Please wait a minute...
Journal of Arid Land  2024, Vol. 16 Issue (4): 550-566    DOI: 10.1007/s40333-024-0096-x
Research article     
Spatiotemporal characteristics of seed rain and soil seed bank of artificial Caragana korshinskii Kom. forest in the Tengger Desert, China
SHEN Jianxiang1,2, WANG Xin3, WANG Lei1,2,*(), WANG Jiahui1,2, QU Wenjie1,2, ZHANG Xue1,2, CHANG Xuanxuan3, YANG Xinguo1,2, CHEN Lin1,2, QIN Weichun3, ZHANG Bo3, NIU Jinshuai3
1College of Ecological Environment, Ningxia University, Yinchuan 750021, China
2Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ministry of Education, Ningxia University, Yinchuan 750021, China
3College of Agriculture, Ningxia University, Yinchuan 750021, China
Download: HTML     PDF(699KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Vegetation restoration and reconstruction are effective approaches to desertification control and achieving social and economic sustainability in desert areas. However, the self-succession ability of native plants during the later periods of vegetation restoration remains unclear. Therefore, this study was conducted to bridge the knowledge gap by investigating the regeneration dynamics of artificial forest under natural conditions. The information of seed rain and soil seed bank was collected and quantified from an artificial Caragana korshinskii Kom. forest in the Tengger Desert, China. The germination tests were conducted in a laboratory setting. The analysis of species quantity and diversity in seed rain and soil seed bank was conducted to assess the impact of different durations of sand fixation (60, 40, and 20 a) on the progress of vegetation restoration and ecological conditions in artificial C. korshinskii forest. The results showed that the top three dominant plant species in seed rain were Echinops gmelinii Turcz., Eragrostis minor Host., and Agropyron mongolicum Keng., and the top three dominant plant species in soil seed bank were E. minor, Chloris virgata Sw., and E. gmelinii. As restoration period increased, the density of seed rain and soil seed bank increased first and then decreased. While for species richness, as restoration period increased, it gradually increased in seed rain but decreased in soil seed bank. There was a positive correlation between seed rain density and soil seed bank density among all the three restoration periods. The species similarity between seed rain or soil seed bank and aboveground vegetation decreased with the extension of restoration period. The shape of the seeds, specifically those with external appendages such as spines and crown hair, clearly had an effect on their dispersal, then resulting in lower seed density in soil seed bank. In addition, precipitation was a crucial factor in promoting rapid germination, also resulting in lower seed density in soil seed bank. Our findings provide valuable insights for guiding future interventions during the later periods of artificial C. korshinskii forest, such as sowing and restoration efforts using unmanned aerial vehicles.



Key wordsecological restoration      soil seed bank      seed rain      artificial forest      vegetation desertification      Caragana korshinskii      Tengger Desert     
Received: 08 November 2023      Published: 30 April 2024
Corresponding Authors: *WANG Lei (E-mail: WL8999@163.com)
Cite this article:

SHEN Jianxiang, WANG Xin, WANG Lei, WANG Jiahui, QU Wenjie, ZHANG Xue, CHANG Xuanxuan, YANG Xinguo, CHEN Lin, QIN Weichun, ZHANG Bo, NIU Jinshuai. Spatiotemporal characteristics of seed rain and soil seed bank of artificial Caragana korshinskii Kom. forest in the Tengger Desert, China. Journal of Arid Land, 2024, 16(4): 550-566.

