Please wait a minute...
Journal of Arid Land  2022, Vol. 14 Issue (10): 1086-1098    DOI: 10.1007/s40333-022-0027-7
Research article     
Contents and spatial distribution patterns of heavy metals in the hinterland of the Tengger Desert, China
WANG Zhao1,*(), WEI Junjie1,2,*(), PENG Wenbin3, ZHANG Rui4, ZHANG Haobo5
1College of Geographical Sciences, Shanxi Normal University, Taiyuan 030031, China
2School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
3College of Tourism and Resource Environment, Zaozhuang University, Zaozhuang 277160, China
4School of Geography, Geomatics, and Planning, Jiangsu Normal University, Xuzhou 221116, China
5Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
Download: HTML     PDF(3608KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The desert in northern China is one of important sources of loess and one significant source of material for sandstorms in Asia. The sand/dust that is transported from desert when sandstorms occur can destroy the growth of crops, cause serious losses and great harm to the economic construction and life safety, and cause natural environment pollution. Hence, it is very important to deepen the research into heavy metals in surface deposits at vulnerable ecological region of arid land of northern China to guide local industrial and agricultural development and improve environmental protection. In this research, 10 heavy metal elements (Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, and Th) were tested and analyzed in 33 soil sample sites collected from the hinterland of the Tengger Desert, northern China. The results showed that the average abundance of Th exceeded its background soil value of China by more than 5.2 times, which suggests that the Tengger Desert is polluted by Th. In addition, based on principal component analysis, spatial differentiation, and correlation analysis, we identified the source of element with a coefficient of variation in abundance of greater than 0.5 or exceeding the background soil value of China. Principal component analysis and correlation analysis showed that the sources of heavy metals of Cr, Mn, Fe, Co, Ni, Cu, and Cd were similar, while those of Th and Zn were different. Moreover, based on the contents and spatial distribution characteristics of those heavy metal elements, we found that the formation of heavy metal elements enrichment areas is caused by industrial pollution, development of irrigated agricultural, geological, and geomorphic conditions, and the sedimentary environment in the study area. Our result can provide information on the environmental background values of soils in the hinterland of the Tengger Desert.

Background value of Chinaa(mg/kg)



Key wordsTengger Desert      terrestrial deposit      environmental pollution      industrial and agricultural production      natural factor     
Received: 19 April 2022      Published: 31 October 2022
Fund:  Basic Research Projects of Shanxi Province(20210302124111);Graduate Education Innovation Planning Project of Shanxi Province(2021YJJG145);National Natural Science Foundation of China(41807427);National Natural Science Foundation of China(41907370)
Corresponding Authors: WANG Zhao, WEI Junjie     E-mail: wangzhao@sxnu.edu.cn;jj_wei1006@163.com
Cite this article:

WANG Zhao, WEI Junjie, PENG Wenbin, ZHANG Rui, ZHANG Haobo. Contents and spatial distribution patterns of heavy metals in the hinterland of the Tengger Desert, China. Journal of Arid Land, 2022, 14(10): 1086-1098.

URL:

http://jal.xjegi.com/10.1007/s40333-022-0027-7     OR     http://jal.xjegi.com/Y2022/V14/I10/1086

Fig. 1 Location and sample sites of the study area. The map is referenced from Li et al. (2014), and the wind regime is referenced from Yang et al. (2014).
