Please wait a minute...
Journal of Arid Land  2024, Vol. 16 Issue (4): 531-549    DOI: 10.1007/s40333-024-0057-4
Research article     
Effects of wind speed, underlying surface, and seed morphological traits on the secondary seed dispersal in the Tengger Desert, China
QU Wenjie1,2,3, ZHAO Wenzhi1, YANG Xinguo2,4, WANG Lei2,4, ZHANG Xue2,4, QU Jianjun1,*()
1Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
2Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan 750021, China
3University of Chinese Academy of Sciences, Beijing 100049, China
4School of Ecology and Environment, Ningxia University, Yinchuan 750021, China
Download: HTML     PDF(1574KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The maintenance of sand-fixing vegetation is important for the stability of artificial sand-fixing systems in which seed dispersal plays a key role. Based on field wind tunnel experiments using 11 common plant species on the southeastern edge of the Tengger Desert, China, we studied the secondary seed dispersal in the fixed and semi-fixed sand dunes as well as in the mobile dunes in order to understand the limitations of vegetation regeneration and the maintenance of its stability. Our results indicated that there were significant variations among the selected 11 plant species in the threshold of wind speed (TWS). The TWS of Caragana korshinskii was the highest among the 11 plant species, whereas that of Echinops gmelinii was the lowest. Seed morphological traits and underlying surface could generally explain the TWS. During the secondary seed dispersal processes, the proportions of seeds that did not disperse (no dispersal) and only dispersed over short distance (short-distance dispersal within the wind tunnel test section) were significantly higher than those of seeds that were buried (including lost seeds) and dispersed over long distance (long-distance dispersal beyond the wind tunnel test section). Compared with other habitats, the mobile dunes were the most difficult places for secondary seed dispersal. Buried seeds were the easiest to be found in the semi-fixed sand dunes, whereas fixed sand dunes were the best sites for seeds that dispersed over long distance. The results of linear mixed models showed that after controlling the dispersal distance, smaller and rounder seeds dispersed farther. Shape index and wind speed were the two significant influencing factors on the burial of seeds. The explanatory power of wind speed, underlying surface, and seed morphological traits on the seeds that did not disperse and dispersed over short distance was far greater than that on the seeds that were buried and dispersed over long distance, implying that the processes and mechanisms of burial and long-distance dispersal are more complex. In summary, most seeds in the study area either did not move, were buried, or dispersed over short distance, promoting local vegetation regeneration.



Key wordsseed dispersal      seed morphological traits      wind speed      vegetation regeneration      wind tunnel      Tengger Desert     
Received: 08 January 2024      Published: 30 April 2024
Corresponding Authors: *QU Jianjun (E-mail: qujianj@lzb.ac.cn)
Cite this article:

QU Wenjie, ZHAO Wenzhi, YANG Xinguo, WANG Lei, ZHANG Xue, QU Jianjun. Effects of wind speed, underlying surface, and seed morphological traits on the secondary seed dispersal in the Tengger Desert, China. Journal of Arid Land, 2024, 16(4): 531-549.

URL:

http://jal.xjegi.com/10.1007/s40333-024-0057-4     OR     http://jal.xjegi.com/Y2024/V16/I4/531

Fig. 1 Location of the study area in the Tengger Desert (a) and photos showing its spatial patterns (b-e). The images were obtained from the Beijing No. 2 Satellite in July 2021.
Habitat Underlying surface Dominant cryptogam Dominant spermatophyte Caragana korshinskii
Crown
(m2)
Height
(m)
Seed production per plant (seeds)
Fixed
sand dunes
Moss crusts are
fully developed,
with coverages
of 60%-85%
after about 60 a
of enclosure.
Bryum argenteum, Didymodon vinealis, and
Syntrichia caninervis
C. korshinskii,
Eragrostis minor,
Echinops gmelinii, and
Chloris virgata
2.26±0.38 1.09±0.07 173±42
Semi-fixed
sand dunes
Algae crusts
dominate, with
coverages of
60%-70% after
about 20 a of
enclosure, and
they are not
continuous.
