Please wait a minute...
Journal of Arid Land  2013, Vol. 5 Issue (3): 384-395    DOI: 10.1007/s40333-013-0169-8     CSTR: 32276.14.s40333-013-0169-8
Research Articles     
Estimation of water balance in the source region of the Yellow River based on GRACE satellite data
Min XU1,2, BaiSheng YE1,2, QiuDong ZHAO2, ShiQing ZHANG2*, Jiang WANG2
1 State Key Laboratory of Cryospheric Science, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
2 Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
Download:   PDF(4886KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Water storage has important significance for understanding water cycles of global and local domains and for monitoring climate and environmental changes. As a key variable in hydrology, water storage change represents the sum of precipitation, evaporation, surface runoff, soil water and groundwater exchanges. Water storage change data during the period of 2003–2008 for the source region of the Yellow River were collected from Gravity Recovery and Climate Experiment (GRACE) satellite data. The monthly actual evaporation was estimated according to the water balance equation. The simulated actual evaporation was significantly consistent and correlative with not only the observed pan (20 cm) data, but also the simulated results of the version 2 of Simple Bio-sphere model. The average annual evaporation of the Tangnaihai Basin was 506.4 mm, where evaporation in spring, summer, autumn and winter was 130.9 mm, 275.2 mm, 74.3 mm and 26.1 mm, and accounted for 25.8%, 54.3%, 14.7% and 5.2% of the average annual evaporation, respectively. The precipitation increased slightly and the actual evaporation showed an obvious decrease. The water storage change of the source region of the Yellow River displayed an increase of 0.51 mm per month from 2003 to 2008, which indicated that the storage capacity has significantly increased, probably caused by the degradation of permafrost and the increase of the thickness of ac-tive layers. The decline of actual evaporation and the increase of water storage capacity resulted in the increase of river runoff.

Key wordsabundance      richness      grain size      species-area curve      variogram      Horqin Sandy Land     
Received: 09 January 2013      Published: 10 September 2013
Fund:  

This work was funded by the Global Change Research Program of China (2010CB951401), the National Natural Science Foundation of China (41030638, 41121001, 41030527, 41130641, and 41201025) and the One Hundred Talents Pro-gram of the Chinese Academy of Sciences.

Corresponding Authors:
Cite this article:

Min XU, BaiSheng YE, QiuDong ZHAO, ShiQing ZHANG, Jiang WANG. Estimation of water balance in the source region of the Yellow River based on GRACE satellite data. Journal of Arid Land, 2013, 5(3): 384-395.

URL:

http://jal.xjegi.com/10.1007/s40333-013-0169-8     OR     http://jal.xjegi.com/Y2013/V5/I3/384

Byron D T, Srinivas B, John C R, et al. 2004. GRACE measurements of mass variability in the earth system. Science, 23: 305−503.

Ding Y J, Yang D Q, Ye B S, et al. 2007. Effects of bias correction on precipitation trend over China. Journal of Geophysical Research, 112: D13116.

Döll P, Kaspar F, Lehner B. 2003. A global hydrological model for driving water availability indicators: model tuning and validation. Journal of Hydrology, 70: 105−134.

Hu X G, Chen J, Zhou Y, et al. 2006. GRACE space gravity measurements to monitor the use of the Yangtze River seasonal changes in water storage. Science in China: Earth Science, 36(3): 225−232.

Kinfu H H. 2011. Estimation of terrestrial water storage in the upper reach of Yellow River. Msc. Thesis. Nederland: University of Twente, 7−11.

Milly P C D, Shmakin A B. 2002. Global modeling of land water and energy balances. Part I: the land dynamics (LaD) model. Journal of Hydrometeorology, 3: 283−299.

Muskett R R, Romanovsky V E. 2009. Groundwater storage changes in arctic permafrost watersheds from GRACE and in situ measurements. Environmental Research Letters, 4: 045009.

Muskett R R, Romanovsky V E. 2011. Alaskan permafrost groundwater storage changes derived from GRACE and ground measurements. Remote Sensing, 3: 378−397.

Niu L, Ye B S, Li J, et al. 2010. Effect of permafrost degradation on hydrological processes in typical basins with varying permafrost coverage in Western China. Science in China: Earth Science, 53: 1−10.

Oberman N G. 2008. Contemporary permafrost degradation of northern European Russia. In: Kane D L, Hinkel K M. Proceedings of 9th International Conference on Permafrost, University of Alaska Fairbanks, 29 June−2 July: 1305−1310.

