|
Monitoring vegetation drought in the nine major river basins of China based on a new developed Vegetation Drought Condition Index
ZHAO Lili, LI Lusheng, LI Yanbin, ZHONG Huayu, ZHANG Fang, ZHU Junzhen, DING Yibo
Journal of Arid Land. 2023, 15 (12): 1421-1438.
DOI: 10.1007/s40333-023-0072-x
CSTR: 32276.14.s40333-023-0072-x
The effect of global climate change on vegetation growth is variable. Timely and effective monitoring of vegetation drought is crucial for understanding its dynamics and mitigation, and even regional protection of ecological environments. In this study, we constructed a new drought index (i.e., Vegetation Drought Condition Index (VDCI)) based on precipitation, potential evapotranspiration, soil moisture and Normalized Difference Vegetation Index (NDVI) data, to monitor vegetation drought in the nine major river basins (including the Songhua River and Liaohe River Basin, Haihe River Basin, Yellow River Basin, Huaihe River Basin, Yangtze River Basin, Southeast River Basin, Pearl River Basin, Southwest River Basin and Continental River Basin) in China at 1-month-12-month (T1-T12) time scales. We used the Pearson's correlation coefficients to assess the relationships between the drought indices (the developed VDCI and traditional drought indices including the Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Soil Moisture Index (SSMI) and Self-calibrating Palmer Drought Severity Index (scPDSI)) and the NDVI at T1-T12 time scales, and to estimate and compare the lag times of vegetation response to drought among different drought indices. The results showed that precipitation and potential evapotranspiration have positive and major influences on vegetation in the nine major river basins at T1-T6 time scales. Soil moisture shows a lower degree of negative influence on vegetation in different river basins at multiple time scales. Potential evapotranspiration shows a higher degree of positive influence on vegetation, and it acts as the primary influencing factor with higher area proportion at multiple time scales in different river basins. The VDCI has a stronger relationship with the NDVI in the Songhua River and Liaohe River Basin, Haihe River Basin, Yellow River Basin, Huaihe River Basin and Yangtze River Basin at T1-T4 time scales. In general, the VDCI is more sensitive (with shorter lag time of vegetation response to drought) than the traditional drought indices (SPEI, scPDSI and SSMI) in monitoring vegetation drought, and thus it could be applied to monitor short-term vegetation drought. The VDCI developed in the study can reveal the law of unclear mechanisms between vegetation and climate, and can be applied in other fields of vegetation drought monitoring with complex mechanisms.
|
|
Analyzing environmental flow supply in the semi-arid area through integrating drought analysis and optimal operation of reservoir
Mahdi SEDIGHKIA, Bithin DATTA
Journal of Arid Land. 2023, 15 (12): 1439-1454.
DOI: 10.1007/s40333-023-0035-2
CSTR: 32276.14.s40333-023-0035-2
This study proposes a novel form of environmental reservoir operation through integrating environmental flow supply, drought analysis, and evolutionary optimization. This study demonstrates that simultaneous supply of downstream environmental flow of reservoir as well as water demand is challenging in the semi-arid area especially in dry years. In this study, water supply and environmental flow supply were 40% and 30% in the droughts, respectively. Moreover, mean errors of supplying water demand as well as environmental flow in dry years were 6 and 9 m3/s, respectively. Hence, these results highlight that ecological stresses of the downstream aquatic habitats as well as water supply loss are considerably escalated in dry years, which implies even using environmental optimal operation is not able to protect downstream aquatic habitats properly in the severe droughts. Moreover, available storage in reservoir will be remarkably reduced (averagely more than 30×106 m3 compared with optimal storage equal to 70×106 m3), which implies strategic storage of reservoir might be threatened. Among used evolutionary algorithms, particle swarm optimization (PSO) was selected as the best algorithm for solving the novel proposed objective function. The significance of this study is to propose a novel objective function to optimize reservoir operation in which environmental flow supply is directly addressed and integrated with drought analysis. This novel form of optimization system can overcome uncertainties of the conventional objective function due to considering environmental flow in the objective function as well as drought analysis in the context of reservoir operation especially applicable in semi-arid areas. The results indicate that using either other water resources for water supply or reducing water demand is the only solution for managing downstream ecological impacts of the river ecosystem. In other words, the results highlighted that replanning of water resources in the study area is necessary. Replacing the conventional optimization system for reservoir operation in the semi-arid area with proposed optimization system is recommendable to minimize the negotiations between stakeholders and environmental managers.
|
|
Evaluation of the water conservation function in the Ili River Delta of Central Asia based on the InVEST model
CAO Yijie, MA Yonggang, BAO Anming, CHANG Cun, LIU Tie
Journal of Arid Land. 2023, 15 (12): 1455-1473.