Microcoleus vaginatus, Navicula cryptocephala,
and Lyngbya
cryptovaginatus
C. korshinskii, E. minor,
Setaria viridis, and E
gmelinii
4.80±0.56 1.33±0.05 1208±264
Mobile dunes Bare sand land
without crusts;
reticulate barchan chains of sand
dunes.
- Agriophyllum pungens,
Stilpnolepis centiflora,
and Corispermum
mongolicum
10.30±1.08 2.00±0.09 2359±399
Table 1 Basic characteristics of the three habitats
Species Family Life form Length
(mm)
Width
(mm)
Projection area
(mm2)
Perimeter (mm) Diameter (mm)
Agropyron cristatum Poaceae P 5.17±0.064 1.07±0.019 3.39±0.050 13.30±0.195 2.08±0.015
Allium mongolicum Liliaceae P 3.03±0.041 2.17±0.030 4.77±0.117 9.90±0.136 2.45±0.031
Ammopiptanthus mongolicus Leguminosae S 6.30±0.087 5.24±0.068 25.10±0.645 23.20±0.324 5.63±0.075
Calligonum mongolicum Polygonaceae S 10.80±0.139 6.87±0.120 41.60±0.996 47.10±1.410 7.25±0.087
Caragana korshinskii Leguminosae S 6.21±0.117 3.80±0.045 18.20±0.483 20.20±0.370 4.80±0.062
Corethrodendron fruticosum Papilionaceae S 5.83±0.068 3.41±0.046 14.50±0.301 18.30±0.197 4.29±0.045
Corethrodendron scoparium Papilionaceae S 6.86±0.071 4.69±0.042 23.00±0.307 22.70±0.179 5.41±0.037
Corispermum mongolicum Chenopodiaceae A 3.28±0.031 2.45±0.030 5.87±0.121 11.00±0.125 2.73±0.029
Echinops gmelinii Compositae A 5.80±0.059 1.60±0.018 6.13±0.125 16.00±0.243 2.79±0.029
Hippophae rhamnoides Elaeagnaceae S 2.93±0.045 2.00±0.028 4.27±0.101 9.30±0.133 2.32±0.027
Nitraria tangutorum Zygophyllaceae S 5.79±0.073 3.52±0.061 14.10±0.377 18.40±0.250 4.22±0.058
Minimum 2.38 0.78 2.66 7.39 1.84
Median 5.70 3.26 12.96 17.51 4.06
Mean 5.65 3.36 14.73 19.08 4.01
Maximum 13.02 9.02 60.26 79.29 8.76
CV 0.38 0.51 0.79 0.55 0.41
Table S1 Seed morphological traits (length, width, projection area, perimeter, and diameter) of the selected 11 plant species
Species Length/
width
Circularity Compacity Rugosity TSW (g) Wing loading (g/mm2) Shape index
A. cristatum 4.98±0.096 2.79±0.046 0.62±0.011 0.62±0.013 2.40±0.548 0.72±0.011 0.15±0.0010
A. mongolicum 1.43±0.021 1.10±0.008 0.72±0.004 0.37±0.005 2.20±0.447 0.48±0.012 0.07±0.0028
A. mongolicus 1.22±0.007 1.09±0.004 0.75±0.002 0.24±0.002 35.33±1.885 1.46±0.043 0.11±0.0014
Calligonum mongolicum 1.61±0.021 2.72±0.112 0.56±0.006 0.56±0.007 64.96±2.323 1.61±0.038 0.06±0.0018
C. korshinskii 1.67±0.030 1.15±0.011 0.77±0.005 0.25±0.003 46.40±2.408 2.63±0.064 0.05±0.0020
C. fruticosum 1.75±0.026 1.19±0.009 0.73±0.004 0.27±0.004 13.40±0.274 0.94±0.020 0.07±0.0015
C. scoparium 1.49±0.020 1.13±0.008 0.72±0.004 0.27±0.004 30.20±1.789 1.33±0.019 0.04±0.0013
Corispermum mongolicum 1.37±0.013 1.08±0.008 0.73±0.004 0.33±0.004 1.38±0.128 0.24±0.005 0.13±0.0013
E. gmelinii 3.70±0.039 2.12±0.020 0.66±0.005 0.53±0.010 4.20±0.243 0.70±0.016 0.13±0.0012
H. rhamnoides 1.49±0.025 1.08±0.007 0.73±0.003 0.35±0.004 3.00±0.201 0.72±0.017 0.04±0.0018
N. tangutorum 1.69±0.028 1.23±0.010 0.69±0.004 0.33±0.005 26.6±1.673 1.96±0.060 0.04±0.0016
Minimum 1.10 0.99 0.46 0.20 1.05 0.18 0.0047
Median 1.57 1.16 0.71 0.33 13.40 0.96 0.0653
Mean 2.04 1.51 0.70 0.37 20.96 1.16 0.0797
Maximum 6.56 5.07 0.85 0.82 72.66 3.51 0.1532
CV 0.57 0.46 0.10 0.36 0.97 0.61 0.0192
Table S2 Seed morphological traits (length/width, circularity, compacity, rugosity, TSW, Wing loading, and shape index) of the selected 11 plant species
Fig. S1 Pictures showing the seeds of the selected 11 plant species
