Please wait a minute...
Journal of Arid Land  2020, Vol. 12 Issue (5): 887-902    DOI: 10.1007/s40333-020-0099-1     CSTR: 32276.14.s40333-020-0099-1
Research article     
Morphological characteristics and dynamic changes of seif dunes in the eastern margin of the Kumtagh Desert, China
PANG Yingjun1,2,*(), WU Bo1,2, LI Yonghua1,3, XIE Shengbo4
1Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
2Key Laboratory of Desert Ecosystem and Global Change, State Administration of Forestry and Grassland, Beijing 100091, China
3Kumtagh Desert Ecosystem Research Station, State Administration of Forestry and Grassland, Dunhuang 736200, China
4Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Download: HTML     PDF(1113KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The seif dune field over the gravel desert surface in the eastern margin of the Kumtagh Desert is a valuable experimental site for the observation of dune formation and dynamics. We used high-resolution remote sensing and station observation approaches, combined with wind and grain size data, to study the characteristics of the aeolian environment and the morphologies of and dynamic changes in seif dunes. We observed the ratio of the resultant drift potential (RDP) to the drift potential (DP), which was 0.37, associated with an obtuse bimodal wind regime. The drift potentials in the west-northwest (WNW) and east-northeast (ENE) directions were dominant, and the angle between the two primary DP directions was 135.00°. The dune orientations ranged from 168.75°-213.75°, which were parallel to the resultant drift direction (186.15°). The dune lengths ranged from 51.68 to 1932.11 m with a mean value of 344.91 m. The spacings of the dunes ranged from 32.34 to 319.77 m with a mean value of 93.39 m. The mean grain size of the sediments became finer, and the sorting became better from upwind tail to downwind tip, which indicated that the sediment of the seif dunes in the study region may be transported from northward to southward. The rate of increase in the length, the mean longitudinal migration rate of the dune tail, and the mean longitudinal extension rate of the dune tip (also called elongation rate) were 4.93, 4.63, and 9.55 m/a, respectively. The mean lateral migration vector of the seif dunes was approximately 0.11 m/a towards the west (-0.11 m/a), while the mean amplitude of lateral migration was 0.53 m/a, ignoring the direction of lateral migration. We found that the seif dune field formed first beside seasonal rivers, which can provide sediment, and then expanded downwind.



Key wordsseif dune      Kumtagh Desert      elongation      migration      drift potential     
Received: 15 June 2019      Published: 10 September 2020
Corresponding Authors:
About author: *Corresponding author: PANG Yingjun (E-mail: pangyingjun@caf.ac.cn)
Cite this article:

PANG Yingjun, WU Bo, LI Yonghua, XIE Shengbo. Morphological characteristics and dynamic changes of seif dunes in the eastern margin of the Kumtagh Desert, China. Journal of Arid Land, 2020, 12(5): 887-902.

URL:

http://jal.xjegi.com/10.1007/s40333-020-0099-1     OR     http://jal.xjegi.com/Y2020/V12/I5/887

Fig. 1 Location of the study region
Fig. 2 Distribution of seif dunes in the study region
Fig. 3 Seif dunes in the study region
Fig. 4 Distributions of surface sediment sample points and the areas for topographic survey
Fig. 5 Schematic map of seif dune extension and migration measurement
Fig. 6 Drift potential (DP) roses at the eastern edge of the Kumtagh Desert. RDP, resultant drift potential; RDD, resultant drift direction.
