Please wait a minute...
Journal of Arid Land  2023, Vol. 15 Issue (12): 1474-1489    DOI: 10.1007/s40333-023-0037-0     CSTR: 32276.14.s40333-023-0037-0
Research article     
Estimation and inter-comparison of infiltration models in the agricultural area of the Mitidja Plain, Algeria
Amina MAZIGHI1, Hind MEDDI1, Mohamed MEDDI1,*(), Ishak ABDI1,2, Giovanni RAVAZZANI3, Mouna FEKI3
1Higher National School of Hydraulics of Blida, Blida 09000, Algeria
2Department of Civil Engineering and Hydraulics, University of Jijel, Jijel 18000, Algeria
3Department of Civil and Environmental Engineering, Polytechnic University of Milan, Milan 20133, Italy
Download: HTML     PDF(2527KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Infiltration is an important part of the hydrological cycle, and it is one of the main abstractions accounted for in the rainfall-runoff modeling. The main purpose of this study is to compare the infiltration models that were used to assess the infiltration rate of the Mitidja Plain in Algeria. Field infiltration tests were conducted at 40 different sites using a double ring infiltrometer. Five statistical comparison criteria including root mean squared error (RMSE), normalized root mean squared error (NRMSE), coefficient of correlation (CC), Nash-Sutcliffe efficiency (NSE), and Kling-Gupta efficiency (KGE) were used to determine the best performing infiltration model and to confirm anomalies between predicted and observed values. Then we evaluated performance of five models (i.e., the Philip model, Kostiakov model, Modified Kostiakov model, Novel model, and Horton model) in simulating the infiltration process based on the adjusted performance parameters cited above. Results indicated that the Novel model had the best simulated water infiltration process in the Mitidja Plain in Algeria. However, the Philip model was the weakest to simulate the infiltration process. The conclusion of this study can be useful for estimating infiltration rate at various sites using a Novel model when measured infiltration data are not available and are useful for planning and managing water resources in the study area.



Key wordsinfiltration rate      infiltration model      double ring infiltrometer      Mitidja Plain      Novel model     
Received: 26 July 2023      Published: 31 December 2023
Corresponding Authors: *Mohamed MEDDI (E-mail: m.meddi@ensh.dz)
Cite this article:

Amina MAZIGHI, Hind MEDDI, Mohamed MEDDI, Ishak ABDI, Giovanni RAVAZZANI, Mouna FEKI. Estimation and inter-comparison of infiltration models in the agricultural area of the Mitidja Plain, Algeria. Journal of Arid Land, 2023, 15(12): 1474-1489.

URL:

http://jal.xjegi.com/10.1007/s40333-023-0037-0     OR     http://jal.xjegi.com/Y2023/V15/I12/1474

