern China[J]. Journal of Arid Land, 2013, 5(4): 542-551.
[12] SongHao SHANG. Lake surface area method to define minimum ecological lake level from level–area–storage curves[J]. Journal of Arid Land, 2013, 5(2): 133-142.
[13] Long MA, JingLu WU, Jilili Abuduwaili. The climatic and hydrological changes and environmental responses recorded in lake sediments of Xinjiang, China[J]. Journal of Arid Land, 2011, 3(1): 1-8.