Fig. 7 Rose diagram of the orientation of seif dunes
Fig. 8 Length (a, b) and spacing (c, d) of seif dunes
Fig. 9 Topography of different parts of seif dunes
Fig. 10 Height profile of typical cross sections (W1, W2, W3, W4, W5, W6, W7, W8 and W9 are the codes of typical cross sections)
Fig. 11 Morphology in different parts of seif dune
Fig. 12 Grain composition of dune surface sediment: pebbles (-2 to -6 Φ); granules (-1 to -2 Φ); very coarse sand (0 to -1 Φ); coarse sand (1 to 0 Φ); medium sand (2 to 1 Φ); fine sand (3 to 2 Φ); very fine sand (4 to 3 Φ); silt and clay (>4 Φ)
Fig. 13 Grain size parameters of dune surface sediment
Fig. 14 Migration and elongation of seif dunes
Seif dune ID Length (m) Increase in length (m) Longitudinal migration of dune tail (m) Longitudinal extension of dune tip (m) Lateral migration vector* (m) Lateral migration amplitude** (m)
1965 2015
1 289.27 458.26 168.98 195.36 362.08 -46.85 46.85
2 842.38 960.71 118.34 66.61 194.21 -31.77 31.77
3 148.67 361.56 212.89 243.68 456.77 - -
4 397.77 612.34 214.57 95.66 331.89 -2.56 2.83
5 472.92 917.71 444.79 21.78 467.54 -16.85 18.78
6 793.50 1189.43 395.93 106.84 499.97 -17.01 22.65
7 785.12 1255.13 470.01 112.95 575.07 4.48 6.05
8 1388.85 1725.36 336.51 80.36 405.16 30.45 31.43
9 231.00 231.41 0.41 418.43 418.76 - -
10 370.56 474.96 104.40 369.63 473.88 -19.89 19.89
11 555.96 878.57 322.61 403.82 729.89 -52.19 52.19
12 1177.36 1604.89 427.53 276.56 703.24 29.56 30.40
13 563.12 836.10 272.98 311.18 581.13 -20.88 20.88
14 890.57 895.20 4.63 381.41 380.23 29.48 29.87
15 1032.80 1081.72 48.91 443.36 484.82 49.06 49.06
16 415.13 819.21 404.08 177.81 574.73 -10.13 11.64
Mean (m) 647.19 893.91 246.72 231.59 477.46 -5.36 26.74
Rate (m/a) - - 4.93 4.63 9.55 -0.11 0.53
Table 1 Elongation and migration of seif dunes
Fig. 15 Formation process of seif dunes in the study region
Fig. 16 Seif dunes over the gravel desert surface in the eastern margin of the Kumtagh Desert (Pang, 2016) (a), and raked linear dunes in the northern Kumtagh Desert (George, 2006) (b)
[1]   Bagnold R A. 1941. The Physics of Blown Sand and Desert Dunes. London: Methuen, 222-234.
[2]   Besler H, Lancaster N, Bristow C, et al. 2013. Helga's dune: 40 years of dune dynamics in the Namib Desert. Geografiska Annaler: Series A, Physical Geography, 95(4): 361-368.
doi: 10.1111/geoa.12013
[3]   Bourke M. 2010. Barchan dune asymmetry: Observations from Mars and Earth. Icarus, 205(1): 183-197.
doi: 10.1016/j.icarus.2009.08.023
[4]   Bristow C S, Bailey S D, Lancaster N. 2000. Sedimentary structure of linear sand dunes. Nature, 406(6791): 56-59.
doi: 10.1038/35017536 pmid: 10894538
[5]   Chepil W S. 1942. Measurement of wind erosiveness of soils by dry sieving procedure. Scientific Agriculture, 23: 154-160.
[6]   Craddock R A, Tooth S, Zimbelman J R, et al. 2015. Temporal observations of a linear sand dune in the Simpson Desert, central Australia: Testing models for dune formation on planetary surfaces. Journal of Geophysical Research Planets, 120(10): 1-15.
doi: 10.1002/2014JE004757
[7]   Dong Z B, Qu J J, Wang X M, et al. 2008. Pseudo-feathery dunes in the Kumtagh Desert. Geomorphology, 100(3-4): 328-334.
doi: 10.1016/j.geomorph.2008.01.004
[8]   Dong Z B, Wei Z H, Qian G Q, et al. 2010. "Raked" linear dunes in the Kumtagh Desert, China. Geomorphology, 123(1-2): 122-128.
doi: 10.1016/j.geomorph.2010.07.005
[9]   Ewing R C, Kocurek G, Lake L W. 2006. Pattern analysis of dune-field parameters. Earth Surface Processes and Landforms, 31(9): 1176-1191.
doi: 10.1002/(ISSN)1096-9837
[10]   Fryberger S G. 1979. Dune forms and wind regime. In: McKee E D. A Study of Global Sand Seas. Washington: United States Geological Survey, 137-169.