Fig. 1 Study area with selected sites and soil texture (Boufekane et al., 2021; Bouziane et al., 2021)
Fig. 2 Double ring infiltrometer
Site Coarse silt (%) Fine silt (%) Clay (%) Fine sand (%) Coarse sand (%) Soil type Initial f(t) at t=
1 min (mm/h)
Final/steady f(t) (mm/h)
P1 5.0 12.5 50.0 17.5 20.0 Sandy clay 240.0 30.4
P2 12.0 13.5 40.0 12.6 32.5 Sandy clay 180.0 48.4
P3 5.3 2.2 50.0 17.0 30.3 Sandy clay 77.6 30.0
P4 12.5 2.5 55.0 37.5 7.5 Sandy clay 60.0 13.8
P5 12.0 15.0 40.0 12.3 26.3 Clay-limono 120.0 62.8
P6 15.0 12.5 41.5 18.3 22.8 Clay-limono 180.0 11.7
P7 50.0 5.0 34.5 7.5 7.5 Clay-limono 65.5 48.0
P8 20.0 20.0 55.0 13.9 14.8 Clay-limono 60.0 13.7
P9 15.0 15.0 10.0 51.0 22.6 Sandy loam 120.0 22.4
P10 1.0 4.5 35.0 12.0 65.0 Sandy loam 330.0 138.4
P11 10.0 55.5 25.0 6.2 7.7 Fine silt 90.0 61.2
P12 34.0 25.0 17.0 19.3 4.8 Fine silt 48.0 12.0
P13 3.6 70.0 5.8 13.2 11.8 Fine silt 90.0 51.0
P14 45.0 25.0 9.4 18.1 5.7 Fine silt 180.0 29.7
P15 15.0 56.5 15.0 11.2 5.3 Fine-clay-limono 180.0 29.6
P16 75.0 7.3 2.8 9.7 3.7 Fine-clay-limono 105.0 60.0
P17 35.0 35.0 20.0 10.8 7.3 Fine-clay-limono 120.0 15.5
P18 9.0 75.0 11.5 3.7 2.5 Fine-clay-limono 30.0 6.0
P19 5.0 15.0 42.5 16.2 32.2 Sandy clay-loam 180.0 15.0
P20 10.0 5.0 52.4 19.3 16.7 Sandy clay-loam 24.0 4.6
P21 7.0 10.0 41.5 15.2 26.8 Sandy clay-loam 36.0 4.4
P22 4.8 2.7 40.0 19.2 40.0 Sandy clay-loam 120.0 43.3
P23 5.0 7.5 75.0 8.4 12.1 Clay 180.0 38.0
P24 0.5 15.0 75.0 5.1 3.8 Clay 168.0 93.8
P25 30.0 5.0 55.0 4.9 14.2 Clay 60.0 14.4
P26 5.0 16.0 75.0 4.3 2.8 Clay 180.0 88.8
P27 9.0 9.0 63.0 7.6 20.6 Clay 11.7 6.0
P28 10.0 22.5 70.0 5.7 2.6 Clay 16.4 12.0
P29 20.0 10.0 45.0 22.3 4.5 Clay 120.0 56.7
P30 15.0 15.0 65.0 9.0 3.7 Fine-clay-loam 180.0 43.0
P31 35.0 10.0 40.0 5.5 10.4 Fine-clay-loam 60.0 9.6
P32 32.0 12.0 45.3 7.2 4.4 Fine-clay-loam 15.0 4.0
P33 20.0 14.0 50.6 7.7 8.4 Fine-clay-loam 60.0 3.7
P34 19.0 21.3 59.7 4.4 3.8 Clay-loam 60.0 48.0
P35 35.0 2.8 52.1 10.5 0.9 Clay-loam 120.0 34.8
P36 21.0 5.0 60.6 10.9 2.5 Clay-loam 60.0 5.9
P37 45.0 45.0 4.4 7.0 0.5 Very fine silt 80.0 55.4
P38 55.0 30.0 5.3 11.5 2.0 Very fine silt 60.0 26.7
P39 79.0 15.6 0.5 4.8 3.5 Very fine silt 27.3 8.9
P40 16.0 68.5 5.7 5.6 5.4 Very fine silt 60.0 20.8
Table 1 Details of the initial and final infiltration rates (f(t)), and soil properties of the study area
Site Philip Horton Kostiakov Modified Kosiakov Novel
K S f0 fc K ai bi ai bi fc ai bi c fc
P1 6.12 49.14 352.80 41.14 30.05 29.77 0.46 6.76 0.82 28.44 3.65 0.98 5.74 5.83
P2 38.76 47.40 158.99 54.54 3.37 60.79 0.29 60.79 0.29 2.3E-03 60.79 0.29 1.7E-05 4.61
P3 40.61 16.55 67.79 0.11 0.28 49.09 0.15 49.07 0.15 4.2E-04 49.08 0.15 10.90 6.3E-06
P4 12.66 15.72 41.31 8.31 0.97 20.50 0.28 20.50 0.28 8.6E-05 20.50 0.28 1.8E-05 1.36
