Please wait a minute...
Journal of Arid Land  2020, Vol. 12 Issue (1): 144-153    DOI: 10.1007/s40333-019-0017-6     CSTR: 32276.14.s40333-019-0017-6
Research article     
Inter-population variabilities in seed mass and germination of Panicum turgidum and Pennisetum divisum in the desert of Kuwait
Arvind BHATT1,*(), Narayana R BHAT1, Afaf AL-NASSER1, María M CARÓN2, Andrea SANTO3
1 Kuwait Institute for Scientific Research, Safat 24885, Kuwait
2 Laboratory of Botanical Research (LABIBO), Faculty of Natural Sciences, National University of Salta-CONICET, Salta 4400, Argentina
3 Independent Researcher, Selargius 09047, Italy
Download: HTML     PDF(226KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Understanding variability in seed germination among populations is essential for planning an effective germplasm collection for restoration and conservation purposes. The knowledge of germination and dormancy patterns among populations of desert grasses is crucial for determining the potential of the species and populations to be used for restoration and conservation as well as forage production. Variability in seed germination of Panicum turgidum Forssk and Pennisetum divisum (Gmel.) Henr. in the desert of Kuwait was evaluated in different populations in May 2017. Experiment of seed germination (25 seeds and 4 replicates) was conducted for each population at night/day temperatures of 15°C/20°C and 20°C/30°C under the following light condition: continuous darkness or 12 h/12 h light/dark. Results showed that seed masses of both species strongly varied according to their seed provenances, and both species produced heavier seeds in population with a higher soil electrical conductivity. Seed germination percentage considerably varied between two species, and the variation in P. turgidum was greater (17%-49%) than that of P. divisum (72%-93%). Germination percentage in P. turgidum was greater at high temperature (20°C/30°C) than at low temperature (15°C/20°C). However, temperature regimes had no effect on germination percentage of P. divisum seeds. Mean germination time of both species exhibited significant inter-population variability. This result is especially relevant to assure the selection of the best population of each species and the regeneration success of the species. Besides this, inter-population variability also provides valuable information for enhancing our understanding of the mechanisms that regulate seed germination and how they might be related to seed provenance.



Key wordsdesert grass      seed germination      inter-population variability      seed provenance      seed dormancy     
Received: 08 October 2018      Published: 10 February 2020
Corresponding Authors:
About author: *Corresponding author: Arvind BHATT (E-mail: drbhatt79@gmail.com)
Cite this article:

Arvind BHATT, Narayana R BHAT, Afaf AL-NASSER, María M CARÓN, Andrea SANTO. Inter-population variabilities in seed mass and germination of Panicum turgidum and Pennisetum divisum in the desert of Kuwait. Journal of Arid Land, 2020, 12(1): 144-153.

URL:

http://jal.xjegi.com/10.1007/s40333-019-0017-6     OR     http://jal.xjegi.com/Y2020/V12/I1/144

Population Code GPS coordinates Associated species
Panicum turgidum
KISR (Kuwait Institute for Scientific Research) KISR 29°09'50''N; 47°41'24''E Pure stand
Near Julaia NJ 28°56'10''N; 48°11'21''E Heliotropium bacciferum, Cenchrus ciliaris and Pennisetum divisum
Sulaibia SNB 29°06'43''N; 47°24'51''E Cyperus conglomeratus, Plantago boissieri and Calligonum comosum
Saad Al Abdulla Al Sabah road SAA 29°24'15''N; 47°41'37''E Lasiurus sindicus, Stipagrostis plumosa, Polycarpae arepens and Cyperus conglomeratus
Pennisetum divisum
KISR KISR 29°07'42''N; 47°43'07''E Pure stand
Sulaibia SNB 29°06'44''N; 47°24'52''E Plantago boissieri, Cyperus conglomeratus and Calligonum comosum
Al Liyah-1 AL1 28°53'19''N; 48°14'27''E Deverra triradiata, Panicum turgidum and Halothamnus iraqensis
Al Liyah-2 AL2 28°55'38''N; 48°12'07''E Salsola imbricata, Cyperus conglomeratus and Aeluropus lagopoides
Saad Al Abdulla Al Sabah road SAA 29°24'05''N; 47°38'24''E Cornulaca monacantha, Panicum turgidum and Haloxylon salicornicum
Table 1 Population codes and habitat details of Panicum turgidum and Pennisetum divisum
Fig. 1 Seed masses of P. turgidum (a) and P. divisum (b) in different populations. Bars indicate standard errors.