[11]   Hesp P, Hyde R, Hesp V, et al. 1989. Longitudinal dunes can move sideways. Earth Surface Processes and Landforms, 14(5): 447-451.
doi: 10.1002/(ISSN)1096-9837
[12]   Hu F G, Yang X P, Li H W. 2019. Origin and morphology of barchan and linear clay dunes in the Shuhongtu Basin, Alashan Plateau, China. Geomorphology, 339: 114-126.
doi: 10.1016/j.geomorph.2019.04.014
[13]   Hunter R E, Richmond B M, Alpha T R. 1983. Storm-controlled oblique dunes of the Oregon coast. Geological Society of America Bulletin, 94(12): 1450-1465.
doi: 10.1130/0016-7606(1983)94<1450:SODOTO>2.0.CO;2
[14]   Lancaster N. 1982. Linear dunes. Progress in Physical Geography, 6(4): 475-504.
[15]   Lancaster N. 1995. Geomorphology of Desert Dunes. New York: Routledge, 1-264.
[16]   Liao K T, Qu J J, Tang J N, et al. 2010. Activity of wind-blown sand and the formation of feathered sand ridges in the Kumtagh Desert, China. Boundary-Layer Meteorology, 135: 333-350.
doi: 10.1007/s10546-010-9469-0
[17]   Livingstone I. 2003. A twenty-one-year record of surface change on a Namib linear dune. Earth Surface Processes and Landforms, 28(9): 1025-1031.
doi: 10.1002/(ISSN)1096-9837
[18]   Lü P, Narteau C, Dong Z B, et al. 2017. Unravelling raked linear dunes to explain the coexistence of bedforms in complex dunefields. Nature Communications, 8: 14239, doi: 10.1038/ncomms14239.
doi: 10.1038/ncomms14239 pmid: 28128195
[19]   Lv P, Dong Z B, Narteau C, et al. 2016. Morphodynamic mechanisms for the formation of asymmetric barchans: improvement of the Bagnold and Tsoar models. Environmental Earth Sciences, 75(3): 1-9.
doi: 10.1007/s12665-015-4873-x
[20]   McKee E D. 1979. Introduction to study on global sand seas. In: McKee E D. A Study of Global Sand Seas. Washington: United States Geological Survey, 1-19.
[21]   McManus J. 1988. Grain size determination and interpretation. Techniques in Sedimentology, 408: 112-116.
[22]   Montes A, Rodríguez S S, Domínguez C E. 2017. Geomorphology context and characterization of dunefields developed by the southern westerlies at drying Colhué Huapi shallow lake, Patagonia Argentina. Aeolian Research, 28: 58-70.
doi: 10.1016/j.aeolia.2017.08.001
[23]   Parteli E, Durán O, Bourke M, et al. 2014. Origins of barchan dune asymmetry: Insights from numerical simulations. Aeolian Research, 12: 121-133.
doi: 10.1016/j.aeolia.2013.12.002
[24]   Parteli E J R, Orencio D, Haim T, et al. 2009. Dune formation under bimodal winds. Proceedings of the National Academy of Sciences of the United States of America, 106(52): 22085-22089.
[25]   Pye K, Tsoar H. 2009. Aeolian Sand and Sand Dunes. Berlin: Springer-Verlag, 153-155.
