Please wait a minute...
Journal of Arid Land  2024, Vol. 16 Issue (9): 1270-1287    DOI: 10.1007/s40333-024-0083-2

CSTR: 32276.14.JAL.02400832

Research article     
Thriving green havens in baking deserts: Plant diversity and species composition of urban plantations in the Sahara Desert
Mohammed SOUDDI1, Haroun CHENCHOUNI2,3,*(), M'hammed BOUALLALA1,4
1Laboratory of Saharan Natural Resources, Faculty of Nature and Life Sciences, University of Ahmed Draia-Adrar, Adrar 01000, Algeria
2Laboratory of Algerian Forests and Climate Change, Higher National School of Forests, Khenchela 40000, Algeria
3Laboratory of Natural Resources and Management of Sensitive Environments, University of Oum El Bouaghi, Oum El Bouaghi 04000, Algeria
4Higher School of Saharan Agriculture, Adrar 01000, Algeria
Download: HTML     PDF(881KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Hot arid zones represent vital reservoirs of unique species and ecosystems, holding significant importance for biodiversity. This study aimed to explore the plant diversity associated with tree plantations in urban ecosystems under hyper-arid climatic conditions in the Sahara Desert of Algeria. In May 2022, 30 quadrats measuring 1 m2 each were established at the base of Phoenix dactylifera, Leucaena leucocephala, and Tamarix aphylla, corresponding to the dominant tree species in each of three plantations. In each quadrat, the plant quantitative inventory was conducted to measure plant diversity and similarity among the studied plantations. Based on this, we assessed the plant functional traits and rarity/abundance status of the flora. The findings revealed a diverse flora associated with the studied plantations, comprising 29 plant species grouped into 27 genera and 12 families. Notably, Poaceae (accounting for 30.8% of the flora), Asteraceae (25.0%), and Zygophyllaceae (21.6%) were well-represented. With an overall density of approximately 555 individuals/m2, Zygophyllum album (120 individuals/m2) and Polypogon monspeliensis (87 individuals/m2) emerged as the most abundant species. Functional trait analysis underscored the pivotal role of therophytes (constituting over 50.0% of the flora) and anemochorous species (33.0%-62.5%). Phytogeographic analysis emphasized the prevalence of the Saharo-Arabic element (constituting over 31.0% of the flora) and the Mediterranean Saharo-Arabic element (9.5%-21.5%). The Cosmopolitan element thrived under disturbance factors, recording percentages from 13.0% to 20.0% of the plant community. The rarity/abundance status of the flora emphasized the significance of rare, common, and very common species in the studied plantations. These findings could provide fundamental data for the effective control and management of biodiversity in hot hyper-arid urban ecosystems.



Key wordsurban plantations      plant diversity      plant functional traits      rarity/abundance status      Sahara Desert      Algeria     
Received: 17 January 2024      Published: 30 September 2024
CLC:  32276.14.JAL.02400832  
Corresponding Authors: *Haroun CHENCHOUNI (E-mail: chenchouni@gmail.com)
Cite this article:

Mohammed SOUDDI, Haroun CHENCHOUNI, M'hammed BOUALLALA. Thriving green havens in baking deserts: Plant diversity and species composition of urban plantations in the Sahara Desert. Journal of Arid Land, 2024, 16(9): 1270-1287.