Ohmura A, Wild M. 2002. Is the hydrological cycle accelerating? Science, 298: 1345−1346.

Qiu X, Liu C H, Zeng Y. 2003. Changes of pan evaporation in the recent 40 years over the Yellow River Basin. Journal of Natural Resource, 18: 437−442.

Ramillien, Cazenave A, Brunau O. 2004. Global time variations of hydrological signals from GRACE satellite gravimetry. Geophysical Journal International, 158: 813−826.

Rodell M, Houser P R, Jambor U, et a1. 2004. The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3): 381−394.

Shi C X, Niu K Y, Chen T Z, et al. 1986. The study of pan coefficients of evaporation pans of water. Scientia Geogrophica Sinica, 6(4): 305−313.

Tapley B D, Bettadpur S, Ries J C, et al. 2004a. GRACE measurements of mass variability in the Earth system. Science, 305: 503−505.

Tapley B D, Bettadpur S, Watkins M, et al. 2004b. The gravity recovery and climate experiment: mission overview and early results. Geophysical Research Letters, 31: L09607.

Velicogna I, Wahr J. 2006. Measurements of time-variable gravity show mass loss in Antarctica. Science, 311: 1745−1756.

Wahr J, Swenson S. 1998. Time variability of the earth gravity field: hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research, 103(12): 30205−30229.

Wahr J, Swenson S, Zlotnicki V, et al. 2004. Time-variable gravity from GRACE: first results. Journal of Geophysical Research, 31: L11501.

Wang Y J, Jiang T, Xu C Y, et al. 2005. Trends of evapotranspiration in the Yangtze river basin in 1961−2000. Advances in Climate Change Research, (3): 99−105.

Wang Y J, Jiang T, Xu C Y. 2006. Spatial-temporal change of 20 cm pan evaporation over the Yangtze River basin. Advances in Water Science, 17(6): 830−833.

Wang Y J, Jiang T, Liu B. 2010. Trends of estimated and simulated actual evaporation in the Yangtze river basin. Acta Geographic Sinica, 65(9): 1079−1088.

Wu X N, Hu T S, Wang X G, et al. 2006. Review of estimating and measuring regional evaporation. Transactions of the CSAE, 22(10): 257−262.

Xie P, Chen X H, Wang Z L. 2009. Comparison of actual evaporation and pan evaporation. Acta Geographic Sinica, 64(3): 270−277.

Xu M, Wang Y, Zhou Z Y, et al. 2012. Discussion of methods on spatial interpolation for monthly temperature data in Yangtze River basin. Resources and Environment in the Yangtze Basin, 21(3): 327−334.

Yang K, Chen Y Y, Qin J. 2009. Some practical notes on the land surface modeling in the Tibetan Plateau. Hydrology and Earth System Sciences, 13: 687−701.

Yang K, Ye B, Zhou D, et al. 2011. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Climatic Change, 109: 519−534.

Yang Y D, E D C, Chao D B, et a1. 2009. Seasonal and inter-annual change in land water storage from GRACE. Chinese Journal Geophysics, 52(12): 2987−299.

Yang Z N, Hu M G, Liu X R, et al. 1996. Alpine permafrost zone water balance and runoff characteristics. Science in China: Earth Science, 26(6): 567−573.

Ye B S, Yang D Q, Ding Y J, et al. 2007. A Bias-corrected precipitation climatology for China. Acta Geographic Sinica, 2007, 62(1): 3−13.

Ye B S, Yang D Q, Ma L Q. 2012. Effect of precipitation bias correction on water budget calculation in upper Yellow River, China. Environmental Research Letters, doi: 10.1088/1748-9326/7/2/025201.

Yoshikawa K, Hinzman L D. 2003. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near council, Alaska. Permafrost and Periglacial Process, 14: 151−160.

Yoshikawa K, Romanovsky V, Hinzman L, et al. 2006. Intra-permafrost water and hydrological chronology: a case study of aufeis and spring hydrology in continuous permafrost regions. EOS Transactions AGU Fall Meeting: U31B-07.

Zenner L, Gruber T, Jäggi A, et al. 2010. Propagation of atmospheric model errors to gravity potential harmonics−impact on GRACE de-aliasing. Geophysical Journal International, 182: 797−807.