Fig. 2 Photo of field wind tunnel equipment (a) and diagram of wind tunnel test section (b)
Model Response
variable
Fixed effect Random
effect
Conditional
R
2
Marginal R2 Variables with significant effect
1 No dispersal Circularity, TSW, wing loading, wind speed, underlying surface, and appendage Species 0.794 0.777 Underlying surface and wind speed
2 Short-distance dispersal Circularity, TSW, wing loading, wind speed, underlying surface, and shape index Species 0.756 0.739 Circularity, TSW, wind speed, and underlying surface
3 Burial Circularity, TSW, wing loading, wind speed, underlying surface, and shape index Species 0.378 0.293 Wind speed and shape index
4 Long-distance dispersal Circularity, TSW, wing loading, wind speed, underlying surface, and shape index Species 0.407 0.371 Underlying surface and wind speed
5 TWS Circularity, TSW, wing loading, wind speed, underlying surface, and shape index Species 0.838 0.564 Underlying surface and appendage
6 No dispersal Underlying surface and wind speed Species 0.770 0.751 -
7 Short-distance dispersal Circularity, TSW, wind speed, and underlying surface Species 0.744 0.726 -
8 Burial Wind speed and shape index Species 0.303 0.213 -
9 Long-distance dispersal Underlying surface and wind speed Species 0.368 0.330 -
10 TWS Underlying surface and appendage Species 0.840 0.518 -
Table 2 Linear mixed models implemented to assess the effects driving TWS and the destination of seeds
Fig. 3 Diagram showing the K-means cluster analysis of plant species based on seed morphological traits. Ecg, Echinops gmelinii; Cam, Calligonum mongolicum; Cos, Corethrodendron scoparium; Cof, Corethrodendron fruticosum; Nit, Nitraria tangutorum; Agc, Agropyron cristatum; Hir, Hippophae rhamnoides; Com, Corispermum mongolicum; Cak, Caragana korshinskii; Alm, Allium mongolicum; Amm, Ammopiptanthus mongolicus. The abbreviations are the same in the following figures.
Fig. 4 Comparison of TWS of the 11 plant species in different habitats. (a), fixed sand dunes with moss crusts; (b), semi-fixed sand dunes with algae crusts; (c), mobile dunes. TWS, threshold of wind speed. Bars represent standard errors. Different lowercase letters within the same habitat indicate significant differences in TWS among different plant species at the P<0.05 level.
Fig. 5 Distributions of seed density and seed deposition during the secondary seed dispersal processes in different habitats. (a and d), fixed sand dunes with moss crusts; (b and e), semi-fixed sand dunes with algae crusts; (c and f), mobile dunes. The dots to the left of the gray dashed line at the 0.0 scale value represent the seeds that did not disperse. The dots between the two gray dashed lines at the 6.5 and 7.0 scale values represent the lost seeds. The dots to the right of the gray dashed line at the 7.0 scale value represent the seeds that dispersed over long distance.
Fig. 6 Secondary seed dispersal patterns of major plant species in the fixed sand dunes with moss crusts, semi-fixed sand dunes with algae crusts, and mobile dunes. (a-c), Cof; (d-f), Cak; (g-i), Cam; (j-l), Cos; (m-o), Ecg. The dots to the left of the gray dashed line at the 0.0 scale value represent the seeds that did not disperse. The dots between the two gray dashed lines between the 6.5 and 7.0 scale values represent the lost seeds. The dots to the right of the gray dashed line at the 7.0 scale value represent the seeds that dispersed over long distance.
