Please wait a minute...
Journal of Arid Land  2018, Vol. 10 Issue (5): 663-672    DOI: 10.1007/s40333-018-0067-1     CSTR: 32276.14.s40333-018-0067-1
Orginal Article     
Potential impacts of climate change on Welwitschia mirabilis populations in the Namib Desert, southern Africa
BOMBI Pierluigi1,2,*()
1 Institute of Agro-environmental and Forest Biology, National Research Council of Italy, 00015 Monterotondo, Italy
2 LifeWatch-ITA, Mediterranean Thematic Center, National Research Council of Italy, 00100 Rome, Italy
Download: HTML     PDF(297KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Climate change is threatening natural ecosystems in the Earth, and arid regions of southern Africa are particularly exposed to further drying. Welwitschia mirabilis Hook. (Welwitschiaceae) is an unusual gymnosperm tree that is recognized as an icon of the Namib Desert, southern Africa. Many aspects of its biology were investigated in the past, with a special emphasis for its physiology and adaptations, but nothing is known about its potential sensitivity to current climate changes. In this study, we adopted an approach based on distribution data for W. mirabilis and ecological niche models for clarifying the species-climate interactions and for predicting the potential impacts of climate change on W. mirabilis populations in three well-separated sub-ranges (northern, southern and central) in northwestern Namibia, southern Africa. We evidenced that the populations occurring in the northern sub-range have peculiar climatic exigencies compared with those in the central and southern sub-ranges and are particularly exposed to the impact of climate change, which will consist of a substantial increase in temperature across the region. These impacts could be represented by demographic changes that should be detected and monitored detailedly to plan efficient measures for managing populations of this important species on the long-term scale.



Key wordsglobal warming      range fragmentation      climatic suitability      Welwitschia mirabilis      ecological niche model      Namib Desert     
Received: 30 August 2017      Published: 10 October 2018
Corresponding Authors:
Cite this article:

BOMBI Pierluigi. Potential impacts of climate change on Welwitschia mirabilis populations in the Namib Desert, southern Africa. Journal of Arid Land, 2018, 10(5): 663-672.

URL:

http://jal.xjegi.com/10.1007/s40333-018-0067-1     OR     http://jal.xjegi.com/Y2018/V10/I5/663