[26]   Qu J J, Liao K T, Dong G R, et al. 2011. Feathered sand ridges in the Kumtagh Desert and their position in the classification system. Science China Earth Sciences, 54(8): 1215-1225.
doi: 10.1007/s11430-011-4209-y
[27]   Roskin J, Dan G B, Katra I. 2014. Last millennium development and dynamics of vegetated linear dunes inferred from ground-penetrating radar and optically stimulated luminescence ages. Sedimentology, 61(5): 1240-1260.
doi: 10.1111/sed.12099
[28]   Rozier O, Narteau C, Gadal C, et al. 2019. Elongation and stability of a linear dune. Geophysical Research Letters, 46(24): 14521-14530.
doi: 10.1029/2019GL085147
[29]   Rubin D M, Hunter R E. 1985. Why deposits of longitudinal dunes are rarely recognized in the geologic record. Sedimentology, 32(1): 147-157.
doi: 10.1111/sed.1985.32.issue-1
[30]   Rubin D M, Tsoar H, Dan G B. 2008. A second look at western Sinai seif dunes and their lateral migration. Geomorphology, 93(3-4): 335-342.
doi: 10.1016/j.geomorph.2007.03.004
[31]   Srivastava A, Durcan J A, Thomas D S G. 2019. Analysis of late Quaternary linear dune development in the Thar Desert, India. Geomorphology, 344: 90-98.
doi: 10.1016/j.geomorph.2019.07.013
[32]   Tsoar H. 1983. Dynamic processes acting on a longitudinal (seif) sand dune. Sedimentology, 30(4): 567-578.
doi: 10.1111/sed.1983.30.issue-4
[33]   Tsoar H. 1984. The formation of seif dunes from barchans-a discussion. Z Geomorph N F, 28(1): 99-103.
[34]   Tsoar H, Blumberg D G, Stoler Y. 2004. Elongation and migration of sand dunes. Geomorphology, 57(3-4): 293-302.
doi: 10.1016/S0169-555X(03)00161-2
[35]   Tsoar H, Parteli E J R. 2016. Bidirectional winds, barchan dune asymmetry and formation of seif dunes from barchans: a discussion. Environmental Earth Sciences, 75(18): 1237.
doi: 10.1007/s12665-016-6040-4
[36]   Wang X M, Dong Z B, Qu J J, et al. 2003. Dynamic processes of a simple linear dune-a study in the Taklimakan Sand Sea, China. Geomorphology, 52(3): 233-241.
doi: 10.1016/S0169-555X(02)00258-1
[37]   Wang Y, Yan P, Han G, et al. 2019. Sand source and formation mechanism of riverine sand dunes: a case study in Xiangshui River, China. Journal of Arid Land, 11(4): 525-536.
doi: 10.1007/s40333-019-0102-x
[38]   Wang Z T, Sun Q F, Ren X Z, et al. 2009. Pseudo-feathery dunes in the Kumtagh desert reclassified as linear dunes and zibars. Aeolian Research, 1(1-2): 87-89.
doi: 10.1016/j.aeolia.2009.04.001
[39]   Wu J F. 2012. Geomorphological patterns in a linear dune field and ages of the linear dunes in the northern Kumtagh Desert, northwest China. Environmental Earth Sciences, 66(8): 2449-2457.
doi: 10.1007/s12665-011-1469-y
[40]   Xu Z W, Lu H Y, Zhao C H, et al. 2011. Composition, origin and weathering process of surface sediment in Kumtagh Desert, Northwest China. Acta Geographica Sinica, 21(6): 1062-1076.
[41]   Zhang K C, Kai K, Qu J J, et al. 2010. Formative environment and dynamic process of a simple linear sand dune. Arid Land Geography, 33(3): 340-345. (in Chinese)
[42]   Zhang W M, Tan L H, An Z S, et al. 2019. Morphological variation of star dune and implications for dune management: a case study at the Crescent Moon Spring scenic spot of Dunhuang, China. Journal of Arid Land, 11(3): 357-370.
doi: 10.1007/s40333-019-0099-1
[43]   Zhang Z C, Dong Z B, Qian G Q, et al. 2017. Formation and development of dunes in the northern Qarhan Desert, central Qaidam Basin, China. Geological Journal, 53(3): 1123-1134.
doi: 10.1002/gj.v53.3
[1] GUO Bing, XU Mei, ZHANG Rui, LUO Wei. A new monitoring index for ecological vulnerability and its application in the Yellow River Basin, China from 2000 to 2022[J]. Journal of Arid Land, 2024, 16(9): 1163-1182.