DOI: 10.1007/s40333-023-0074-8
CSTR: 32276.14.s40333-023-0074-8
The Ili River Delta (IRD) is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia. In this study, we selected the IRD as a typical research area, and simulated the water yield and water conservation from 1975 to 2020 using the water yield module of the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. We further analyzed the temporal and spatial variations in the water yield and water conservation in the IRD from 1975 to 2020, and investigated the main driving factors (precipitation, potential evapotranspiration, land use/land cover change, and inflow from the Ili River) of the water conservation variation based on the linear regression, piecewise linear regression, and Pearson's correlation coefficient analyses. The results indicated that from 1975 to 2020, the water yield and water conservation in the IRD showed a decreasing trend, and the spatial distribution pattern was "high in the east and low in the west"; overall, the water conservation of all land use types decreased slightly. The water conservation volume of grassland was the most reduced, although the area of grassland increased owing to the increased inflow from the Ili River. At the same time, the increased inflow has led to the expansion of wetland areas, the improvement of vegetation growth, and the increase of regional evapotranspiration, thus resulting in an overall reduction in the water conservation. The water conservation depth and precipitation had similar spatial distribution patterns; the change in climate factors was the main reason for the decline in the water conservation function in the delta. The reservoir in the upper reaches of the IRD regulated runoff into the Lake Balkhash, promoted vegetation restoration, and had a positive effect on the water conservation; however, this positive effect cannot offset the negative effect of enhanced evapotranspiration. These results provide a reference for the rational allocation of water resources and ecosystem protection in the IRD.
|
|
Estimation and inter-comparison of infiltration models in the agricultural area of the Mitidja Plain, Algeria
Amina MAZIGHI, Hind MEDDI, Mohamed MEDDI, Ishak ABDI, Giovanni RAVAZZANI, Mouna FEKI
Journal of Arid Land. 2023, 15 (12): 1474-1489.
DOI: 10.1007/s40333-023-0037-0
CSTR: 32276.14.s40333-023-0037-0
Infiltration is an important part of the hydrological cycle, and it is one of the main abstractions accounted for in the rainfall-runoff modeling. The main purpose of this study is to compare the infiltration models that were used to assess the infiltration rate of the Mitidja Plain in Algeria. Field infiltration tests were conducted at 40 different sites using a double ring infiltrometer. Five statistical comparison criteria including root mean squared error (RMSE), normalized root mean squared error (NRMSE), coefficient of correlation (CC), Nash-Sutcliffe efficiency (NSE), and Kling-Gupta efficiency (KGE) were used to determine the best performing infiltration model and to confirm anomalies between predicted and observed values. Then we evaluated performance of five models (i.e., the Philip model, Kostiakov model, Modified Kostiakov model, Novel model, and Horton model) in simulating the infiltration process based on the adjusted performance parameters cited above. Results indicated that the Novel model had the best simulated water infiltration process in the Mitidja Plain in Algeria. However, the Philip model was the weakest to simulate the infiltration process. The conclusion of this study can be useful for estimating infiltration rate at various sites using a Novel model when measured infiltration data are not available and are useful for planning and managing water resources in the study area.
|
|
Integrating stable isotopes and factor analysis to delineate the groundwater provenance and pollution sources in the northwestern part of the Amman-Al Zarqa Basin, Jordan
Mutawakil OBEIDAT, Ahmad AL-AJLOUNI, Eman BANI-KHALED, Muheeb AWAWDEH, Muna ABU-DALO
Journal of Arid Land. 2023, 15 (12): 1490-1509.
DOI: 10.1007/s40333-023-0112-6
CSTR: 32276.14.s40333-023-0112-6
Globally, groundwater contamination by nitrate is one of the most widespread environmental problems, particularly in arid and semiarid areas, which are characterized by low amounts of rainfall and groundwater recharge. The stable isotope composition of groundwater (δ2H-H2O and δ18O-H2O) and dissolved nitrate (δ15N-NO3- and δ18O-NO3-) and factor analysis (FA) were applied to explore groundwater provenance, pollution, and chemistry evolution in the northwestern part of the Amman-Al Zarqa Basin, Jordan. In this study, we collected 23 samples from the Lower Ajloun aquifer in 2021, including 1 sample from a groundwater well and 22 samples from springs. These samples were tested for electrical conductivity, total dissolved solids, pH, temperature, dissolved oxygen, the concentration of major ions (Ca2+, Mg2+, Na+, K+, HCO3-, Cl-, SO42-, and NO3-), and the stable isotope composition of groundwater and dissolved nitrate. The results revealed that groundwater in the study area is mainly Ca-Mg-HCO3 type and can be classified as fresh water, hard water, and very hard water. The range and average concentration of NO3- were 3.5-230.8 and 50.9 mg/L, respectively. Approximately 33% of the sampling points showed NO3- levels above the maximum allowable concentration of 50.0 mg/L set by the World Health Organization (WHO) guidelines for drinking water quality. The values of δ18O-H2O and δ2H-H2O showed that groundwater in the study area is part of the current water cycle, originating in the Mediterranean Sea, with significant evaporation, orographic, and amount effects. The values of the stable isotope composition of NO3- corresponded to δ15N-NO3- and δ18O-NO3- values produced by the nitrification process of manure or septic waste and soil NH4+. The FA performed on the hydrochemical parameters and isotope data resulted in three main factors, with Factor 1, Factor 2, and Factor 3, accounting for 50%, 21%, and 11% of the total variance, respectively. Factor 1 was considered human-induced factor, named "pollution factor", whereas Factor 2, named "conservative fingerprint factor", and Factor 3, named "hardness factor", were considered natural factors. This study will help local researchers manage groundwater sustainably in the study area and other similar arid and semiarid areas in the world.