URL:

http://jal.xjegi.com/10.1007/s40333-024-0096-x     OR     http://jal.xjegi.com/Y2024/V16/I4/550

Property Soil layer (cm) Restoration period
60 a 40 a 20 a
Electrical conductivity (EC; μS/cm) 0.0-10.0 211.28±82.71Aa 51.67±3.56Ba 40.29±7.21Ba
10.0-20.0 84.30±16.98Aa 51.62±3.89Aa 47.58±15.65Aa
20.0-30.0 69.89±10.75Aa 46.36±5.31Aa 42.90±16.22Aa
Total organic matter (TOM; g/kg) 0.0-10.0 8.29±0.31Aa 4.51±0.63Ba 6.64±0.45Ca
10.0-20.0 6.40±0.39Ab 4.03±0.16Ba 5.22±0.63ABab
20.0-30.0 4.73±0.55Ac 3.33±0.40Ba 4.63±0.25ABb
Total nitrogen (TN; g/kg) 0.0-10.0 0.19±0.02Aa 0.09±0.02Ba 0.09±0.02Ba
10.0-20.0 0.16±0.01Aa 0.08±0.01Ba 0.09±0.01Ba
20.0-30.0 0.10±0.01Ab 0.05±0.02Ba 0.08±0.01ABa
Available potassium (AK; mg/kg) 0.0-10.0 109.03±6.49Aa 105.08±2.28ABa 89.45±6.24Ba
10.0-20.0 97.82±4.77Aab 98.85±8.86Aab 80.45±4.31Aa
20.0-30.0 82.40±5.08Ab 85.99±3.15Ab 82.33±7.49Aa
Available phosphorus (AP; mg/kg) 0.0-10.0 34.78±3.87Aa 23.25±2.26Ba 18.93±2.45Bb
10.0-20.0 22.29±2.35Ab 10.44±1.26Bb 22.77±1.06Aa
20.0-30.0 16.523±3.40Ab 14.92±1.47Ab 11.72±1.74Ab
pH 0.0-10.0 8.97±0.02Ab 8.72±0.15Aa 8.80±0.15Aa
10.0-20.0 9.08±0.03Aa 8.68±0.17Aa 8.78±0.13Aa
20.0-30.0 9.02±0.02Aab 8.53±0.20Aa 8.67±0.22Aa
Table 1 Physical and chemical properties of soil samples collected from artificial Caragana korshinskii forest at different restoration periods
Restorationperiod Sampling
plot
Number of C. korshinskii plants Species composition
60 a Y1-1 38 C. korshinskii, E. gmelini, E. minor, C. virgata, S. viridis, S. collina, B. dasyphylla, A. arenaria, and A. scoparia
Y1-2 42 C. korshinskii, E. gmelinii, E. minor, S. viridis, C. virgata, S. collina, A. scoparia, A. arenaria, A. squarrosum, and B. dasyphylla
Y1-3 46 C. korshinskii, E. gmelinii, E. Minor, C. Virgata, S. Collina, S. Viridis, A. mongolicum, and B. dasyphylla
Y1-4 35 C. korshinskii, E. gmelinii, E. minor, S. viridis, C. virgata, S. collina, A. scoparia, A. mongolicum, and B. dasyphylla
40 a Y2-1 41 C. korshinskii, E. gmelinii, E. minor, S. viridis, C. virgata, S. collina, A. scoparia, and B. dasyphylla
Y2-2 42 C. korshinskii, E. gmelinii, E. minor, S. viridis, C. virgata, S. collina, A. scoparia, and B. dasyphylla
Y2-3 39 C. korshinskii, E. gmelinii, C. virgata, E. minor, S. viridis, S. collina, A. arenaria, A. scoparia, and B. dasyphylla
Y2-4 37 C. korshinskii, E. gmelinii, C. virgata, E. minor, S. viridis, S. collina, A. arenaria, A. scoparia, and B. dasyphylla
20 a Y3-1 41 C. korshinskii, E. gmelinii, C. virgata, E. Minor, S. Viridis, B. Dasyphylla, and Corispermum mongolicum
Y3-2 38 C. korshinskii, E. gmelinii, E. minor, C. virgata, B. Dasyphylla, Corispermum mongolicum, S. viridis, A. arenaria, and S. collina
Y3-3 45 C. korshinskii, E. gmelinii, B. Dasyphylla, E. minor, S. viridis, and S. collina
Y3-4 39 C. korshinskii, E. gmelinii, E. minor, B. Dasyphylla, Corispermum Mongolicum, S. collina, and A. scoparia
Table 2 Species composition of artificial C. korshinskii forest at different restoration periods
Fig. 1 Schematic diagram of seed rain collector
Table 3 Composition of seed rain of artificial C. korshinskii forest at different restoration periods
Fig. 2 Temporal dynamic of seed rain density of artificial Caragana Korshinskii Kom. forest at different restoration periods. Bars are standard errors.