URL:

http://jal.xjegi.com/10.1007/s40333-024-0083-2     OR     http://jal.xjegi.com/Y2024/V16/I9/1270

Family Species n LF MT DT CT AA Occ
(%)
Class
Occ
Plantations
Amaranthaceae Bassia muricata 56 Ther Annual Zoo M-SA C 56.7 III Lle+Pda+Tap
Chenopodium murale 17 Ther Annual Baro Cosm R 16.7 I Lle+Pda+Tap
Salsola foetida 2 Cham Perennial Anemo SA R 3.3 I Pda
Apocynaceae Calotropis procera 18 Phan Perennial Anemo Tr-SA R 36.7 II Lle+Pda+Tap
Cynanchum acutum 1 Hemi Perennial Anemo M-As RR 3.3 I Pda
Pergularia tomentosa 5 Cham Perennial Anemo SA CC 13.3 I Lle+Pda
Asteraceae Aster squamatus 2 Ther Annual Anemo S-Am C 6.7 I Lle+Pda
Lactuca serriola 14 Ther Annual Anemo PTm AC 20.0 I Pda+Tap
Launaea glomerata 16 Ther Annual Anemo M-SA RR 30.0 II Lle+Pda+Tap
Launaea nudicaulis 51 Ther Annual Anemo SA CC 53.3 III Lle+Pda+Tap
Launaea resedifolia 2 Ther Annual Anemo M-SA CC 3.3 I Pda
Pulicaria arabica 15 Hemi Perennial Anemo SA AC 10.0 I Pda+Tap
Senecio massaicus 7 Ther Annual Anemo SA R 3.3 I Pda
Sonchus oleraceus 32 Ther Annual Anemo Cosm CCC 36.7 II Lle+Pda+Tap
Convovulaceae Merremia dissecta 2 Ther Annual Anthropo Tr-Am - 6.7 I Lle+Pda
Cucurbitaceae Colocynthis vulgaris 1 Ther Annual Anemo M-SA CC 3.3 I Lle
Euphorbiaceae Euphorbia granulate 1 Ther Annual Baro SA C 3.3 I Pda
Heliotropiaceae Heliotropium bacciferum 7 Cham Perennial Baro SA CC 16.7 I Lle+Pda+Tap
Orobanchaceae Cistanche phelypaea 6 Ther Annual Anemo M-SA C 6.7 I Lle+Tap
Poaceae Cutandia dichotoma 9 Ther Annual Anemo M C 16.7 I Lle+Pda
Cynodon dactylon 5 Hemi Perennial Baro Cosm CCC 3.3 I Pda
Imperata cylindrica 20 Hemi Perennial Anemo Tr-M-SA AC 3.3 I Pda
Lolium multiflorum 29 Ther Annual Baro M CC 33.3 II Lle+Pda+Tap
Phalaris minor 1 Ther Annual Zoo PSTr AR 3.3 I Lle
Phragmites australis 20 Hemi Perennial Anemo Cosm C 16.7 I Lle+Pda
Polypogon monspeliensis 87 Ther Annual Zoo PSTr CC 36.7 II Lle+Pda+Tap
Primulaceae Anagallis arvensis 1 Ther Annual Anemo Cosm R 3.3 I Tap
Resedaceae Randonia africana 8 Cham Perennial Baro SA R 16.7 I Lle+Tap
Zygophyllaceae Zygophyllum album 120 Cham Perennial Baro SA C 66.7 IV Lle+Pda+Tap
Table 1 Plant density, plant functional traits, and rarity/abundance status of plant species associated to the three urban plantations in the Sahara Desert of Algeria
Family Pda plantation Lle plantation Tap plantation Overall
Genus
richness
Species
richness
Genus
richness
Species
richness
Genus
richness
Species
richness
Genus
richness
Species
richness
Amaranthaceae 3 (13.6%) 3 (12.5%) 2 (11.1%) 2 (10.5%) 2 (14.3%) 2 (13.3%) 3 (11.1%) 3 (10.3%)
Apocynaceae 3 (13.6%) 3 (12.5%) 2 (11.1%) 2 (10.5%) 1 (7.1%) 1 (6.7%) 3 (11.1%) 3 (10.3%)
Asteraceae 6 (27.3%) 8 (33.3%) 3 (16.7%) 4 (21.1%) 4 (28.6%) 5 (33.3%) 6 (22.2%) 8 (27.6%)
Convovulaceae 1 (4.5%) 1 (4.2%) 1 (5.6%) 1 (5.3%) - - 1 (3.7%) 1 (3.4%)