Name of
sample site
Latitude (N) Longitude (E) Altitude
(m)
Name of sample site Latitude (N) Longitude (E) Altitude (m)
TD-1 38°48'35.36” 102°52'46.51” 1347 TD-18 38°09'22.65” 103°31'56.87” 1472
TD-2 39°13'06.25” 102°37'24.12” 1364 TD-19 38°23'11.03” 103°16'41.02” 1420
TD-3 39°27'47.37” 102°51'28.01” 1272 TD-20 39°08'55.73” 103°39'22.20” 1304
TD-4 40°04'15.01” 103°55'29.24” 1399 TD-21 37°59'07.98” 103°21'49.38” 1534
TD-5 40°07'05.43” 104°03'48.21” 1409 TD-22 37°50'42.97” 103°25'48.80” 1631
TD-6 39°47'35.29″ 104°25'03.59″ 1373 TD-23 37°47'25.91” 103°37'45.85” 1629
TD-7 39°31'45.81″ 104°49'43.09″ 1167 TD-24 37°41'59.14” 103°45'49.11” 1625
TD-8 39°19'12.75″ 104°55'06.88″ 1220 TD-25 37°45'39.98” 104°56'00.25” 1381
TD-9 38°59'43.56″ 105°21'03.46″ 1261 TD-26 37°51'50.78” 104°43'30.52” 1455
TD-10 38°45'27.92″ 105°21'30.87″ 1315 TD-27 38°02'36.40” 104°36'09.91” 1474
TD-11 38°41'22.11″ 105°08'37.13” 1323 TD-28 38°15′39.84” 104°40′51.49” 1337
TD-12 38°31'32.13″ 104°58'30.76″ 1318 TD-29 38°14'45.59” 104°20'28.02” 1372
TD-13 38°22'05.03″ 104°35'18.00″ 1334 TD-30 38°05'50.38” 104°23'09.96” 1417
TD-14 38°16'24.35″ 104°10'42.04″ 1382 TD-31 37°55'57.59” 104°32'37.71” 1445
TD-15 38°17'58.31″ 103°48'03.77″ 1414 TD-32 37°41'02.90” 104°39'22.97” 1467
TD-16 38°20'23.46″ 103°43'25.52″ 1401 TD-33 37°34'33.78” 105°01'16.27” 1277
TD-17 38°22'25.48″ 103°26'46.01″ 1411
Table 1 Information of sample sites in the Tengger Desert
Element Content range
(mg/kg)
Average
(mg/kg)
Standard
deviation (SD) (mg/kg)
Coefficient of variation (CV) Background value of Chinaa
(mg/kg)
Background value of Hexi Corridorb (mg/kg)
Cr 0.00-0.08 0.02 0.02 0.76 61.00 57.82
Mn 0.04-0.47 0.17 0.09 0.54 583.00 530.66
Fe 179.24-2254.08 960.75 497.64 0.52 29,400.00 -
Co 0.000-0.010 0.003 0.002 0.540 12.700 62.670
Ni 0.00-0.03 0.01 0.01 0.63 26.90 24.45
Cu 0.000-0.010 0.006 0.003 0.520 22.600 21.650
Zn 0.01-0.08 0.02 0.01 0.62 74.20 47.84
Cd 0.0000-0.0004 0.0002 0.0001 0.5000 0.1000 -
Pb 0.000-0.010 0.010 0.002 0.240 26.000 1.000
Th 24.19-208.32 71.79 47.93 0.67 13.80 -
Table 2 Heavy metals abundance in the Tengger Desert
Fig. 2 Contour maps showing the spatial distribution of the abundance of 9 heavy metal elements in the Tengger Desert. The red arrow direction is from low-value to high-value. (a), Cr; (b), Mn; (c), Fe; (d), Co; (e), Ni; (f), Cu; (g), Cd; (h), Zn; (i), Th.
Cr Mn Fe Co Ni Cu Zn Cd Th
Cr 1.00
Mn 0.90** 1.00
Fe 0.86** 0.97** 1.00
Co 0.89** 0.98** 0.99** 1.00
Ni 0.95** 0.93** 0.93** 0.96** 1.00
Cu 0.86** 0.86** 0.83** 0.88** 0.91** 1.00
Zn 0.38* 0.36* 0.28 0.33 0.36* 0.36* 1.00
Cd 0.80** 0.88** 0.89** 0.86** 0.82** 0.76** 0.28 1.00
Th 0.68** 0.69** 0.55** 0.58** 0.56** 0.52** 0.21 0.65** 1.00
Table 3 Pearson correlation coefficients between 9 heavy metals abundance in the Tengger Desert (n=33)
Fig. 3 Results of principal components analysis for the heavy metals. On each axis, the percentage of variance explained in bracket by the principal components (PCs).