Zhong M, Duan J B, Xu H Z, et al. 2009. Trend of China land water storage redistribution at medi- and large-spatial scales in recent five years by satellite gravity observations. Chinese Science Bulletin, 54(5): 816−821.
[1] Mohammed SOUDDI, Haroun CHENCHOUNI, M'hammed BOUALLALA. Thriving green havens in baking deserts: Plant diversity and species composition of urban plantations in the Sahara Desert[J]. Journal of Arid Land, 2024, 16(9): 1270-1287.
[2] MA Yunqiang, LI Zhizhong, TAN Dianjia, ZOU Xiaojun, TAO Tonglian. Grain size and surface micro-texture characteristics and their paleoenvironmental significance of Holocene sediment in southern margin of the Gurbantunggut Desert, China[J]. Journal of Arid Land, 2024, 16(5): 632-653.
[3] SONG Dacheng, ZHAO Wenzhi, LI Guangyu, WEI Lemin, WANG Lide, YANG Jingyi, WU Hao, MA Quanlin. Utilizing sediment grain size characteristics to assess the effectiveness of clay-sand barriers in reducing aeolian erosion in Minqin desert area, China[J]. Journal of Arid Land, 2024, 16(5): 668-684.
[4] LI Wen, MU Guijin, YE Changsheng, XU Lishuai, LI Gen. Aeolian activity in the southern Gurbantunggut Desert of China during the last 900 years[J]. Journal of Arid Land, 2023, 15(6): 649-666.
[5] CHEN Zongyan, XIAO Fengjun, DONG Zhibao. Fetch effect on the developmental process of aeolian sand transport in a wind tunnel[J]. Journal of Arid Land, 2020, 12(3): 436-446.
[6] YANG Yuling, LI Minfei, MA Jingjing, CHENG Junhui, LIU Yunhua, JIA Hongtao, LI Ning, WU Hongqi, SUN Zongjiu, FAN Yanmin, SHENG Jiandong, JIANG Ping'an. Changes in the relationship between species richness and belowground biomass among grassland types and along environmental gradients in Xinjiang, Northwest China[J]. Journal of Arid Land, 2019, 11(6): 855-865.
[7] Yong WANG, Ping YAN, Guang HAN, Wei WU, Run ZHANG. Sand source and formation mechanism of riverine sand dunes: a case study in Xiangshui River, China[J]. Journal of Arid Land, 2019, 11(4): 525-536.
[8] Wen SHANG, Yuqiang LI, Xueyong ZHAO, Tonghui ZHANG, Quanlin MA, Jinnian TANG, Jing FENG, Na SU. Effects of Caragana microphylla plantations on organic carbon sequestration in total and labile soil organic carbon fractions in the Horqin Sandy Land, northern China[J]. Journal of Arid Land, 2017, 9(5): 688-700.
[9] JIA Wenru, ZHANG Chunlai, LI Shengyu, WANG Haifeng, MA Xuexi, WANG Ningbo. Grain size distribution at four developmental stages of crescent dunes in the hinterland of the Taklimakan Desert, China[J]. Journal of Arid Land, 2016, 8(5): 722-733.
[10] WU Jing, QIAN Jianqiang, HOU Xianzhang, Carlos A BUSSO, LIU Zhimin, Xing Baozhen. Spatial variation of plant species richness in a sand dune field of northeastern Inner Mongolia, China[J]. Journal of Arid Land, 2016, 8(3): 434-442.
[11] YUE Xiangfei, ZHANG Tonghui, ZHAO Xueyong, LIU Xinping, MA Yunhua. Effects of rainfall patterns on annual plants in Horqin Sandy Land, Inner Mongolia of China[J]. Journal of Arid Land, 2016, 8(3): 389-398.
[12] XU Wenxuan, LIU Wei, YANG Weikang, WANG Muyang, XU Feng, David BLANK. Impact of great gerbils (Rhombomys opimus) on desert plant communities[J]. Journal of Arid Land, 2015, 7(6): 852-859.
[13] DeMing JIANG, ChengYou CAO, Ying ZHANG, ZhenBo CUI, XiaoShu HAN. Plantations of native shrub species restore soil microbial diversity in the Horqin Sandy Land, northeastern China[J]. Journal of Arid Land, 2014, 6(4): 445-453.
[14] Mouldi GAMOUN. Grazing intensity effects on the vegetation in desert rangelands of Southern Tunisia[J]. Journal of Arid Land, 2014, 6(3): 324-333.
[15] Silvia CLAVER, Susana L SILNIK, Florencia F CAMPóN. Response of ants to grazing disturbance at the central Monte Desert of Argentina: community descriptors and functional group scheme[J]. Journal of Arid Land, 2014, 6(1): 117-127.