Cucurbitaceae - - 1 (5.6%) 1 (5.3%) - - 1 (3.7%) 1 (3.4%)
Euphorbiaceae 1 (4.5%) 1 (4.2%) - - - - 1 (3.7%) 1 (3.4%)
Heliotropiaceae 1 (4.5%) 1 (4.2%) 1 (5.6%) 1 (5.3%) 1 (7.1%) 1 (6.7%) 1 (3.7%) 1 (3.4%)
Orobanchaceae - - 1 (5.6%) 1 (5.3%) 1 (7.1%) 1 (6.7%) 1 (3.7%) 1 (3.4%)
Poaceae 6 (27.3%) 6 (25.0%) 5 (27.8%) 5 (26.3%) 2 (14.3%) 2 (13.3%) 7 (25.9%) 7 (24.1%)
Primulaceae - - - - 1 (7.1%) 1 (6.7%) 1 (3.7%) 1 (3.4%)
Resedaceae - - 1 (5.6%) 1 (5.3%) 1 (7.1%) 1 (6.7%) 1 (3.7%) 1 (3.4%)
Zygophyllaceae 1 (4.5%) 1 (4.2%) 1 (5.6%) 1 (5.3%) 1 (7.1%) 1 (6.7%) 1 (3.7%) 1 (3.4%)
Total 22 (100.0%) 24 (100.0%) 18 (100.0%) 19 (100.0%) 14 (100.0%) 15 (100.0%) 27 (100.0%) 29 (100.0%)
Table 2 Genus richness and species richness for different plant families identified in the three urban plantations in the Sahara Desert of Algeria
Fig. 1 Venn diagram illustrating the partitioning of plant species richness in the three urban plantations in the Sahara Desert of Algeria
Estimate index Lle-Pda plantations Lle-Tap plantations Pda-Tap plantations
Number of shared species observed in the two plantations 15 12 12
Estimated number of Chao-shared species 18.5 12.3 12.1
Classic Jaccard index (%) 53.6 54.5 44.4
Classic Sørensen index (%) 69.8 70.6 61.5
Raw Chao-Jaccard index (%) 70.5 82.2 65.6
Estimated Chao-Jaccard index (%) 73.0 83.2 66.0
Raw Chao-Sørensen index (%) 82.7 90.2 79.2
Estimated Chao-Sørensen index (%) 84.4 90.9 79.5
Morisita-Horn index (%) 73.1 78.1 79.0
Bray-Curtis index (%) 59.0 63.8 61.5
Table 3 Qualitative and quantitative similarity estimates of plant community composition between each two urban plantations in the Sahara Desert of Algeria
Diversity index Pda plantation Lle plantation Tap plantation
Species richness 24 19 15
Shannon-Wiener index 2.73 2.26 2.35
Equitability index 0.86 0.77 0.87
Chao-1 index 29 24 15
Simpson's diversity index 0.91 0.84 0.88
Brillouin index 2.52 2.10 2.21
Margalef index 4.41 3.46 2.67
Berger-Parker index 0.16 0.34 0.21
Table 4 Plant diversity indices of plant communities associated with the three urban plantations in the Sahara Desert of Algeria
Fig. 2 Distribution of different life forms (a), morphological types (b), dispersal types (c), and chorological types (d) identified in the three urban plantations in the Sahara Desert of Algeria in both raw and real spectra. Pda, Phoenix dactylifera; Lle, Leucaena leucocephala; Tap, Tamarix aphylla. Ther, therophyte; Cham, chamaephyte; Phan, phanerophyte; Hemi, hemicryptophytes; Anthropo, anthropochore; Anemo, anemochore; Baro, barochore; Zoo, zoochore; Cosm, Cosmopolitan; Med, Mediterranean; M-As, Mediterrano-Asian; M-SA, Mediterranean Saharo-Arabian; PSTr, Paleo-subtropical; PTm, Paleo-temperate; SA, Saharo-Arabian; S-Am, South American.