Element PC1 (77.0%) PC2 (9.8%) PC3 (6.8%)
Cr 0.36 0.02 0.05
Mn 0.37 -0.05 0.01
Fe 0.36 -0.11 -0.21
Co 0.37 -0.06 -0.20
Ni 0.37 -0.00 -0.21
Cu 0.34 0.03 -0.22
Zn 0.15 0.97 0.13
Cd 0.34 -0.13 0.08
Th 0.26 -0.16 0.89
Table 4 Factor loadings of the 9 elements in the Tengger Desert
[1]   Adimalla N. 2020. Heavy metals contamination in urban surface soils of Medak Province, India, and its risk assessment and spatial distribution. Environmental Geochemistry and Health, 42(1): 59-75.
doi: 10.1007/s10653-019-00270-1 pmid: 30843166
[2]   Ali H, Khan E, Ilahi I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019: 6730305, doi: 10.1155/2019/6730305.
doi: 10.1155/2019/6730305
[3]   Anaman R, Peng C, Jiang Z C, et al. 2022. Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS based PCA and PMF. Science of the Total Environment, 823: 153759, doi: 10.1016/j.scitotenv.2022.153759.
doi: 10.1016/j.scitotenv.2022.153759
[4]   Baltas H, Sirin M, Gokbayrak E, et al. 2020. A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop Province, Turkey. Chemosphere, 241: 125015, doi: 10.1016/j.chemosphere.2019.125015.
doi: 10.1016/j.chemosphere.2019.125015
[5]   Chen S K, Wu P. 2003. Effects of Tengger Desert on the ecological environment surrounding areas and its comprehensive control measures. Pratacultural Science, 20(2): 1-3. (in Chinese)
[6]   Dai J R, Zhu D C, Pang X G, et al. 2015. Geochemical characteristics and environmental quality of soil elements in Jinan City. Geology in China, 42(1): 308-316. (in Chinese)
[7]   Darnley A G. 1995. International geochemical mapping-a review. Journal of Geochemical Exploration, 55(1-3): 5-10.
doi: 10.1016/0375-6742(95)00035-6
[8]   Dong Y, Sun L, Li H T, et al. 2021. Sources and spatial distribution of heavy metals and arsenic in soils from Xiong'an New Area, China. Hydrogeology & Engineering Geology, 48(3): 172-181. (in Chinese)
[9]   Guan Q Y, Wang F F, Xu C Q, et al. 2018. Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, Northwest China. Chemosphere, 193: 189-197.
doi: S0045-6535(17)31736-8 pmid: 29131977
[10]   He M Z, Dijkstra F A, Zhang K, et al. 2016. Influence of life form, taxonomy, climate, and soil properties on shoot and root concentrations of 11 elements in herbaceous plants in a temperate desert. Plant and Soil, 398(1-2): 339-350.
doi: 10.1007/s11104-015-2669-0
[11]   He Y J, Pan X B. 2003. The changes of planting structure and rational use of water resource in the oasis of Minqin County, Gansu Province. Chinese Journal of Eco-Agriculture, 11(4): 121-123. (in Chinese)
[12]   Huang J H, Peng S Y, Mao X M, et al. 2019. Source apportionment and spatial and quantitative ecological risk assessment of heavy metals in soils from a typical Chinese agricultural county. Process Safety and Environmental Protection, 126: 339-347.
doi: 10.1016/j.psep.2019.04.023
[13]   Hunag S W, Tang J W, Li C H. 2017. Status of heavy metals, nutrients, and total salts in commercial organic fertilizers and organic wastes in China. Journal of Plant Nutrition and Fertilizers, 23(1): 162-173. (in Chinese)
[14]   Integrative Investigation Team for Vegetation of Inner Mongolia. 1985. Vegetation of Inner Mongolia. Beijing: Science Press, 10-15. (in Chinese)
[15]   Islam M S, Ahmed M K, Raknuzzaman M, et al. 2015. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecological Indicators, 48: 282-291.
doi: 10.1016/j.ecolind.2014.08.016
[16]   Kelepertzis E. 2014. Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma, 221-222: 82-90.