Table 4 Composition of soil seed bank of artificial C. korshinskii forest at different restoration periods
Fig. 3 Temporal dynamics of soil seed bank density of artificial C. korshinskii forest at different restoration periods. Bars are standard errors.
Fig. 4 Vertical distribution of soil seed bank density of artificial C. korshinskii forest at restoration periods of 60 (a), 40 (b), and 20 a (c). Bars are standard errors. Different lowercase letters indicate significant difference of soil seed bank density among different soil layers at P<0.05 level.
Restoration period Number of species
in seed rain
Number of species
in soil seed bank
Total number of
common species
Coefficient of
similarity (%)
60 a 14 9 8 69.57
40 a 13 9 8 72.73
20 a 10 11 9 85.71
Table 5 Species similarity between seed rain and seed bank in artificial C. korshinskii forest at different restoration periods
Fig. 5 Relationship between seed rain and soil seed bank in artificial C. korshinskii forest at restoration periods of 60 (a), 40 (b), and 20 a (c). The dark gray band is the 95% confidence interval of the regression.
Restoration period Number of species
in seed rain
Number of species of aboveground vegetation Total number of
common species
Coefficient of similarity (%)
60 a 14 11 9 72.00
40 a 13 10 10 86.96
20 a 10 10 8 80.00
Table 6 Species similarity between seed rain and aboveground vegetation in artificial C. korshinskii forest at different restoration periods
Restoration period Number of species in soil seed bank Number of species of aboveground vegetation Total number of
common species
Coefficient of similarity (%)
60 a 9 11 8 80.00
40 a 9 10 9 94.73
20 a 11 10 10 95.24
Table 7 Species similarity between soil seed bank and aboveground vegetation in artificial C. korshinskii forest at different restoration periods
[1]   Amiaud B, Touzard B. 2004. The relationships between soil seed bank, aboveground vegetation and disturbances in old embanked marshlands of Western France. Flora - Morphology, Distribution, Functional Ecology of Plants, 199(1): 25-35.
[2]   Bao S D. 2000. Agricultural and Chemical Analysis of Soil. Beijing: China Agriculture Press, 14-21. (in Chinese)
[3]   Cai W D J, Tan J, Zhang L X, et al. 2019. Study on seed rain characteristics of alpine meadow. Acta Agrestia Sinica, 27(4): 1090-1095. (in Chinese)
[4]   Chauhan B S, Johnson D E. 2010. Chapter 6 — The role of seed ecology in improving weed management strategies in the tropics. Advances in Agronomy, 105: 221-262.
[5]   Chen M C, Zhang J G, Feng L, et al. 2017. The composition and vertical distribution characteristics of soil seed banks in soil coverage with biocrusts in the Shapotou region. Acta Ecologica Sinica, 37(22): 7614-7623. (in Chinese)
[6]   Clauss M J, Venable D L. 2000. Seed germination in desert annuals: an empirical test of adaptive bet dedging. American Naturalist, 155(2): 168-186.
doi: 10.1086/303314
[7]   de Andrés E G, Camarero J J, Martínez I, et al. 2014. Uncoupled spatiotemporal patterns of seed dispersal and regeneration in Pyrenean silver fir populations. Forest Ecology and Management, 319: 18-28.
doi: 10.1016/j.foreco.2014.01.050
[8]   de Heredia U L, Nanos N, García-del-Rey E, et al. 2015. High seed dispersal ability of Pinus canariensis in stands of contrasting density inferred from genotypic data. Forest Systems, 24(1): e015, doi: 10.5424/fs/2015241-06351.
[9]   Dreber N, Esler K J. 2011. Spatio-temporal variation in soil seed banks under contrasting grazing regimes following low and high seasonal rainfall in arid Namibia. Journal of Arid Environments, 75(2): 174-184.
doi: 10.1016/j.jaridenv.2010.09.007
[10]   Fullen M A, Mitchell D J. 1994. Desertification and reclamation in North-Central China. Ambio, 23(2): 131-135.