Fig. 3 Rarity/abundance status of the flora in the three urban plantations in the Sahara Desert of Algeria in both raw and real spectra
Fig. 4 Alluvial diagram displaying the distribution of life forms, morphological types, dispersal types, chorological types, rarity/abundance status, and occurrence classes of the three urban plantations in the Sahara Desert of Algeria. Tr-M-SA, Tropico-Mediterranean Saharo-Arabian; Tr-Am, Tropico-American; Tr-SA, Tropico-Saharo-Arabian; AR, quite rare; R, rare; RR, very rare; AC, fairly common; C, common; CC, very common; CCC, particularly widespread. Class I is very rare species with frequency of occurrence<20.0%; Class II is rare species with frequency of occurrence varying from 20.0% to 40.0%; Class III is frequent species with frequency of occurrence varying from 40.0% to 60.0%; Class IV is abundant species with frequency of occurrence varying from 60.0%-80.0%.
[1]   Abd El-Ghani M M, Huerta-Martínez F M, Liu H Y, et al. 2017. Plant Responses to Hyperarid Desert Environments. Cham: Springer, 598.
[2]   Al-Robai S A, Mohamed H A, Howladar S M, et al. 2017. Vegetation structure and species diversity of Wadi Turbah Zahran, Albaha area, southwestern Saudi Arabia. Annals of Agricultural Sciences, 62(1): 61-69.
[3]   Azizi M, Chenchouni H, Belarouci M E H, et al. 2021. Diversity of psammophyte communities on sand dunes and sandy soils of the northern Sahara Desert. Journal of King Saud University-Science, 33(8): 101656, doi: 10.1016/j.jksus.2021.101656.
[4]   Barbero M, Loisel R, Médail F, et al. 2001. Biogeographic significance and biodiversity of Mediterranean basin forests. Bocconea, 13(1): 11-25. (in French)
[5]   Bendiouis F, Aboura R, Ainad Tabet M, et al. 2022. Characterization of the biodiversity of ornamental flora in the urban perimeter of the city of Tlemcen (Northwest of Algeria). Biodiversity Journal, 13(1): 25-35.
[6]   Bensizerara D, Chenchouni H, Si Bachir A, et al. 2013. Ecological status interactions for assessing bird diversity in relation to a heterogeneous landscape structure. Avian Biology Research, 6(1): 67-77.
[7]   Bouallala M. 2013. Spatio-temporal floristic and nutritional study of camel rangelands in the western Sahara of Algeria:The case of the Béchar and Tindouf regions. PhD Dissertation. Ouargla: University of Ouargla, 193. (in French)
[8]   Bouallala M, Neffar S, Chenchouni H. 2020. Vegetation traits are accurate indicators of how do plants beat the heat in drylands: Diversity and functional traits of vegetation associated with water towers in the Sahara Desert. Ecological Indicators, 114(3): 106364, doi: 10.1016/j.ecolind.2020.106364.
[9]   Bouallala M, Bradai L, Chenchoun H. 2022. Effects of sand encroachment on vegetation diversity in the Sahara Desert. In: Chenchouni H, Chaminé H I, Khan M F, et al. New Prospects in Environmental Geosciences and Hydrogeosciences. Cham: Springer, 133-138.
[10]   Bouallala M, Neffar S, Bradai L, et al. 2023. Do aeolian deposits and sand encroachment intensity shape patterns of vegetation diversity and plant functional traits in desert pavements? Journal of Arid Land, 15(6): 667-694.
doi: 10.1007/s40333-023-0014-7
[11]   Bradai L, Bouallala M, Bouziane N F, et al. 2015. An appraisal of eremophyte diversity and plant traits in a rocky desert of the Sahara. Folia Geobotanica, 50(3): 239-252.