[1] Araújo M B, New M.2007. Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22(1): 42-47.
[2] Bakkenes M, Alkemade J R M, Ihle F, et al.2002. Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global Change Biology, 8(4): 390-407.
[3] Belsley D A, Kuh E, Welsch R E.1981. Regression diagnostics: identifying influential data and sources of collinearity. Journal of Marketing Research, 18(3): 392-393.
[4] Blach-Overgaard A, Balslev H, Dransfield J, et al.2015. Global-change vulnerability of a key plant resource, the African palms. Scientific Reports, 5: 12611.
[5] Bombi P, D'Amen M.2012. Scaling down distribution maps from atlas data: a test of different approaches with virtual species. Journal of Biogeography, 39(4): 640-651.
[6] Bombi P, Salvi D, Bologna M A.2012. Cross-scale predictions allow the identification of local conservation priorities from atlas data. Animal Conservation, 15(4): 378-387.
[7] Bombi P, D'Andrea E, Rezaie N, et al.2017. Which climate change path are we following? Bad news from Scots pine. PLoS ONE, 12: e0189468.
[8] Bornman C H, Elsworthy J A, Butler V, et al.1972. Welwitschia mirabilis: observations on general habit, seed, seedling and leaf characteristics. Madoqua, 1: 53-66.
[9] Breiman L, Friedman J, Olshen R, et al.1984. Classification and regression trees. Encyclopedia of Ecology, 40(3): 582-588.
[10] Breiman L.2001. Random forests. Machine Learning, 45(1): 5-32.
[11] Bubenzer O, Bolten A, Darius F, et al.. 2004. Digital Atlas of Namibia. [2017-07-26]. .
[12] Busby J.1991. BIOCLIM-a bioclimate analysis and prediction system. Plant Protection Quarterly, 6: 8-9.
[13] Bush A, Mokany K, Catullo R, et al.2016. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecology letters, 19(20): 1468-1478.
[14] Cristofari R, Liu X, Bonadonna F, et al.2018. Climate-driven range shifts of the king penguin in a fragmented ecosystem. Nature Climate Change, 8(3): 245-251.
[15] Dobson A J.1990. An Introduction to Generalized Linear Models. London: Chapman and Hall, 240.
[16] Elith J, Leathwick J R.2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40: 677-697.
[17] Fielding A H, Bell J F.1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1): 38-49.
[18] Foden W, Midgley G F, Hughes G, et al.2007. A changing climate is eroding the geographical range of the Namib Desert tree Aloe through population declines and dispersal lags. Diversity and Distributions, 13(5): 645-653.
[19] Friedman J H.1991. Multivariate adaptive regression splines. Annals of Statistics, 19(1): 1-67.
[20] Friedman J, Hastie T, Tibshirani R.2000. Additive logistic regression: a statistical view of boosting. The Annals of Statistics, 28(2): 337-407.
[21] Ge X Z, He S Y, Wang T, et al.2015. Potential distribution predicted for Rhynchophorus ferrugineus in China under different climate warming scenarios. PLoS ONE, 10: e0141111.
[22] Giess W.1969. Welwitschia mirabilis Hook. fil. Dinteria. 3: 3-55.
[23] Guisan A, Zimmermann N E.2000. Predictive habitat distribution models in ecology. Ecological Modelling, 135(2-3): 147-186.
[24] Guisan A, Thuiller W.2005. Predicting species distribution: Offering more than simple habitat models. Ecology letters, 8(9): 993-1009.
[25] Guisan A, Tingley R, Baumgartner J B, et al.2013. Predicting species distributions for conservation decisions. Ecology letters, 16(12): 1424-1435.
[26] Guo D, Guo R, Cui Y H, et al.2011. Climate change impact on quiver trees in arid namibia and south africa. In: Blanco J A. Climate Change. London: IntechOpen, 323-342.
[27] Hastie T, Tibshirani R, Buja A.1994. Flexible disriminant analysis by optimal scoring. Journal of the American Statistical Association, 89(428): 1255-1270.
[28] Henschel J R, Seely M K.2000. Long-term growth patterns of Welwitschia mirabilis, a long-lived plant of the Namib Desert (including a bibliography). Plant Ecology. 150(1-2): 7-26.
[29] Hijmans R J, Cameron S, Parra J, et al.2005a. WorldClim-Global Climate Data. [2016-03-24]. .
[30] Hijmans R J, Cameron S E, Parra J L, et al.2005b. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15): 1965-1978.
[31] Hole D G, Willis S G, Pain D J, et al.2009. Projected impacts of climate change on a continent-wide protected area network. Ecology letters, 12(5): 420-431.
[32] IUCN.2012. IUCN Red List Categories and Criteria: Version 3.1 (2nd ed.). Colchester Print Group, Gland, Switzerland and Cambridge, UK.
[33] Iverson L R, Prasad A M.2002. Potential redistribution of tree species habitat under five climate change scenarios in the eastern US. Forest Ecology and Management, 155(1-3): 205-222.