Fig. 2 Seed masses of P. turgidum and P. divisum along a gradient of soil electrical conductivity
Population pH EC
(dS/m)
TN
(mg/kg)
AP (mg/kg) Ca (mg/kg) Mg (mg/kg) Na (mg/kg) K (mg/kg) Cl (mg/kg) SO4 (mg/kg) OM (%)
Panicum turgidum
KISR 7.7 3.830 360 33.0 141.0 30.6 57.8 35.4 161.3 176.1 0.80
NJ 8.1 2.670 100 2.8 72.1 8.1 42.2 5.5 75.0 148.3 0.29
SNB 8.0 0.640 95 3.0 24.9 2.7 2.0 5.8 5.1 23.6 0.25
SAA 7.6 2.088 110 8.6 81.1 5.7 19.1 15.0 58.5 122.0 0.44
Pennisetum divisum
KISR 7.8 0.965 540 12.8 49.5 3.4 17.1 9.1 24.8 64.4 1.16
SNB 7.8 0.656 160 3.8 25.8 0.4 4.9 5.0 8.1 20.1 0.42
AL1 7.6 2.088 110 8.6 81.1 5.7 19.1 15.0 58.5 122.0 0.44
AL2 7.8 1.230 220 11.2 39.4 4.7 15.4 4.8 28.5 68.7 0.92
SAA 7.4 4.640 115 12.2 144.2 21.5 80.9 21.1 63.3 326.0 0.30
Table 2 Soil characteristics of P. turgidum and P. divisum in different populations
Fig. 3 Germination percentages of P. turgidum (a) and P. divisum (b) in different populations. Bars indicate standard errors.
Treatment Panicum turgidum Pennisetum divisum
df LRT P df LRT P
P 3 120.631 2.2e-16*** 4 86.198 <2e-16***
T 1 45.902 1.243e-11*** 1 4.862 0.738ns
L 1 0.842 0.359ns 1 4.862 0.028*
T×L 1 0.012 0.901ns 1 0.000 0.994ns
P×L 3 2.713 0.438ns 4 4.655 0.325ns
P×T 3 8.873 0.031* 4 9.476 0.049*
P×T×L 3 3.315 0.346ns 4 0.509 0.973ns
Table 3 Effects of population (P), temperature (T) and light (L) and their interactions on seed germinations of P. turgidum and P. divisum
Fig. 4 Germination percentages and mean germination time (MGT) of P. turgidum (a and c) and P. divisum (b and d) in different populations and temperatures. Bars indicate standard errors.
Species Treatment df Scaled deviation P
Panicum turgidum P 3 10.343 0.016*
T 1 2.894 0.122ns
P×T 3 11.173 0.011*
Pennisetum divisum P 4 38.522 8.745e-08***
T 1 0.029 0.865ns
P×T 4 11.082 0.026*
Table 4 Effects of population (P) and temperature (T) and their interaction on mean germination time of P. turgidum and P. divisum
[1]   AFNOR.1987. Collection of French Standards, Soil Quality, Methods of Analysis. France: French Standards Association Afnor, 31-147. (in French)
[2]   Akhter R, Arshad M. 2006. Arid rangelands in the Cholistan Desert (Pakistan). Sécheresse, 17(1-2): 210-217.
[3]   Al-Awadhi J M, Misak R F, Omar S S. 2003. Causes and consequences of desertification in Kuwait: a case study of land degradation. Bulletin of Engineering Geology and the Environment, 62(2): 107-115.