[12]   Breuste J, Niemelä J, Snep R P H. 2008. Applying landscape ecological principles in urban environments. Landscape Ecology, 23(10): 1139-1142.
[13]   Carrière M. 1989. Sahelian plant communities in Mauritania:Analysis of the annual regeneration of the herbaceous cover. PhD Dissertation. Paris: Paris-Sud University, 238. (in French)
[14]   Chenchouni H. 2012. Flora diversity of a lake at Algerian Low-Sahara. Acta Botanica Malacitana, 37(37): 33-44. (in French)
[15]   Chenchouni H, Bouzekri A, Bezzalla A. 2025. Sahara and other African Deserts. In: Demolin-Leite G L. Terrestrial Biomes: Global Biome Conservation and Global Warming Impacts on Ecology and Biodiversity. London: Academic Press, 1-24.
[16]   Chenchouni H, Neffar S. 2025. Deserts. In: Demolin-Leite G L. Innovative Conservation Techniques and Perspectives:Global Biome Conservation and Global Warming Impacts on Ecology and Biodiversity. London: Academic Press, 1-17.
[17]   Colwell R K. 2013. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. Version 9. [2023-12-17]. https://www.robertkcolwell.org/pages/1407-estimates.
[18]   El-Ghanim W M, Hassan L M, Galal T M, et al. 2010. Floristic composition and vegetation analysis in Hail region north of central Saudi Arabia. Saudi Journal of Biological Sciences, 17(2): 119-128.
doi: 10.1016/j.sjbs.2010.02.004 pmid: 23961067
[19]   El-Saied A B, El-Ghamry A, Khafagi O M A, et al. 2015. Floristic diversity and vegetation analysis of Siwa Oasis: an ancient agro-ecosystem in Egypt's Western Desert. Annals of Agricultural Sciences, 60(2): 361-372.
[20]   Escobedo F, Varela S, Zhao M, et al. 2010. Analyzing the efficacy of subtropical urban forests in offsetting carbon emissions from cities. Environmental Science & Policy, 13(5): 362-372.
[21]   Fandjinou K, Zhang K B, Folega F, et al. 2018. Sustainable land management and ecological service assessment in Northwest of China: Case study of Yanchi, Peoples Republic of China. African Journal of Agricultural Research, 13(31): 1551-1563.
[22]   FAO (Food and Agriculture Organization of the United Nations). 2019. Trees, forests and land use in drylands: the first global assessment-Full report. FAO Forestry Paper 184. FAO, Rome, Italy.
[23]   Floret C, Galan M J, LeFloc'h E, et al. 1990. Growth forms and phenomorphology traits along an environmental gradient: Tools for studying vegetation? Journal of Vegetation Science, 1(1): 71-80.
[24]   Fuwape J A, Onyekwelu J C. 2011. Urban forest development in West Africa: benefits and challenges. Journal of Biodiversity and Ecological Sciences, 1(1): 77-94.
[25]   Gamoun M, Ouled Belgacem A, Louhaichi M. 2018. Diversity of desert rangelands of Tunisia. Plant Diversity, 40(5): 217-225.
doi: 10.1016/j.pld.2018.06.004 pmid: 30740567
[26]   Gomaa N H. 2012. Composition and diversity of weed communities in Al-Jouf province, Northern Saudi Arabia. Saudi Journal of Biological Sciences, 19(3): 369-376.
doi: 10.1016/j.sjbs.2012.05.002 pmid: 23961198
[27]   Green J K, Keenan T F. 2022. The limits of forest carbon sequestration. Science, 376(6594): 692-693.
doi: 10.1126/science.abo6547 pmid: 35549408
[28]   Itani M, Al Zein M, Nasralla N, et al. 2020. Biodiversity conservation in cities: Defining habitat analogues for plant species of conservation interest. PLoS ONE, 15(6): e0220355, doi: 10.1371/journal.pone.0220355.