[2] WU Wangyang, ZHANG Dengshan, TIAN Lihui, SHEN Tingting, GAO Bin, YANG Dehui. Morphological change and migration of revegetated dunes in the Ketu Sandy Land of the Qinghai Lake, China[J]. Journal of Arid Land, 2023, 15(7): 827-841.
[3] ZHANG Hongxue, ZHANG Kecun, AN Zhishan, YU Yanping. Wind dynamic environment and wind-sand erosion and deposition processes on different surfaces along the Dunhuang-Golmud railway, China[J]. Journal of Arid Land, 2023, 15(4): 393-406.
[4] ZHANG Yan, ZHANG Zhengcai, MA Pengfei, PAN Kaijia, ZHA Duo, CHEN Dingmei, SHEN Caisheng, LIANG Aimin. Wind regime features and their impacts on the middle reaches of the Yarlung Zangbo River on the Tibetan Plateau, China[J]. Journal of Arid Land, 2023, 15(10): 1174-1195.
[5] MENG Nan, WANG Nai'ang, ZHAO Liqiang, NIU Zhenmin, SUN Jiaqi. Wind regimes and associated sand dune types in the hinterland of the Badain Jaran Desert, China[J]. Journal of Arid Land, 2022, 14(5): 473-489.
[6] ZOU Xueyong, LI Huiru, LIU Wei, WANG Jingpu, CHENG Hong, WU Xiaoxu, ZHANG Chunlai, KANG Liqiang. Application of a new wind driving force model in soil wind erosion area of northern China[J]. Journal of Arid Land, 2020, 12(3): 423-435.
[7] Xuemin GAO, Zhibao DONG, Zhenghu DUAN, Min LIU, Xujia CUI, Jiyan LI. Wind regime for long-ridge yardangs in the Qaidam Basin, Northwest China[J]. Journal of Arid Land, 2019, 11(5): 701-712.
[8] WANG Shengli, NAN Zhongren, Daniel PRETE . Protecting wild yak (Bos mutus) species and preventing its hybrid in China[J]. Journal of Arid Land, 2016, 8(5): 811-814.
[9] Gulzhan BEISEYEVA, Jilili ABUDUWALI. Migration and accumulation of heavy metals in disturbed landscapes in developing ore deposits, East Kazakhstan[J]. Journal of Arid Land, 2013, 5(2): 180-187.
[10] Hong TANG, DeGang YANG, XinHuan ZHANG, XinYi XIANG. Ecological migration effects on the Tianchi Scenic Area in Xinjiang: from the perspective of migrant farmer families[J]. Journal of Arid Land, 2012, 4(1): 95-104.
[11] Yan ZHANG, ChangYou LI, XiaoHong SHI, Chao LI. The migration of total dissolved solids during natural freezing process in Ulansuhai Lake[J]. Journal of Arid Land, 2012, 4(1): 85-94.
[12] JinNian TANG, ZhiZhu SU, Feng DING, ShuJuan ZHU, YouHao E, XinWei ZHAI, ZhiYu YI, HuJun LIU, JinChun ZHANG, FaMing LI. The formation age and evolution of Kumtagh Desert[J]. Journal of Arid Land, 2011, 3(2): 114-122.
[13] XingYi GAO, Olivier COMBREAU, JianFang QIAO, WeiKang YANG, Jun YAO, KeFen XU. Distribution and migration of houbara bustard (Chlamydotis undulata) in China[J]. Journal of Arid Land, 2009, 1(1): 74-79.