[34] Jacobson K .M, Lester E.2003. A first assessment of genetic variation in Welwitschia mirabilis Hook. Journal of Heredity, 94(3): 212-217.
[35] Jacobson N, Jacobson P, van Jaarsveld E, et al.2014. Field evidence from Namibia does not support the designation of Angolan and Namibian subspecies of Welwitschia mirabilis Hook. Transactions of the Royal Society of South Africa, 69(3): 179-186.
[36] Kers L E.1967. The distribution of Welwitschia mirabilis Hook. f. Svensk Botanisk Tidskrift, 61: 97-125.
[37] Krüger G H J, Jordaan A, Tiedt L Ret al.2017. Opportunistic survival strategy of Welwitschia mirabilis: recent anatomical and ecophysiological studies elucidating stomatal behaviour and photosynthetic potential. Botany, 95(12): 1109-1123.
[38] Leuenberger B E.2001. Welwitschia mirabilis (Welwitschiaceae), male cone characters and a new subspecies. Willdenowia, 31(2): 357-381.
[39] Maggs G L, Craven P, Kolberg, H.1998. Plant species richness, endemism, and genetic resources in Namibia. Biodiversity and Conservation, 7(4): 435-446.
[40] Mendelsohn J, Jarvis A, Roberts C, et al.2002. Atlas of Namibia. Capetown: David Phillips Publishers, 1-200.
[41] Midgley G F, Bond W J.2015. Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change. Nature Climate Change, 5: 823-829.
[42] Moritz C, Agudo R.2013. The future of species under climate change: resilience or decline? Science, 341(6145): 504-508.
[43] Parmesan C, Yohe G.2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421: 37-42.
[44] Pearman P B, Guisan A, Broennimann O, et al.2008. Niche dynamics in space and time. Trends in Ecology & Evolution, 23(3): 149-158.
[45] Peterson A T, Radocy T, Hall E, et al.2014. The potential distribution of the Vulnerable African lion Panthera leo in the face of changing global climate. Oryx, 48(4): 555-564.
[46] R Development Core Team.2016. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
[47] Ripley B D.1996. Pattern Recognition and Neural Networks. Cambridge: Cambridge University Press, 1-354.
[48] Thuiller W, Araújo M B, Pearson R G, et al.2004. Uncertainty in predictions of extinction risk. Nature, 427: 145-148.
[49] Thuiller W, Midgley G F, Hughes G O, et al.2006a. Endemic species and ecosystem sensitivity to climate change in Namibia. Global Change Biology, 12: 1-18.
[50] Thuiller W, Lavorel S, Sykes M T, et al.2006b. Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe. Diversity and Distributions, 12(1): 49-60.
[51] Thuiller W, Georges D, Engler R, et al.2016. Biomod2: ensemble platform for species distribution modeling. R package version 3.3-7. .
[52] Valverde A, De Maayer P, Oberholster Tet al.2016. Specific microbial communities associate with the rhizosphere of Welwitschia mirabilis, a living fossil. PLoS ONE, 11(4): e0153353.
[53] Walther G R, Post E, Convey P, et al.2002. Ecological responses to recent climate change. Nature, 416: 389-395.
[1] YANG Ao, TU Wenqin, YIN Benfeng, ZHANG Shujun, ZHANG Xinyu, ZHANG Qing, HUANG Yunjie, HAN Zhili, YANG Ziyue, ZHOU Xiaobing, ZHUANG Weiwei, ZHANG Yuanming. Predicting changes in the suitable habitats of six halophytic plant species in the arid areas of Northwest China[J]. Journal of Arid Land, 2024, 16(10): 1380-1408.
[2] WANG Bo, LI Yuwei, BAO Yuhai. Grazing alters sandy soil greenhouse gas emissions in a sand-binding area of the Hobq Desert, China[J]. Journal of Arid Land, 2022, 14(5): 576-588.
[3] Nadia KAMALI, Hamid SIROOSI, Ahmad SADEGHIPOUR. Impacts of wind erosion and seasonal changes on soil carbon dioxide emission in southwestern Iran[J]. Journal of Arid Land, 2020, 12(4): 690-700.
[4] Mónica I MIGUEL-VÁZQUEZ, Yasser S LÓPEZ DE OLMOS R, Gilberto OCAMPO. A look into the past, present and future potential distributions of Talinopsis frutescens, a North American endemic lineage closely related to Cactaceae[J]. Journal of Arid Land, 2020, 12(1): 104-114.
[5] YANG Xuemei, LIU Shizeng, YANG Taibao, XU Xianying, KANG Caizhou, TANG Jinnian, WEI Huaidong, Mihretab G GHEBREZGABHER, LI Zhiqi. Spatial-temporal dynamics of desert vegetation and its responses to climatic variations over the last three decades: a case study of Hexi region in Northwest China[J]. Journal of Arid Land, 2016, 8(4): 556-568.
[6] JianGuo ZHANG, YingLi WANG, YunSong JI, DeZhi YAN. Melting and shrinkage of cryosphere in Tibet and its impact on the ecological environment[J]. Journal of Arid Land, 2011, 3(4): 292-299.