Fig. 7 Variance partition of the significant drivers for TWS. R2, variance of the fixed effects. The circles represent the marginal R2 value for each driver and the total marginal R2 value. The black lines represent the 95% confidence intervals of the marginal R2 values.
Fig. 8 Variance partition of the significant drivers for the secondary seed dispersal. The circles represent the marginal R2 value for each driver and the total marginal R2 value. The black lines represent the 95% confidence intervals of the marginal R2 values.
[1]   Aavik T, Helm A. 2018. Restoration of plant species and genetic diversity depends on landscape-scale dispersal. Restoration Ecology, 26(S2): S92-S102.
[2]   Andersen M C. 1993. Diaspore morphology and seed dispersal in several wind-dispersed Asteraceae. American Journal of Botany, 80(5): 487-492.
doi: 10.1002/j.1537-2197.1993.tb13830.x pmid: 30139156
[3]   Bates D, Mächler M, Bolker B M, et al. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1): 1-48.
[4]   Batty A L, Brundrett M C, Dixon K W, et al. 2006. In situ symbiotic seed germination and propagation of terrestrial orchid seedlings for establishment at field sites. Australian Journal of Botany, 54(4): 375-381.
doi: 10.1071/BT04024
[5]   Cavanagh A M, Morgan J W, Godfree R C. 2020. Awn morphology influences dispersal, microsite selection and burial of Australian native grass diaspores. Frontiers in Ecology and Evolution, 8: 581967, doi: 10.3389/fevo.2020.581967.
[6]   Chambers J C, Macmahon J A. 1994. A day in the life of a seed: movements and fates of seeds and their implications for natural and managed systems. Annual Review of Ecology & Systematics, 25(1): 263-292.
[7]   Chen M C, Zhang J G, Feng L, et al. 2017. The composition and vertical distribution characteristics of soil seed banks in soil coverage with biocrusts in the Shapotou region. Acta Ecological Sinica, 37(22): 7614-7623. (in Chinese)
[8]   Chen S C, Poschlod P, Antoelli A, et al. 2020. Trade-off between seed dispersal in space and time. Ecology Letters, 23(11): 1635-1642.
doi: 10.1111/ele.v23.11
[9]   Cousens R D, Rawlinson A A. 2001. When will plant morphology affect the shape of a seed dispersal "kernel"? Journal of Theoretical Biology, 211(3): 229-238.
doi: 10.1006/jtbi.2001.2341 pmid: 11444954
[10]   Dorp D V, Hoek W P M V D, Daleboudt C. 1996. Seed dispersal capacity of six perennial grassland species measured in a wind tunnel at varying wind speed and height. Canadian Journal of Botany, 74(12): 1956-1963.
doi: 10.1139/b96-234
[11]   Fenner M, Thompson K. 2005. The Ecology of Seeds. Cambridge: Cambridge University Press, 151-154.
[12]   Field J P, Pelletier J D. 2018. Controls on the aerodynamic roughness length and the grain-size dependence of aeolian sediment transport. Earth Surface Processes and Landforms, 43(12): 2616-2626.
doi: 10.1002/esp.v43.12
[13]   Fox J, Weisberg S. 2019. An R Companion to Applied Regression, Third Edition. Thousand Oaks, California, USA. [2023-12-26]. https://socialsciences.mcmaster.ca/jfox/Books/Companion/.
[14]   Green D S. 1980. The terminal velocity and dispersal of spinning samaras. American Journal of Botany, 67(8): 1218-1224.
doi: 10.1002/ajb2.1980.67.issue-8
[15]   Greene D F, Johnson E A. 1993. Seed mass and dispersal capacity in wind-dispersed diaspores. Oikos, 67(1): 69-74.
doi: 10.2307/3545096
[16]   Guzmán-Vázquez I, León-Cruz J F, Galicia L. 2023. Role of dispersal in the altitudinal migration of Pinus hartwegii and Abies religiosa in mountain systems. Frontiers in Ecology and Evolution, 11: 1150137, doi: 10.3389/fevo.2023.1150137.