P5 59.44 12.55 178.43 68.92 44.54 63.57 0.11 1.56 0.85 65.48 0.44 1.17 28.13 2.40
P6 3.6E-06 37.22 206.60 17.04 14.35 10.31 0.72 10.31 0.72 7.7E-05 10.31 0.72 6.9E-06 9.26
P7 53.64 7.16 66.29 28.01 0.30 56.95 0.07 56.96 0.07 2.1E-04 56.95 0.07 8.29 1.6E-05
P8 7.09 11.63 102.15 18.21 42.37 11.48 0.36 2.03 0.74 12.83 0.52 1.08 8.19 1.95
P9 9.31 37.69 120.40 26.07 5.14 27.64 0.41 27.65 0.41 1.6E-03 27.64 0.41 8.9E-05 1.83
P10 125.73 66.06 304.21 100.40 2.66 142.75 0.22 142.75 0.22 6.0E-04 142.75 0.22 5.3E-04 0.60
P11 61.96 11.72 90.01 55.15 1.74 64.99 0.11 65.00 0.11 1.8E-03 65.00 0.11 5.12 1.8E-05
P12 7.56 11.02 55.70 17.11 15.58 11.31 0.36 11.31 0.36 2.6E-03 11.31 0.36 1.04 8.8E-06
P13 53.89 12.20 77.66 50.25 1.14 59.41 0.10 59.41 0.10 1.6E-03 59.42 0.10 6.36 4.9E-05
P14 17.03 43.38 144.99 35.62 5.07 38.39 0.36 35.14 0.38 3.29 36.76 0.37 2.76 0.60
P15 4.03 43.71 239.41 33.61 19.55 25.92 0.46 7.73 0.76 21.43 6.66 0.80 6.02 3.82
P16 81.23 14.41 112.55 8.9E-04 0.39 85.99 0.10 86.02 0.10 6.9E-04 86.00 0.10 7.9E-05 0.01
P17 1.8E-04 35.98 135.59 20.06 9.28 16.51 0.53 16.51 0.53 9.2E-05 16.51 0.53 9.9E-06 0.97
P18 4.05 9.83 27.94 7.18 3.02 8.91 0.36 8.91 0.36 2.3E-04 8.91 0.36 3.4E-06 1.14
P19 7.4E-06 47.38 190.14 20.59 8.86 17.55 0.61 17.55 0.61 3.4E-05 17.55 0.61 0.61 1.7E-05
P20 1.71 6.16 34.99 6.87 23.05 4.45 0.42 4.15 0.43 0.36 4.45 0.42 1.56 1.4E-05
P21 3.2E-05 11.05 34.63 4.20 5.73 5.04 0.53 5.04 0.53 5.5E-05 5.04 0.53 9.7E-07 0.20
P22 35.07 23.69 133.99 49.10 11.71 45.27 0.22 9.16 0.56 38.12 9.13 0.56 1.44 26.45
P23 29.86 35.79 162.58 47.80 8.62 47.29 0.28 18.78 0.49 28.91 16.62 0.52 9.34 3.34
P24 98.32 31.31 170.33 60.20 1.21 107.97 0.15 107.99 0.15 3.2E-04 107.97 0.15 0.01 9.1E-05
P25 12.95 8.46 77.16 16.22 25.17 17.83 0.17 0.87 0.95 15.56 0.78 0.98 5.97 2.62
P26 91.15 25.56 159.85 96.29 3.53 98.41 0.14 98.40 0.14 1.4E-03 98.39 0.14 2.47 1.3E-04
P27 8.35 1.94 11.13 6.74 0.37 9.50 0.09 9.50 0.09 2.1E-05 9.50 0.09 1.4E-05 6.22
P28 12.75 2.51 16.65 6.51 0.26 14.14 0.08 14.14 0.08 1.1E-04 14.15 0.08 0.12 3.9E-05
P29 56.29 15.76 101.44 63.08 4.77 62.45 0.13 25.38 0.25 37.77 14.23 0.37 9.12 5.41
P30 28.13 51.71 167.76 47.58 4.01 51.83 0.34 51.83 0.34 5.3E-05 51.83 0.34 7.4E-05 2.34
P31 1.2E-04 13.65 110.15 14.47 44.32 6.49 0.51 2.43 0.74 6.65 0.75 1.02 2.42 4.43
P32 2.68 3.83 17.21 4.76 9.32 4.48 0.31 2.63 0.42 1.92 2.63 0.42 0.97 1.98
P33 1.1E-05 11.56 94.09 6.43 30.41 7.61 0.38 1.96 0.80 3.47 1.47 0.88 1.04 3.92
P34 48.28 4.90 61.83 28.67 1.09 48.08 0.07 48.09 0.07 3.7E-04 48.08 0.07 3.2E-05 2.96
P35 27.85 24.97 105.82 40.37 6.09 38.05 0.27 32.78 0.29 5.54 32.78 0.29 2.76 2.01
P36 3.72 10.57 85.78 7.53 25.26 9.57 0.34 2.19 0.76 6.06 1.91 0.80 3.81 1.64