[4]   Al-Khateeb S A. 2006. Effect of salinity and temperature on germination, growth and ion relations of Panicum turgidum Forssk. Bioresource Technology, 97(2): 292-298.
[5]   Allen S E, Grimshaw H M, Rowland A P. 1986. Chemical analysis. In: Moore P D, Chapman S B. Methods in Plant Ecology. London: Blackwell Scientific Publication, 285-344.
[6]   Al-Shamsi N. 2009. Germination ecology of two indigenous range grasses Lasiurus scindicus and Panicum turgidum. MSc Thesis. Al-Ain: UAE University.
[7]   Al-Taisan W A. 2010. Comparative effects of drought and salt stress on germination and seedling growth of Pennisetum divisum (Gmel.) Henr. American Journal of Applied Sciences, 7(5): 640-646.
[8]   Annual Statistical Report. 2006. Ministry of Planning. Kuwait: Kuwait Central Statistical Bureau, 518.
[9]   Ashraf M. 2006. Tolerance of some potential forage grasses from arid regions of Pakistan to salinity and drought. In: Öztürk M, Waisel Y, Khan M A, et al. Biosaline Agriculture and Salinity Tolerance in Plants. Birkhäuser: Basel, 15-27.
[10]   Baskin C C, Baskin J M. 2014. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination (2nd ed.). San Diego: Academic Press, 1600.
[11]   Batanouny K H. 2002. Biodiversity strategy and rangelands in the Arab world. In: Hamzah R, Alaa El-Din M N, Mohammed S A. National Biodiversity Planning in the Arab World. Bahrain: Arabian Gulf University Publication, 121-142.
[12]   Bewley J D, Black M. 1994. Dormancy and the control of germination In: Bewley J D, Black M. Seeds. USA: Springer, 199-271.
[13]   Bhatt A. 2013. Propagation of potential native plants for urban landscape in Gulf countries. In: Qatar Foundation Annual Research Forum Proceeding. Qatar: Hamad bin Khalifa University Press, EEP 06.
[14]   Bhatt A, Pérez-García F. 2016. Seed dormancy of Ochradenus baccatus (Resedaceae), a shrubby species from Arabian Desert regions. Revista de Bbiologia Tropical, 64(3): 965-974.
[15]   Bhatt A, Phondani P C, Pompelli M F. 2016. Seed maturation time influences the germination requirements of perennial grasses in desert climate of Arabian Gulf. Saudi Journal of Biological Sciences, 25(8): 1562-1567.
[16]   Boot R, Raynal D J, Grime J P. 1986. A comparative study of the influence of drought stress on flowering in Urtica dioica and U. urens. Journal of Ecology, 74(2): 485-495.
[17]   Carón M M, De Frenne P, Brunet J, et al. 2014. Latitudinal variation in seeds characteristics of Acer platanoides and A. pseudoplatanus. Plant Ecology, 215(8): 911-925.
[18]   Cochrane A, Yates C J, Hoyle G L, et al. 2015. Will among population variation in seed traits improve the chance of species persistence under climate change? Global Ecology and Biogeography, 24(1): 12-24.
[19]   Dürr C, Dickie J B, Yang X Y, et al. 2015. Ranges of critical temperature and water potential values for the germination of species worldwide: contribution to a seed trait database. Agricultural and Forest Meteorology, 200: 222-232.
[20]   El-Keblawy A. 2004. Salinity effects on seed germination of the common desert range grass, Panicum turgidum. Seed Science and Technology, 32: 873-878.
[21]   El-Keblawy A, Al-Ansari F, Al-Shamsi N. 2011. Effects of temperature and light on salinity tolerance during germination in two desert glycophytic grasses, Lasiurus scindicus and Panicum turgidum. Grass and Forage Science, 66(2): 173-182.