|
|
Effects of degradation and species composition on soil seed density in the alpine grasslands, China
LI Chunming, MA Jiahui, LI Liangyu, HUANG Junlin, LU Jinhua, HUANG Mei, Allan DEGEN, SHANG Zhanhuan
Journal of Arid Land. 2023, 15 (12): 1510-1528.
DOI: 10.1007/s40333-023-0036-1
CSTR: 32276.14.s40333-023-0036-1
Grassland degradation can alter the structure and function of ecosystem and soil seed bank. Therefore, estimating the role of soil seed bank in vegetation regeneration of degraded grasslands is crucial. We selected grasslands with three levels of degradation, namely non-degraded (ND), mildly degraded (MD), and heavily degraded (HD) to analyze the effect of grassland degradation on soil seed bank, as well as the role of soil seed bank on vegetation regeneration of the alpine grasslands, China. Soil samples from each level were collected in May, before seedling emergence, in August, after completion of transient seed bank germination, and in December, after seed dispersal, to determine the seed density and species composition through germination experiment. Result showed that a total of 35 plant species was identified, including 15 species observed in both soil seed bank and above-ground vegetation. A total of 19, 15, and 14 species of soil seed bank were identified in December, May, and August, respectively. The most abundant species in soil seed bank were Compositae (5 species), followed by Poaceae (4 species), and Cyperaceae (3 species). Degradation level has no significant impact on species richness and Shannon- Wiener index of soil seed bank. In addition, sampling month and grassland degradation affected soil seed bank density, in which December>May>August, and ND>MD>HD, indicating that density of transient seed bank was greater than persistent seed bank. Soil seed bank density of surface layer (0-5 cm) accounting for 42%-72% of the total density, which was significantly higher than that of deep layer (5-10 cm). Similarity of species composition between vegetation and soil seed bank was low, and it increased with degradation level (ranged from 0.14 to 0.69). We concluded that grassland degradation affects soil seed bank density more than species diversity, and soil seed bank contributed slightly to vegetation regeneration of degraded alpine grassland. Therefore, it is unlikely that degraded alpine meadow can be restored solely through soil seed bank.
|
|
Soil seed bank is affected by transferred soil thickness and properties in the reclaimed coal mine in the Qilian Mountains, China
YANG Jingyi, LUO Weicheng, ZHAO Wenzhi, LIU Jiliang, WANG Dejin, LI Guang
Journal of Arid Land. 2023, 15 (12): 1529-1543.
DOI: 10.1007/s40333-023-0113-5
CSTR: 32276.14.s40333-023-0113-5
Reclamation of lands abandoned after mining in mountain areas is critical to erosion control, safety from landslides, and ecological protection of mountain ecosystems. However, little is known about alpine coal mine reclamation using the soil seed bank as a potential source for revegetation. We collected samples of persistent soil seed bank for germination experiments from nine reclaimed sites with different soil cover thicknesses and from six control sites in the Qilian Mountains of China. Soil properties of each site were determined (including soil water content, soil available potassium, soil available phosphorus, soil total nitrogen, pH, soil organic matter, soil total phosphorus, and soil total potassium, and soil alkali-hydrolyzable nitrogen), and the relationships of the characteristics of the soil seed bank with soil cover thickness and soil properties were examined. The results showed that the density, number of species, and diversity of the topsoil seed bank were significantly correlated with soil cover thickness, and all increased with the increment of soil cover thickness. Soil cover thickness controlled the soil seed bank by influencing soil properties. With the increase in soil cover thickness, soil properties (e.g., soil organic matter, soil total nitrogen, etc.) content increased while soil pH decreased. The soil seed bank had the potential to restored the pre-mining habitat at reclaimed sites with approximately 20-cm soil cover thickness. Soil properties of reclaimed sites were lower than that of natural sites. The relationship between the soil seed bank and soil cover thickness determined in this study provides a foundation for improving reclamation measures used in coal mines, as well as for the management and monitoring of reclaimed areas.
|
|