[17]   Han D Y, Zhang W, Yiliyasi N, et al. 2021. Recruitment limitation of plant population regeneration. Chinese Journal of Plant Ecology, 45(1): 1-12. (in Chinese)
doi: 10.17521/cjpe.2020.0246
[18]   He F L, Zhao H R, Wang Z W, et al. 2023. Effect of biological soil crusts on seed settlement of Reaumuria soongorica and its mechanism in arid desert area. Acta Ecological Sinica, 43(1): 304-312. (in Chinese)
[19]   Higgins S I, Nathan R, Cain M L. 2003. Are long-distance dispersal events in plants usually caused by nonstandard means of dispersal? Ecology, 84(8): 1945-1956.
doi: 10.1890/01-0616
[20]   Horn H S, Nathan R, Kaplan S R. 2001. Long-distance dispersal of tree seeds by wind. Ecological Research, 16(5): 877-885.
doi: 10.1046/j.1440-1703.2001.00456.x
[21]   Huang Z Y, Cao M, Liu Z M, et al. 2012. Seed ecology: roles of seeds in communities. Chinese Journal of Plant Ecology, 36(8): 705-707. (in Chinese)
doi: 10.3724/SP.J.1258.2012.00705
[22]   Hyatt L A, Rosenberg M S, Howard T G, et al. 2003. The distance dependence prediction of the Janzen-Connell hypothesis: a meta-analysis. Oikos, 103(3): 590-602.
doi: 10.1034/j.1600-0706.2003.12235.x
[23]   Jenkins D G, Brescacin C R, Duxbury C V, et al. 2007. Does size matter for dispersal distance? Global Ecology and Biogeography, 16(4): 415-425.
doi: 10.1111/geb.2007.16.issue-4
[24]   Jiang D M, Liu Z M, Kou Z W. 2002. Prospect of the study on desertification and its restoration of Keerqin sandy land. Chinese Journal of Applied Ecology, 13(12): 1695-1698. (in Chinese)
[25]   Lemke A, von der Lippe M, Kowarik I. 2009. New opportunities for an old method: using fluorescent colours to measure seed dispersal. Journal of Applied Ecology, 46(5): 1122-1128.
doi: 10.1111/jpe.2009.46.issue-5
[26]   Li X R, Zhang Z S, Huang L, et al. 2013. Review of the ecohydrological processes and feedback mechanisms controlling sand-binding vegetation systems in sandy desert regions of China. Chinese Science Bulletin, 58(13): 1483-1496.
doi: 10.1007/s11434-012-5662-5
[27]   Li X R, Zhao Y, Hui R, et al. 2014. Progress and trend of development of restoration ecology research in the arid regions of China. Progress in Geography, 33(11): 1435-1443. (in Chinese)
doi: 10.11820/dlkxjz.2014.11.001
[28]   Li X R, Zhou H Y, Wang X Y, et al. 2016. Ecological restoration and recovery in arid desert regions of China: a review for 60-year research progresses of Shapotou Desert Research and Experiment Station, Chinese Academy of Sciences. Journal of Desert Research, 36(2): 247-264. (in Chinese)
doi: 10.7522/j.issn.1000-694X.2016.00027
[29]   Li X R, Tan H J, Hui R, et al. 2018. Researches in biological soil crust of China: A review. Chinese Science Bulletin, 63(23): 2320-2334. (in Chinese)
[30]   Liang W. 2019. Effects of diaspore traits, underlying surface configuration and wind speed on the processes of seed secondary dispersal by wind. PhD Dissertation. Shenyang: Institute of Applied Ecology, Chinese Academy of Sciences. (in Chinese)
[31]   Liang W, Liu Z M, Liu M H, et al. 2019. How do diaspore traits, wind speed and sand surface configuration interact to determine seed burial during wind dispersal? Plant and Soil, 440(1-2): 357-368.
doi: 10.1007/s11104-019-04071-4
[32]   Liang W, Liu Z M, Liu M H, et al. 2020. Wing loading, not terminal velocity, is the best parameter to predict capacity of diaspores for secondary wind dispersal. Journal of Experimental Botany, 71(14): 4298-4307.