[17]   Kharazi A, Leili M, Khazaei M, et al. 2021. Human health risk assessment of heavy metals in agricultural soil and food crops in Hamadan, Iran. Journal of Food Composition and Analysis, 100: 103890, doi: 10.1016/j.jfca.2021.103890.
doi: 10.1016/j.jfca.2021.103890
[18]   Kong S F, Lu B, Ji Y Q, et al. 2011. Levels, risk assessment and sources of PM10 fraction heavy metals in four types dust from a coal-based city. Microchemical Journal, 98(2): 280-290.
doi: 10.1016/j.microc.2011.02.012
[19]   Kusin F M, Azani N N M, Hasan S, et al. 2018. Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment. CATENA, 165: 454-464.
doi: 10.1016/j.catena.2018.02.029
[20]   Lamba D T, Ming H, Megharaj M, et al. 2009. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Journal of Hazardous Materials, 171(1-3): 1150-1158.
doi: 10.1016/j.jhazmat.2009.06.124 pmid: 19656626
[21]   Li E J. 2011. Comparative study on sediment characteristics between Badain Jaran Desert and Tengger Desert. PhD. Dissertation. Xi'an: Shaanxi Normal University. (in Chinese)
[22]   Li H T, Xu X G, Xiao D N. 2007. Analysis on the utilization of water resources in the Minqin Oasis. Arid Zone Research, (3): 287-295. (in Chinese)
[23]   Li X R, He M Z, Zerbe S, et al. 2010. Micro-geomorphology determines community structure of biological soil crusts at small scales. Earth Surface Processes and Landforms, 35(8): 932-940.
doi: 10.1002/esp.1963
[24]   Li X R, Zhao Y, Hui R, et al. 2014. Progress and trend of development of restoration ecology research in the arid regions of China. Progress in Geography, 33(11): 1435-1443. (in Chinese)
doi: 10.11820/dlkxjz.2014.11.001
[25]   Li Z J, Sun D H, Chen F H, et al. 2014. Chronology and paleoenvironmental records of a drill core in the central Tengger Desert of China. Quaternary Science Reviews, 85: 85-98.
doi: 10.1016/j.quascirev.2013.12.003
[26]   Ma J Z, Ding Z Y, Wei G X, et al. 2009. Sources of water pollution and evolution of water quality in the Wuwei basin of Shiyang River, Northwest China. Journal of Environmental Management, 90(2): 1168-1177.
doi: 10.1016/j.jenvman.2008.05.007 pmid: 18586380
[27]   Ma L, Wu J L, Zeng H A, et al. 2014. Element assemblages and its distribution of surface soil samples from Kyrgyzstan. Arid Land Geography, 37(4): 639-645. (in Chinese)
[28]   Maanan M, Saddik M, Maanan M, et al. 2015. Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecological Indicators, 48: 616-626.
doi: 10.1016/j.ecolind.2014.09.034
[29]   Marrugo-Negrete J, Pinedo-Hernandez J, Diez S. 2017. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinu River Basin, Colombia. Environmental Research, 154: 380-388.
doi: S0013-9351(16)30956-2 pmid: 28189028
[30]   Ministry of Ecology and Environment of People's Republic of China. 2002. Environmental quality standards for surface water (GB 3838-2002). [2002-04-28]. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/shjzlbz/200206/t20020601_66497.shtml. (in Chinese)
[31]   Minqin County Bureau of Statistics. 2021. Analysis of county national economy operation in the first half of 2020. Minqin:Minqin County Bureau of Statistics. [2022-06-01]. http://www.minqin.gov.cn/gk/xzfgbmxxgk/xzfgzbm/tjj1/fdzdgknr47/qtxx46/content_24748. (in Chinese)
[32]   Monaci F, Moni F, Lanciotti E, et al. 2000. Biomonitoring of airborne metals in urban environments: new tracers of vehicle emission, in place of lead. Environmental Pollution, 107(3): 321-327.
pmid: 15092978
[33]   National Bureau of Statistics Rural Social and Economic Investigation Division. 2019. County Statistical Yearbook of China, 2018 (Township). Bejing: China Statistics Press, 614. (in Chinese)
[34]   Nicholson F A, Smith S R, Alloway B J, et al. 2003. An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of the Total Environment, 311(1-3): 205-219.
pmid: 12826393
[35]   Niu L L, Yang F X, Xu C, et al. 2013. Status of metal accumulation in farmland soils across China: From distribution to risk assessment. Environmental Pollution, 176: 55-62.