[22]   El-Keblawy A. 2013. Impacts of dormancy regulating chemicals on innate and salinity-induced dormancy of four forage grasses native to Arabian deserts. Grass and Forage Science, 68(2): 288-296.
[23]   El-Keblawy A, Gairola S, Bhatt A. 2016. Maternal salinity environment affects salt tolerance during germination in Anabasis setifera: A facultative desert halophyte. Journal of Arid Land, 8(2): 254-263.
[24]   El-Keblawy A, Gairola S, Bhatt A, et al. 2017. Effects of maternal salinity on salt tolerance during germination of Suaeda aegyptiaca: a facultative halophyte in the Arab Gulf desert. Plant Species Biology, 32(1): 45-53.
[25]   Eriksson G. 2014. Collection of propagation material in the absence of genetic knowledge. In: Bozzano M, Jalonen R, Thomas E, et al. Genetic Considerations in Ecosystem Restoration Using Native Tree Species. State of the World's Forest Genetic Resources-Thematic Study. Rome: FAO and Biodiversity International, 79-84.
[26]   Fageria N K, Gheyi H R, Moreira A. 2011. Nutrient bioavailability in salt affected soils. Journal of Plant Nutrition, 34(7): 945-962.
[27]   Fernández-Pascual E, Jiménez-Alfaro B, Caujapé-Castells J, et al. 2013. A local dormancy cline is related to the seed maturation environment, population genetic composition, and climate. Annals of Botany, 112(5): 937-945.
[28]   Gutterman Y. 1994. Strategies of seed dispersal and germination in plants inhabiting deserts. Botanical Review, 60(4): 373-425.
[29]   Hegazy A, Lovett-Doust J. 2016. Plant Ecology in the Middle East. Oxford: Oxford University Press, 339.
[30]   Jackson M L. 1973. Soil Chemical Analysis. New Delhi, India: Prentice Hall, 521.
[31]   Jones K L, Roundy B A, Shaw N L, et al. 2004. Environmental effects on germination of Carex utriculata and Carex nebrascensis relative to riparian restoration. Wetlands, 24(2): 467-479.
[32]   Kigel J. 1995. Seed Development and Germination. New York: Marcel Dekker INC., 872.
[33]   Li B, Foley M E. 1997. Genetic and molecular control of seed dormancy. Trends in Plant Sciences, 2(10): 384-389.
[34]   Loha A, Tigab M, Fries A. 2009. Genetic variation among and within populations of Cordia africana in seed size and germination responses to constant temperatures. Euphytica, 165: 189.
[35]   Mganga K Z, Musimba N K R, Nyariki D M, et al. 2015. The choice of grass species to combat desertification in semi-arid Kenyan rangelands is greatly influenced by their forage value for livestock. Grass and Forage Science, 70(1): 161-167.
[36]   Omar S A S, Al-Mutawa Y, Zaman S. 2007. Vegetation of Kuwait. Kuwait: Kuwait Institute for Scientific Research, 47-89.
[37]   Osman A E, Makawi M, Ahmed R. 2008. Potential of the indigenous desert grasses of the Arabian Peninsula for forage production in a water-scarce region. Grass and Forage Science, 63(4): 495-503.
[38]   Peacock J M F, Erguson M E, Alhadrami G A, et al. 2003. Conservation through utilization: a case study of the indigenous forage grasses of the Arabian Peninsula. Journal of Arid Environments, 54(1): 15-28.
[39]   Phondani P C, Bhatt A, Elsarrag E, et al. 2016. Criteria and indicator approach of global sustainability assessment system for sustainable landscaping using native plants in Qatar. Ecological Indicators, 69: 381-389.
[40]   Quesada M, Winsor J A, Stephenson A G. 1996. Effects of pollen selection on progeny vigour in a Cucurbita pepo×C. texana hybrid. Theoretical and Applied Genetics, 92(7): 885-890.
[41]   R Core Team. 2016. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. [2018-06-07]. .
[42]   Richer R. 2008. Conservation in Qatar. Impacts of increasing industrialization. Centre for International and Regional Studies (CIRS). Qatar: Georgetown University School of Foreign Service, 1-38.