doi: 10.1093/jxb/eraa170 pmid: 32242240
[33]   Liu M H, Zhu J L, Xin Z M, et al. 2015. A portable wind tunnel for studying seed dispersal by wind: Test and evaluation. Chinese Journal of Ecology, 34(6): 1770-1778. (in Chinese)
[34]   Liu Y B, Zhao L N, Wang Z R, et al. 2018. Changes in functional gene structure and metabolic potential of the microbial community in biological soil crusts along a revegetation chronosequence in the Tengger Desert. Soil Biology & Biochemistry, 126: 40-48.
doi: 10.1016/j.soilbio.2018.08.012
[35]   Liu Y M, Yang H Y, Li X R, et al. 2014. Effects of biological soil crusts on soil enzyme activities in revegetated areas of the Tengger Desert, China. Applied Soil Ecology, 80: 6-14.
doi: 10.1016/j.apsoil.2014.03.015
[36]   Liu Z M, Li X H, Li R P, et al. 2004. A comparative study of seed germination for 31 annual species of the Horqin steppe. Acta Ecology Sinica, 24(3): 648-653. (in Chinese)
[37]   Mamut J, Chen K W, Baskin C C, et al. 2023. Inflated ovary may increase the dispersal ability of three species in the cold deserts of Central Asia. Plants-Basel, 12(10): 12101950, doi: 10.3390/plants12101950.
[38]   Mandel J R, Dikow R B, Siniscalchi C M, et al. 2019. A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proceedings of the National Academy of Sciences of the United States of America, 116(28): 14083-14088.
[39]   Matlack G R. 1987. Comparative demographies of four adjacent populations of the perennial herb Silene dioica (Caryophyllaceae). Journal of Ecology, 75(1): 113-134.
doi: 10.2307/2260539
[40]   Maurer K D, Bohrer G, Medvigy D, et al. 2013. The timing of abscission affects dispersal distance in a wind-dispersed tropical tree. Functional Ecology, 27(1): 208-218.
doi: 10.1111/fec.2013.27.issue-1
[41]   Muller-Landau H C, Wright S J, Calderon O, et al. 2008. Interspecific variation in primary seed dispersal in a tropical forest. Journal of Ecology, 96(4): 653-667.
doi: 10.1111/jec.2008.96.issue-4
[42]   Nathan R, Muller-Landau H C. 2000. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology & Evolution, 15(7): 278-285.
doi: 10.1016/S0169-5347(00)01874-7
[43]   Nathan R, Katul G G, Horn H S, et al. 2002. Mechanisms of long-distance dispersal of seeds by wind. Nature, 418(6869): 409-413.
doi: 10.1038/nature00844
[44]   Poulsen J R, Clark C J, Bolker B M. 2012. Experimental manipulation of seed shadows of an Afrotropical tree determines drivers of recruitment. Ecology, 93(3): 500-510.
pmid: 22624205
[45]   Qin X P. 2021. The effect of shrub plant canopy on the process of seed dispersal by wind. PhD Dissertation. Shenyang: Institute of Applied Ecology, Chinese Academy of Sciences. (in Chinese)
[46]   Qu J J, Ling Y Q, Jing Z F, et al. 2007. Interaction between sand blown activity and protection system in Shapotou section of Baotou-Lanzhou Railway. Journal of Desert Research, 27(4): 529-533. (in Chinese)
[47]   R Core Team. 2023. R version 4.3.2. R: A language and environment for statistical computing, R Foundation for Statistical Computing. Vienna, Austria. [2023-10-26]. https://www.R-project.org/.
[48]   Schurr F M, Bond W J, Midgley G F, et al. 2005. A mechanistic model for secondary seed dispersal by wind and its experimental validation. Journal of Ecology, 93(5): 1017-1028.
doi: 10.1111/jec.2005.93.issue-5
[49]   Sinaga K P, Hussain I, Yang M S. 2021. Entropy K-means clustering with feature reduction under unknown number of clusters. IEEE Access, 9: 67736-67751.
doi: 10.1109/ACCESS.2021.3077622
[50]   Song N, Li X R, Di L N. 2019. Temporal and spatial characteristics of seed dispersal of the relict Gymnocarpos przewalskii in deserts. Acta Ecological Sinica, 39(7): 2462-2469. (in Chinese)
[51]   Stoffel M A, Nakagawa S, Schielzeth H. 2021. PartR2: partitioning R2in generalized linear mixed modelsPeerJ, 9: e11414, doi: 10.7717/peerj.11414.