[29]   Jauffret S. 2001. Validation and comparison of various indicators of long-term changes in arid Mediterranean ecosystems:Application to the monitoring of desertification in southern Tunisia. PhD Dissertation. Marseille: Aix-Marseille University, 364. (in French)
[30]   Jauffret S, Visser M. 2003. Assigning life-history traits to plant species to better qualify arid land degradation in Presaharian Tunisia. Journal of Arid Environments, 55(1): 1-28.
[31]   Jim C Y, Chen W Y. 2008. Assessing the ecosystem service of air pollutant removal by urban trees in Guangzhou (China). Journal of Environmental Management, 88(4): 665-676.
pmid: 17499909
[32]   Jo H K. 2002. Impacts of urban greenspace on offsetting carbon emissions for middle Korea. Journal of Environmental Management, 64(2): 115-126.
[33]   Kouba Y, Merdas S, Mostephaoui T, et al. 2021. Plant community composition and structure under short-term grazing exclusion in steppic arid rangelands. Ecological Indicators, 120: 106910, doi: 10.1016/j.ecolind.2020.106910.
[34]   Le Houérou H N. 1990. Definition and bioclimatic boundaries of the Sahara. Drought, 1(4): 246-259. (in French)
[35]   Le Houérou H N. 1995. Bioclimatology and biogeography of the arid steppes of North Africa: biological diversity, sustainable development, and desertification. Mediterranean Options, Series B: Research and Studies, 10: 1-396. (in French)
[36]   Lessard G, Boulfroy E. 2008. The roles of trees in cities. Quebec, Canada: Sainte-Fory College Center for Forestry Technology Transfer (CERFO). (in French)
[37]   MEA (Millennium Ecosystem Assessment). 2005. Ecosystem Wealth and Human Well-being. Washington DC: Island Press, 1-135.
[38]   Mehdi L, Weber C, Di Pietro F, et al. 2012. Evolution of the role of vegetation in the city, from green spaces to green infrastructure. VertigO, 12: 2, doi: 10.4000/vertigo.12670. (in French)
[39]   Monod T. 1992. About the desert. Drought, 3(1): 7-24. (in French)
[40]   Mouane A, Harrouchi A, Ghennoum I, et al. 2024. Amphibian and reptile diversity in natural landscapes and human-modified habitats of the Sahara Desert of Algeria: A better understanding of biodiversity to improve conservation. Elementa: Science of the Anthropocene, 12(1): 00106, doi: 10.1525/elementa.2022.00106.
[41]   Neffar S, Chenchouni H, Beddiar A, et al. 2013. Rehabilitation of degraded rangeland in drylands by prickly pear (Opuntia ficus-indica L.) plantations: Effect on soil and spontaneous vegetation. Ecologia Balkanica, 5(2): 63-76.
[42]   Neffar S, Beddiar A, Chenchouni H. 2015. Effects of soil chemical properties and seasonality on mycorrhizal status of prickly pear (Opuntia ficus-indica) planted in hot arid steppe rangelands. Sains Malaysiana, 44(5): 671-680.
[43]   Neffar S, Menasria T, Chenchouni H. 2018. Diversity and functional traits of spontaneous plant species in Algerian rangelands rehabilitated with prickly pear (Opuntia ficus-indica L.) plantations. Turkish Journal of Botany, 42(4): 448-461.
doi: 10.3906/bot-1801-39
[44]   Neffar S, Beddiar A, Menasria T, et al. 2022. Planting prickly pears as a sustainable alternative and restoration tool for rehabilitating degraded soils in dry steppe rangelands. Arabian Journal of Geosciences, 15: 287, doi: 10.1007/s12517-022-09579-1.
[45]   Neffar S, Chenchouni H. 2025. Xeric Shrublands. In: Demolin-Leite G L. Terrestrial Biomes:Global Biome Conservation and Global Warming Impacts on Ecology and Biodiversity. London: Academic Press, 1-19.