doi: 10.1016/j.envpol.2013.01.019 pmid: 23416269
[36]   Qi J H, Liu Y B, Wang Z R, et al. 2021. Variations in microbial functional potential associated with phosphorus and sulfur cycling in biological soil crusts of different ages at the Tengger Desert, China. Applied Soil Ecology, 165: 104022, doi: 10.1016/j.apsoil.2021.104022.
doi: 10.1016/j.apsoil.2021.104022
[37]   Qiao P L, Zhang J X, Lin Z X. 2003. The application of remote sensing technique to monitoring andevaluating water pollution in the Shiyang River valley. Remote Sensing for Natural Resources, 15(4): 39-41. (in Chinese)
[38]   Shallari S, Schwartz C, Hasko A, et al. 1998. Heavy metals in soils and plants of serpentine and industrial sites of Albania. Science of the Total Environment, 209(2-3): 133-142.
pmid: 9514035
[39]   Ustaoglu F, Islam M S. 2020. Potential toxic elements in sediment of some rivers at Giresun, Northeast Turkey: A preliminary assessment for ecotoxicological status and health risk. Ecological Indicators, 113: 106237, doi: 10.1016/j.ecolind.2020.106237.
doi: 10.1016/j.ecolind.2020.106237
[40]   Vargas-Machuca B D, Zanetta-Colombo N, de Pol-Holz R, et al. 2021. Variations in local heavy metal concentrations over the last 16,000 years in the central Atacama Desert (22 degrees S) measured in rodent middens. Science of the Total Environment, 775: 145849, doi: 10.1016/j.scitotenv.2021.145849.
doi: 10.1016/j.scitotenv.2021.145849
[41]   Wang J H, Li S W, Cui X Y, et al. 2016. Bioaccessibility, sources and health risk assessment of trace metals in urban park dust in Nanjing, Southeast China. Ecotoxicology and Environment Safety, 128: 161-170.
doi: 10.1016/j.ecoenv.2016.02.020
[42]   Wang L J. 2014. Researches on the meteorological factors effecting the southern border of the Tengger Desert and the topsoil trace elements. Msc Thesis. Lanzhou: Lanzhou University. (in Chinese)
[43]   Wang M, Li S T. 2014. Heavy metals in fertilizers and effect of the fertilization on heavy metal accumulation in soils and crops. Journal of Plant Nutrition and Fertilizers, 20(2): 466-480. (in Chinese)
[44]   Wang N, Guan Q Y, Sun Y F, et al. 2021. Predicting the spatial pollution of soil heavy metals by using the distance determination coefficient method. Science of the Total Environment, 799: 149452, doi: 10.1016/j.scitotenv.2021.149452.
doi: 10.1016/j.scitotenv.2021.149452
[45]   Wang N A, Zhang H C, Cao J X, et al. 1997. Preliminary study on magnetic stratigraphy of Wuwei loess section in southern Tengger Desert. Journal of Lanzhou University: Natural Sciences, 33(4): 149-151. (in Chinese)
[46]   Wang T. 2003. Desert and Desertification in China. Shijiazhuang: Hebei Science & Technology Press, 602-610. (in Chinese)
[47]   Wei F S, Chen J S, Wu Y Y, et al. 1991. Study on the background contents on 61 elements of soils in China. Chinese Journal of Environmental Science, (4): 12-19. (in Chinese)
[48]   Wu Q M, Hu W Y, Wang H F, et al. 2021. Spatial distribution, ecological risk and sources of heavy metals in soils from a typical economic development area, Southeastern China. Science of the Total Environment, 780: 146557, doi: 10.1016/j.scitotenv.2021.146557.
doi: 10.1016/j.scitotenv.2021.146557
[49]   Xu Y, Shi H, Fei Y, et al. 2021. Identification of soil heavy metal sources in a large-scale area affected by industry. Sustainability, 13(2): 511, doi: 10.3390/su13020511.