[43]   Richer R, Bhatt A, Abdul Majid S, et al. 2016. Native plant landscaping and species selection to promote sustainability and biodiversity in Qatar. Q Science Proceedings: Qatar Green Building Conference, 2016. The Action, 41.
[44]   Santo A, Mattana E, Grillo O, et al. 2015. Morpho-colorimetric analysis and seed germination of Brassica insularis Moris (Brassicaceae) populations. Plant Biology, 17(2): 335-343.
[45]   Steyn H M, Van Rooyen N, Van Rooyen M W, et al. 1996. The phenology of Namaqualand ephemeral species-The effect of water stress. Journal of Arid Environments, 33(1): 49-62.
[46]   Tremayne M A, Richards A J. 2000. Seed weight and seed number affect subsequent fitness in outcrossing and selfing Primula species. New Phytologist, 148(1): 127-142.
[47]   Walkley A, Black I A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1): 29-38.
[48]   Wright K J, Seavers G P, Peters N C B, et al. 1999. Influence of soil moisture on the competitive ability and seed dormancy of Sinapis arvensis in spring wheat. Weed Research, 39(4): 309-317.
[49]   Yaqoob S, Khan R A, Rafay M, et al. 2013. Nutritional evaluation of major range grasses from Cholistan Desert. Pakistan Journal of Nutrition, 12: 23-29.
[50]   Yeşilyurt E B, Erik S, Tavşanoğlu Ç. 2017. Inter-population variability in seed dormancy, seed mass and germination in Helianthemum salicifolium (Cistaceae), a hard-seeded annual herb. Folia Geobotanica, 52(2): 153-263.
[51]   Zhang J, Maun M A. 1990. Effects of sand burial on seed germination, seedling emergence, survival, and growth of Agropyron psammophilum. Canadian Journal of Botany, 68(2): 304-310.
[1] Anlifeire ANNIWAER, SU Yangui, ZHOU Xiaobing, ZHANG Yuanming. Impacts of snow on seed germination are independent of seed traits and plant ecological characteristics in a temperate desert of Central Asia[J]. Journal of Arid Land, 2020, 12(5): 775-790.
[2] Syed Z SHAH, Aysha RASHEED, Bilquees GUL, Muhammad A KHAN, Brent L NIELSEN, Abdul HAMEED. Maternal salinity improves yield, size and stress tolerance of Suaeda fruticosa seeds[J]. Journal of Arid Land, 2020, 12(2): 283-293.
[3] CHEN Yanfeng, CAO Qiumei, LI Dexin, LIU Huiliang, ZHANG Daoyuan. Effects of temperature and light on seed germination of ephemeral plants in the Gurbantunggut Desert, China: implications for vegetation restoration[J]. Journal of Arid Land, 2019, 11(6): 916-927.
[4] MAMUT Jannathan, Dunyan TAN, C BASKIN Carol, M BASKIN Jerry. Effects of water stress and NaCl stress on different life cycle stages of the cold desert annual Lachnoloma lehmannii in China[J]. Journal of Arid Land, 2019, 11(5): 774-784.
[5] Hui AN, GuoQi LI. Effects of grazing on carbon and nitrogen in plants and soils in a semiarid desert grassland, China[J]. Journal of Arid Land, 2015, 7(3): 341-349.
[6] DeMing JIANG, Yi TANG, Carlos A BUSSO. Effects of vegetation cover on recruitment of Ulmus pumila L. in Horqin Sandy Land, northeastern China[J]. Journal of Arid Land, 2014, 6(3): 343-351.
[7] Rong YANG, YongZhong SU, Min WANG, Tao WANG, Xiao YANG, GuiPing FAN, TianChang WU. Spatial pattern of soil organic carbon in desert grasslands of the diluvial-alluvial plains of northern Qilian Mountains[J]. Journal of Arid Land, 2014, 6(2): 136-144.