[46]   Nilson K, Randrup T B, Wandall B M, et al. 2000. Trees in the urban environment. In: Evans J. The Forests Handbook: An Overview of Forest Science, Volume 1. Oxford: Blackwell Science, 347-361.
[47]   Nowak D J, Hoehn R E III, Crane D E, et al. 2006. Assessing urban forest effects and values: Minneapolis' urban forest. Resource Bulletin NE-166. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station.
[48]   Osman A K, Al-Ghamdi F, Bawadekji A. 2014. Floristic diversity and vegetation analysis of Wadi Arar: A typical desert Wadi of the Northern Border region of Saudi Arabia. Saudi Journal of Biological Sciences, 21(6): 554-565.
doi: 10.1016/j.sjbs.2014.02.001 pmid: 25473364
[49]   Osseni A A, Sinsin B, Toko I I. 2014. Analysis of the constraints on the viability of urban vegetation: Case of street trees in the city of Porto-Novo, Benin. European Scientific Journal, 10(32): 1-15. (in French)
[50]   Osseni A A, Gbesso G H F, Nansi K M, et al. 2020. Phytodiversity and ecosystem services associated with street alignment plantings in the city of Grand-Popo, Benin. Woods and Forests of the Tropics, 345: 85-97. (in French)
[51]   Ozenda P. 2004. Flora and Vegetation of the Sahara (3rd ed.). Paris: CNRS (The French National Center for Scientific Research), 662. (in French)
[52]   Quézel P, Santa S. 1962. New Flora of Algeria and the Southern Desert Regions, Volume 1. Paris: CNRS, 565. (in French)
[53]   Quézel P, Santa S. 1963. New Flora of Algeria and the Southern Desert Regions, Volume 2. Paris: CNRS, 601. (in French)
[54]   Quézel P. 1965. The Vegetation of the Sahara, from Chad to Mauritania. Paris: Masson, 57-322. (in French)
[55]   Raunkiaer C. 1934. The Life Forms of Plants and Statistical Plant Geography. Oxford: Clarendon Press, 721.
[56]   Rejeb H, Souayah N, Ouerfelli N, et al. 2003. Diagnosis and evaluation of certain woody plants in the urban environment of the city of Tunis. In: Boukroute A. Trees and Urban Green Spaces:From Researcher to Manager. Proceedings IAV Hassen II, (Morocco), 139-148. (in French)
[57]   Roselt/OSS (Observatory Network for Long-Term Ecological Monitoring). 2008. Methodological guide for the study and monitoring of flora and vegetation. Tunis: Sahara and Sahel Observatory, 171. (in French)
[58]   Sakhraoui N. 2021. Horticultural flora cultivated in the Wilaya of Skikda:Status and strategy for sustainable management. PhD Dissertation. Souk Ahras: University of Souk Ahras, 153. (in French)
[59]   Salama F, Abd El-Ghani M, Gadallah M, et al. 2014. Variations in vegetation structure, species dominance and plant communities in South of the Eastern Desert-Egypt. Notulae Scientia Biologicae, 6(1): 41-58.
[60]   Selmi W. 2011. Public green spaces: Between urban planning and citizens' expectations. MSc Thesis. Strasbourg: Laboratoire Image, Ville, Environment, University of Strasbourg, 50. (in French)
[61]   Souddi M, Bouallala M. 2021. Biodiversity of trees and shrubs of urban plantations in arid regions. Current Trends in Natural Sciences, 10(20): 147-156.
[62]   Souddi M, Bouallala M. 2022. Diversity of plant communities associated with urban green spaces in southwestern Algeria. Al-Qadisiyah Journal for Agriculture Sciences, 12(1): 40-47.
[63]   Toth J. 1965. Forestry aspect of a Saharan plantation. French Forest Journal, 10: 674-695. (in French)
[64]   Triplet P. 2023. Encyclopedic Dictionary of Biological Diversity and Nature Conservation (9th ed.). [2023-12-17]. https://www.laccreteil.fr/spip.php?article519. (in French)
[65]   Van der Pijl L. 1982. Principles of dispersal Dispersal in Higher Plants. Berlin, Heidelberg & New York: Springer, 1-218.