doi: 10.3390/su13020511
[50]   Yan M C, Gu T X, Chi Q H, et al. 1997. Abundance of chemical elements of soils in China and supergenesis geochemistry characteristics. Geophysical and Geochemical Exploration, (3): 161-167. (in Chinese)
[51]   Yang H T, Li X R, Yan P J, et al. 2020. Soil types and spatial distribution in Tengger Desert. Journal of Desert Research, 40(4): 154-162. (in Chinese)
[52]   Yang Q Q, Li Z Y, Lu X N, et al. 2018. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the Total Environment, 642: 690-700.
doi: 10.1016/j.scitotenv.2018.06.068
[53]   Yang Y Y, Qu Z Q, Shi P J, et al. 2014. Wind regime and sand transport in the corridor between the Badain Jaran and Tengger deserts, central Alxa Plateau, China. Aeolian Research, 12: 143-156.
doi: 10.1016/j.aeolia.2013.12.006
[54]   Zhang C. 2020. Heavy mineral assemblages and provenance analysis of eolian sand in the Alashan Desert, northwestern China. Msc Thesis. Lanzhou: Lanzhou University. (in Chinese)
[55]   Zhang H C, Ma Y Z, Peng J L, et al. 2002. Palaeolake and palaeoenvironment in Tengger Desert during 42-18 ka B.P. Chinese Science Bulletin, 47(24): 1847-1857. (in Chinese)
[56]   Zhang K C, Qu J J, An Z S. 2012. Characteristics of wind-blown sand and near-surface wind regime in the Tengger Desert, China. Aeolian Research, 6: 83-88.
doi: 10.1016/j.aeolia.2012.08.003
[57]   Zhang N, He Z D, Wu W. 2009. Studies on the characteristics of soil organic matter and pedogenic calcium carbonate for three kinds of soil in the Tengri Desert. Acta Ecologica Sinica, 29(8): 4094-4101. (in Chinese)
[58]   Zhang Y, Zhu G F, Ma H Y, et al. 2019. Effects of ecological water conveyance on the hydrochemistry of a terminal lake in an inland river: a case study of Qingtu Lake in the Shiyang River Basin. Water, 11(8): 1673, doi: 10.3390/w11081673.
doi: 10.3390/w11081673
[59]   Zhao J B, Yu K K, Shao T J, et al. 2011. A preliminary study on the water status in sand layers and its sources in the Tengger Desert. Resources Science, 33(2): 259-264. (in Chinese)
[60]   Zhao J B, Xing S, Shao T J, et al. 2012. A study on content and balance of moisture in the Southern Tengger Desert. Journal of Natural Resources, 27(3): 480-488. (in Chinese)
[61]   Zhu B Q, Yu J J, Partrick R, et al. 2014. Atmospheric precipitation recharge on groundwater in desert areas and its environmental implications-A case review of the Late-Holocene records from the Alashan Plateau. Quaternary Sciences, 34(5): 994-1012. (in Chinese)
[62]   Zhu X, Wang S, Li T T. 2021. Study on geochemical background value of soils in the Leizhou Peninsula. South China Geology, 37(1): 103-112. (in Chinese)
[1] WEN Qing, DONG Zhibao. Geomorphologic patterns of dune networks in the Tengger Desert, China[J]. Journal of Arid Land, 2016, 8(5): 660-669.
[2] PENG Jun, DONG Zhibao, HAN Fengqing. Optically stimulated luminescence dating of sandy deposits from Gulang county at the southern margin of the Tengger Desert, China[J]. Journal of Arid Land, 2016, 8(1): 1-12.
[3] ZhiShan ZHANG, YongLe CHEN, BinXing XU, Lei HUANG, HuiJuan TAN, XueJun DONG. Topographic differentiations of biological soil crusts and hydraulic properties in fixed sand dunes, Tengger Desert[J]. Journal of Arid Land, 2015, 7(2): 205-215.
[4] QuanLin MA, Fang CHENG, YouJun LIU, FangLin Wang, DeKuai ZHANG, HuJia JIN. Spatial heterogeneity of soil water content in the reversion process of desertification in arid areas[J]. Journal of Arid Land, 2011, 3(4): 268-277.
[5] KeCun ZHANG, KenJi KAI, JianJun QU, YuQuan LING, QingHe NIU. Dynamic changes of a typical linear dune in the Tengger Desert[J]. Journal of Arid Land, 2010, 2(4): 272-278.