P37 46.37 48.22 175.34 64.38 3.92 67.98 0.28 67.98 0.28 8.0E-05 67.99 0.28 5.47 6.5E-05
P38 22.93 15.93 65.68 29.08 3.99 30.30 0.22 30.30 0.22 1.4E-04 30.30 0.22 1.1E-04 2.53
P39 6.94 5.93 28.89 11.07 11.03 8.60 0.29 8.59 0.29 1.2E-04 8.60 0.29 4.97 1.7E-05
P40 17.73 8.68 69.42 22.18 19.95 22.14 0.16 2.56 0.64 19.62 1.04 0.88 17.76 1.18
Table 2 Parameters of estimated infiltration models
Fig. 3 Comparison of observed infiltration rate with estimated infiltration rate from various models in different sites. (a), P1 site; (b), P6 site; (c), P9 site; (d), P12 site; (e), P15 site; (f), P20 site; (g), P25 site; (h), P33 site; (i), P36 site; (i), P39 site.
Fig. 4 Comparision of infiltration models based on KGE (a), NSE (b), CC (c), and NRMSE (d) statistics. Boxes indicate the IQR (interquartile range, 75th to 25th of the data). The median value is shown as a line within the box. Outlier is shown as circle. Lines extend to the most extreme value within 1.5×IQR. KGE, Kling-Gupta efficiency; NSE, Nash-Sutcliffe efficiency; CC, coefficient of correlation; NRMSE, normalized root mean squared error; M-Kostiakov, modified Kostiakov model.
Fig. 5 Distribution of PBIAS (percent bias) of different infiltration models. (a), Horton model; (b), Kostiakov model; (c), Philip model; (d), M-Kostiakov (modified Kostiakov) model; (e), Novel model.
Table 3 Performance evaluation parameters from different infiltration models
[1]   Adeniji F A, Umara B G, Dibal J M, et al. 2013. Variation of infiltration rates with soil texture: A laboratory study. International Journal of Engineering and Innovative Technology, 3(2): 454-459.
[2]   Angelaki A, Singh Nain S, Singh V, et al. 2021. Estimation of models for cumulative infiltration of soil using machine learning methods. ISH Journal of Hydraulic Engineering, 27(2): 162-169.
doi: 10.1080/09715010.2018.1531274
[3]   Bennett N G, Croke B F W, Guariso G, et al. 2013. Characterising performance of environmental models. Environmental Modelling and Software, 40: 1-20.
doi: 10.1016/j.envsoft.2012.09.011
[4]   Boufekane A, Meddi H, Meddi M. 2020. Delineation of groundwater recharge zones in the Mitidja Plain, North Algeria, using multi-criteria analysis. Journal of Hydroinformatics, 22(6): 1468-1484.
doi: 10.2166/hydro.2020.082
[5]   Boufekane A, Yahiaoui S, Meddi H, et al. 2021. Modified DRASTIC index model for groundwater vulnerability mapping using geostatistic methods and GIS in the Mitidja Plain Area (Algeria). Environmental Forensics, 23(5-6): 539-556.
doi: 10.1080/15275922.2021.1913674
[6]   Bouziane O, Mohamed M,Juan Reca C. 2021. Characterization of the water holding capacity of the soils in the Mitidja Plain (Algeria) as a basis for the development of the irrigation water use. Journal of Taiwan Water Conservancy, 69(4): 27-39.