[52]   Tackenberg O. 2003. Modeling long-distance dispersal of plant diaspores by wind. Ecological Monographs, 73(2): 173-189.
doi: 10.1890/0012-9615(2003)073[0173:MLDOPD]2.0.CO;2
[53]   Teller B J, Zhang R, Sea K. 2016. Seed release in a changing climate: initiation of movement increases spread of an invasive species under simulated climate warming. Diversity and Distributions, 22(6): 708-716.
doi: 10.1111/ddi.2016.22.issue-6
[54]   Thompson K, Band S R, Hodgson J G. 1993. Seed size and shape predict persistence in soil. Functional Ecology, 7(2): 236-241.
doi: 10.2307/2389893
[55]   Thompson S E, Katul G G. 2013. Implications of nonrandom seed abscission and global stilling for migration of wind-dispersed plant species. Global Change Biology, 19(6): 1720-1735.
doi: 10.1111/gcb.12173 pmid: 23505130
[56]   Thomson F J, Moles A T, Auld T D, et al. 2011. Seed dispersal distance is more strongly correlated with plant height than with seed mass. Journal of Ecology, 99(6): 1299-1307.
doi: 10.1111/jec.2011.99.issue-6
[57]   Venable D L, Flores-Martinez A, Muller-Landau H C, et al. 2008. Seed dispersal of desert annuals. Ecology, 89(8): 2218-2227.
doi: 10.1890/07-0386.1 pmid: 18724732
[58]   Wang B C, Smith T B. 2002. Closing the seed dispersal loop. Trends in Ecology & Evolution, 17(8): 379-385.
doi: 10.1016/S0169-5347(02)02541-7
[59]   Wang T, Zhu Z D. 2001. Some problems of desertification in northern China. Quaternary Sciences, 21(1): 56-65. (in Chinese)
[60]   Wang Y L, Li X R, Liu L C, et al. 2019. Life history response of Echinops gmelinii Turcz. to variation in the rainfall pattern in a temperate desert. PeerJ, 7: e8159, doi: 10.7717/peerj.8159.
[61]   Willson M F. 1993. Dispersal mode, seed shadows, and colonization patterns. Vegetatio, 108(1): 261-280.
[62]   Wyse S V, Hulme P E. 2021. Limited evidence for a consistent seed mass-dispersal trade-off in wind-dispersed pines. Journal of Ecology, 109(1): 284-293.
doi: 10.1111/jec.v109.1
[63]   Yang X G, Chen L, Wang L, et al. 2019. Dynamic rainfall-partitioning relationships among throughfall, stemflow, and interception loss by Caragana intermedia. Journal of Hydrology, 574: 980-989.
doi: 10.1016/j.jhydrol.2019.04.083
[64]   Zhou Q L, Liu Z M, Xin Z M, et al. 2019. Relationship between seed morphological traits and wind dispersal trajectory. Functional Plant Biology, 46(12): 1063-1071.
doi: 10.1071/FP19087 pmid: 31630725
[65]   Zhou Q L, Liu Z M, Xin Z M, et al. 2020. Responses of secondary wind dispersal to environmental characteristics and diaspore morphology of seven Calligonum species. Land Degradation & Development, 31(7): 842-850.
doi: 10.1002/ldr.v31.7
[66]   Zhu J L, Liu Z M. 2012. Major terminologies and concepts in seed dispersal biology. Chinese Journal of Ecology, 31(9): 2397-2403. (in Chinese)
[67]   Zhu J L, Liu M H, Xin Z M, et al. 2016. Which factors have stronger explanatory power for primary wind dispersal distance of winged diaspores: The case of Zygophyllum xanthoxylon (Zygophyllaceae)? Journal of Plant Ecology, 9(3): 346-356.
doi: 10.1093/jpe/rtv051
[1] SHEN Jianxiang, WANG Xin, WANG Lei, WANG Jiahui, QU Wenjie, ZHANG Xue, CHANG Xuanxuan, YANG Xinguo, CHEN Lin, QIN Weichun, ZHANG Bo, NIU Jinshuai. Spatiotemporal characteristics of seed rain and soil seed bank of artificial Caragana korshinskii Kom. forest in the Tengger Desert, China[J]. Journal of Arid Land, 2024, 16(4): 550-566.