[66]   Vela E. 2002. Biodiversity of open environments in the Mediterranean region:The case of the vegetation of dry lawns in the Luberon (Calcareous Provence). PhD Dissertation. Marseille: Aix-Marseille University, 160. (in French)
[67]   Young R F. 2010. Managing municipal green space for ecosystem service. Urban Forestry and Urban Greening, 9(4): 313-321.
[1] Asmaa S ABO HATAB, Yassin M AL-SODANY, Kamal H SHALTOUT, Soliman A HAROUN, Mohamed M EL-KHALAFY. Assessment of plant diversity of endemic species of the Saharo-Arabian region in Egypt[J]. Journal of Arid Land, 2024, 16(7): 1000-1021.
[2] ZHANG Jun, ZHANG Yuanming, ZHANG Qi. Host plant traits play a crucial role in shaping the composition of epiphytic microbiota in the arid desert, Northwest China[J]. Journal of Arid Land, 2024, 16(5): 699-724.
[3] YE He, HONG Mei, XU Xuehui, LIANG Zhiwei, JIANG Na, TU Nare, WU Zhendan. Responses of plant diversity and soil microorganism diversity to nitrogen addition in the desert steppe, China[J]. Journal of Arid Land, 2024, 16(3): 447-459.
[4] SUN Lin, YU Zhouchang, TIAN Xingfang, ZHANG Ying, SHI Jiayi, FU Rong, LIANG Yujie, ZHANG Wei. Leguminosae plants play a key role in affecting soil physical-chemical and biological properties during grassland succession after farmland abandonment in the Loess Plateau, China[J]. Journal of Arid Land, 2023, 15(9): 1107-1128.
[5] M'hammed BOUALLALA, Souad NEFFAR, Lyès BRADAI, Haroun CHENCHOUNI. Do aeolian deposits and sand encroachment intensity shape patterns of vegetation diversity and plant functional traits in desert pavements?[J]. Journal of Arid Land, 2023, 15(6): 667-694.
[6] Said TOUATI, Jawaher AYADI, Abdelhakim BOUAJILA, Smail ACILA, Rami RAHMANI, Jalloul BOUAJILA, Mohamed DEBOUBA. Leaf morpho-physiology and phytochemistry of olive trees as affected by cultivar type and increasing aridity[J]. Journal of Arid Land, 2022, 14(10): 1159-1179.
[7] ZHOU Siyuan, DUAN Yufeng, ZHANG Yuxiu, GUO Jinjin. Vegetation dynamics of coal mining city in an arid desert region of Northwest China from 2000 to 2019[J]. Journal of Arid Land, 2021, 13(5): 534-547.
[8] Naima KOULL, Abdelmadjid CHEHMA. Soil characteristics and plant distribution in saline wetlands of Oued Righ, northeastern Algerian Sahara[J]. Journal of Arid Land, 2016, 8(6): 948-959.
[9] LI Xiliang, HOU Xiangyang, REN Weibo, Taogetao BAOYIN, LIU Zhiying, Warwick BADGERY, LI Yaqiong, WU Xinhong, XU Huimin. Long-term effects of mowing on plasticity and allometry of Leymus chinensis in a temperate semi-arid grassland, China[J]. Journal of Arid Land, 2016, 8(6): 899-909.
[10] Raafat H ABD EL-WAHAB. Plant assemblage and diversity variation with human disturbances in coastal habitats of the western Arabian Gulf[J]. Journal of Arid Land, 2016, 8(5): 787-798.
[11] YuKun HU, KaiHui LI, YanMing GONG, Wei YIN. Plant diversity-productivity patterns in the alpine steppe environment of the Central Tianshan Mountains[J]. Journal of Arid Land, 2009, 1(1): 43-48.