[7]   Dahak A, Boutaghane H, Merabtene T. 2022. Parameter estimation and assessment of infiltration models for Madjez Ressoul Catchment, Algeria. Water, 14(8): 1185, doi: 10.3390/w14081185.
[8]   Duan R B, Clifford B F, John B. 2010. Field evaluation of infiltration models in lawn soils. Irrigation Science, 29(5): 379-389.
doi: 10.1007/s00271-010-0248-y
[9]   Esfandiari M, Maheshwari B L. 1997. Application of the optimization method for estimating infiltration characteristics in furrow irrigation and its comparison with other methods. Agricultural Water Management, 34(2): 169-185.
doi: 10.1016/S0378-3774(97)00007-3
[10]   Farid H U, Mahmood-Khan Z, Ahmad I, et al. 2019. Estimation of infiltration models parameters and their comparison to simulate the onsite soil infiltration characteristics. International Journal of Agricultural and Biological Engineering, 12(3): 84-91.
[11]   Golmohammadi G, Prasher S O, Madani A, et al. 2014. Evaluating three hydrological distributed watershed models: MIKE-SHE, APEX, SWAT. Hydrology, 1(1): 20-39.
[12]   Haghighi F, Gorji M, Shorafa M, et al. 2010. Evaluation of some infiltration models and hydraulic parameters. Spanish Journal of Agricultural Research, 8(1): 210.
doi: 10.5424/sjar/2010081-1160
[13]   Iovino M, Angulo-Jaramillo R, Bagarello V, et al. 2017. Thematic issue on soil water infiltration. Journal of Hydrology and Hydromechanics, 65(3): 205-208.
doi: 10.1515/johh-2017-0036
[14]   Jain L, Chakma S. 2023. Effects of temperature and slope on the infiltration rate for a landfill surface. Current Science, 124(1): 94-101.
doi: 10.18520/cs/v124/i1/94-101
[15]   Knoben W J M, Freer J, Woods R. 2019. Technical note: Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta Efficiency Scores. Hydrology and Earth System Sciences, 23(10): 4323-4331.
doi: 10.5194/hess-23-4323-2019
[16]   Kumar M, Sihag P. 2019. Assessment of infiltration rate of soil using empirical and machine learning-based models. Irrigation and Drainage, 68(3): 588-601.
doi: 10.1002/ird.v68.3
[17]   Lei G H, Fan G L, Zeng W J, et al. 2020. Estimating parameters for the Kostiakov-Lewis infiltration model from soil physical properties. Journal of Soils and Sediments, 20(1): 166-180.
doi: 10.1007/s11368-019-02332-4
[18]   Machiwal D, Jha M K, Mal B C. 2006. Modelling infiltration and quantifying spatial soil variability in a wasteland of Kharagpur, India. Biosystems Engineering, 95(4): 569-582.
doi: 10.1016/j.biosystemseng.2006.08.007
[19]   Meddi M, Eslamian S. 2021. Uncertainties in rainfall and water resources in Maghreb countries under climate change. In: Leal Filho W, Oguge N, Ayal D, et al. Handbook of Climate Change Adaptation. Cham: Springer, 1967-2003.
[20]   Mishra S K, Tyagi J V, Singh V P. 2003. Comparison of infiltration models. Hydrological Processes, 17(13): 2629-2652.
doi: 10.1002/hyp.v17:13
[21]   Ogbe V B, Jayeoba J O, Ode S O. 2011. Comparison of four soil infiltration models on a sandy soil in Lafia, southern guinea savanna zone of Nigeria. Production agricultural and Technology, 7: 116-126.