[2] LI Ruishen, PEI Haifeng, ZHANG Shengwei, LI Fengming, LIN Xi, WANG Shuai, YANG Lin. Dividing the transit wind speeds into intervals as a favorable methodology for analyzing the relationship between wind speed and the aerodynamic impedance of vegetation in semiarid grasslands[J]. Journal of Arid Land, 2023, 15(8): 887-900.
[3] LIU Dongwei, HAN Lijing, KOU Zihan, GAO Xinyu, WANG Jingjing. Exploration of playa surface crusts in Qehan Lake, China through field investigation and wind tunnel experiments[J]. Journal of Arid Land, 2023, 15(5): 491-507.
[4] LI Chunming, MA Jiahui, LI Liangyu, HUANG Junlin, LU Jinhua, HUANG Mei, Allan DEGEN, SHANG Zhanhuan. Effects of degradation and species composition on soil seed density in the alpine grasslands, China[J]. Journal of Arid Land, 2023, 15(12): 1510-1528.
[5] YAN Ping, WANG Xiaoxu, ZHENG Shucheng, WANG Yong, LI Xiaomei. Research on wind erosion processes and controlling factors based on wind tunnel test and 3D laser scanning technology[J]. Journal of Arid Land, 2022, 14(9): 1009-1021.
[6] GAO Li, CHENG Jianjun, WANG Haifeng, YUAN Xinxin. Effects of different types of guardrails on sand transportation of desert highway pavement[J]. Journal of Arid Land, 2022, 14(9): 993-1008.
[7] WANG Zhao, WEI Junjie, PENG Wenbin, ZHANG Rui, ZHANG Haobo. Contents and spatial distribution patterns of heavy metals in the hinterland of the Tengger Desert, China[J]. Journal of Arid Land, 2022, 14(10): 1086-1098.
[8] CHEN Zongyan, XIAO Fengjun, DONG Zhibao. Fetch effect on the developmental process of aeolian sand transport in a wind tunnel[J]. Journal of Arid Land, 2020, 12(3): 436-446.
[9] WANG Cui, LI Shengyu, LEI Jiaqiang, LI Zhinong, CHEN Jie. Effect of the W-beam central guardrails on wind-blown sand deposition on desert expressways in sandy regions[J]. Journal of Arid Land, 2020, 12(1): 154-165.
[10] Yang ZHANG, Min LI, Yuan WANG, Bin YANG. Reinvestigation of the scaling law of the windblown sand launch velocity with a wind tunnel experiment[J]. Journal of Arid Land, 2019, 11(5): 664-673.
[11] Yupeng LI, Yaning CHEN, Zhi LI. Effects of land use and cover change on surface wind speed in China[J]. Journal of Arid Land, 2019, 11(3): 345-356.
[12] Zhengyi YAO, Xiaoying LI, Jianhua XIAO. Characteristics of daily extreme wind gusts on the Qinghai-Tibet Plateau, China[J]. Journal of Arid Land, 2018, 10(5): 673-685.
[13] Wei WU, Ping YAN, Yong WANG, Miao DONG, Xiaonan MENG, Xinran JI. Wind tunnel experiments on dust emissions from different landform types[J]. Journal of Arid Land, 2018, 10(4): 548-560.
[14] Ling NAN, Zhibao DONG, Weiqiang XIAO, Chao LI, Nan XIAO, Shaopeng SONG, Fengjun XIAO, Lingtong DU. A field investigation of wind erosion in the farming-pastoral ecotone of northern China using a portable wind tunnel: a case study in Yanchi County[J]. Journal of Arid Land, 2018, 10(1): 27-38.
[15] Tao WANG, Jianjun QU, Yuquan LING, Shengbo XIE, Jianhua XIAO. Wind tunnel test on the effect of metal net fences on sand flux in a Gobi Desert, China[J]. Journal of Arid Land, 2017, 9(6): 888-899.