[22]   Oku E, Aiyelari A. 2011. Predictability of Philip and Kostiakov infiltration models under inceptisols in the humid forest zone, Nigeria. Kasetsart Journal-Natural Science, 45(4): 604-611.
[23]   Parhi P K, Mishra S, Singh R. 2007. A modification to Kostiakov and Modified Kostiakov infiltration models. Water Resources Management, 21(11): 1973-1989.
doi: 10.1007/s11269-006-9140-1
[24]   Philip J R, De Vries D A. 1957. Moisture movement in porous materials under temperature gradients. Transactions, American Geophysical Union, 38(2): 222-232.
doi: 10.1029/TR038i002p00222
[25]   Rasool T, Dar A, Wani M A. 2021. Comparative evaluation of infiltration models under different land covers. Water Resources, 48(4): 624-634.
doi: 10.1134/S0097807821040175
[26]   Richards L A. 1931. Capillary conduction of liquids through porous mediums. Physics, 1(5): 318-333.
doi: 10.1063/1.1745010
[27]   Schumann A H. 1998. Infiltration:Introduction. In: Herschy R W, Fairbridge R W. Hydrology and Lakes. Encyclopedia of Earth Science. Dordrecht: Springer, 418.
[28]   Sihag P, Tiwari N K, Ranjan S. 2017. Estimation and inter-comparison of infiltration models. Water Science, 31(1): 34-43.
doi: 10.1016/j.wsj.2017.03.001
[29]   Singh B, Sihag P, Singh K P. 2018. Comparison of infiltration models in NIT Kurukshetra campus. Applied Water Science, 8(2): 54.
doi: 10.1007/s13201-018-0694-x
[30]   Soil Science Equipment | Double Ring Infiltrometer Surface Measure. 2020. SDE Council. [2022-10-22]. https://environnement.sdec-france.com/double-ring-infiltrometer-for-soil-science.html.
[31]   Tadj M, Benmouiza K, Cheknane A, et al. 2014. Improving the performance of PV systems by faults detection using GISTEL approach. Energy Conversion and Management, 80: 298-304.
doi: 10.1016/j.enconman.2014.01.030
[32]   Thomas A D, Ofosu A E, Amuzu E, et al. 2020. Comparison and estimation of four infiltration models. Open Journal of Soil Science, 10(2): 45-57.
doi: 10.4236/ojss.2020.102003
[33]   Vand A S, Sihag P, Singh B, et al. 2018. Comparative evaluation of infiltration models. KSCE Journal of Civil Engineering, 22(10): 4173-4184.
doi: 10.1007/s12205-018-1347-1
[34]   Wang T T, Stewart C E, Ma J B, et al. 2017. Applicability of five models to simulate water infiltration into soil with added biochar. Journal of Arid Land, 9(5): 701-711.
doi: 10.1007/s40333-017-0025-3
[35]   Zakwan M, Muzzammil M, Alam J. 2016. Application of spreadsheet to estimate infiltration parameters. Perspectives in Science, 8: 702-704.
doi: 10.1016/j.pisc.2016.06.064
[36]   Zeybek M. 2018. Nash-Sutcliffe efficiency approach for quality improvement. Journal of Applied Mathematics and Computation, 2(11): 496-503.
[1] Tongtong WANG, E STEWART Catherine, Jiangbo MA, Jiyong ZHENG, Xingchang ZHANG. Applicability of five models to simulate water infiltration into soil with added biochar[J]. Journal of Arid Land, 2017, 9(5): 701-711.
[2] Lei HUANG. Spatial distribution of AgriophyllumsquarrosumMoq.(Chenopodiaceae) in the straw checkerboards at a revegetated land of the Tengger Desert, northern China[J]. Journal of Arid Land, 2017, 9(2): 176-187.