[11]   Hernandez R R, Sandquist D R. 2011. Disturbance of biological soil crust increases emergence of exotic vascular plants in California sage scrub. Plant Ecology, 212: 1709-1721.
doi: 10.1007/s11258-011-9943-x
[12]   Hogenbirk J C, Wein R W. 1992. Temperature effects on seedling emergence from boreal wetland soils: implications for climate change. Aquatic Botany, 42(4): 361-373.
doi: 10.1016/0304-3770(92)90055-N
[13]   Houerou H N L. 2000. Restoration and rehabilitation of arid and semiarid Mediterranean ecosystems in North Africa and West Asia: a review. Arid Soil Research and Rehabilitation, 14(1): 3-14.
doi: 10.1080/089030600263139
[14]   Janzen D H. 1971. Seed predation by animals. Annual Review of Ecology, Evolution and Systematics, 2: 465-492.
[15]   Kakeh J, Gorji M, Mohammadi M H, et al. 2020. Biological soil crusts determine soil properties and salt dynamics under arid climatic condition in Qara Qir, Iran. Science of the Total Environment, 732: 139168, doi: 10.1016/j.scitotenv.2020.139168.
[16]   Kim M, Lee S, Lee S, et al. 2022. Seed dispersal models for natural regeneration: a review and prospects. Forests, 13(5): 659, doi: 10.3390/f13050659.
[17]   Li X J, Li X R, Wang X P, et al. 2016. Changes in soil organic carbon fractions after afforestation with xerophytic shrubs in the Tengger Desert, northern China. European Journal of Soil Science, 67(2): 184-195.
doi: 10.1111/ejss.2016.67.issue-2
[18]   Li X J, Yang H T, Shi W L, et al. 2018. Afforestation with xerophytic shrubs accelerates soil net nitrogen nitrification and mineralization in the Tengger Desert, northern China. Catena, 169: 11-20.
doi: 10.1016/j.catena.2018.05.026
[19]   Li X R, Xiao H L, Zhang J G, et al. 2004. Long-term ecosystem effects of sand-binding vegetation in the Tengger Desert, northern China. Restoration Ecology, 12(3): 376-390.
doi: 10.1111/rec.2004.12.issue-3
[20]   Li X R, He M Z, Duan Z H, et al. 2007. Recovery of topsoil physicochemical properties in revegetated sites in the sand-burial ecosystems of the Tengger Desert, northern China. Geomorphology, 88(3-4): 254-265.
doi: 10.1016/j.geomorph.2006.11.009
[21]   Li X R, Zhao Y, Hui R, et al. 2014. Review on research progress and trends of restoration ecology in arid areas of China. Progress in Geography, 33(11): 1435-1443. (in Chinese)
[22]   Li Y K, Ouyang J Z, Lin L, et al. 2016. Alterations to biological soil crusts with alpine meadow retrogressive succession affect seeds germination of three plant species. Journal of Mountain Science, 13: 1995-2005.
doi: 10.1007/s11629-016-3917-3
[23]   Liu R T, Zhao H L, Zhao X Y, et al. 2011. Facilitative effects of shrubs in shifting sand on soil macro-faunal community in Horqin Sand Land of Inner Mongolia, Northern China. European Journal of Soil Biology, 47(5): 316-321.
doi: 10.1016/j.ejsobi.2011.07.006
[24]   Liu S Q, Du X, Li Q, et al. 2021. Seed bank characteristics of Salix community in southeastern margin of Mu Us Sandy Land. Journal of Northwest Forestry University, 36(6): 140-144. (in Chinese)
[25]   Long R L, Gorecki M J, Renton M, et al. 2015. The ecophysiology of seed persistence: a mechanistic view of the journey to germination or demise. Biological Reviews of the Cambridge Philosophical Society, 90(1): 31-59.
doi: 10.1111/brv.12095 pmid: 24618017
[26]   Lowe W H, Mcpeek M A. 2014. Is dispersal neutral? Trends in Ecology & Evolution, 29(8): 444-450.
doi: 10.1016/j.tree.2014.05.009
[27]   Lu Y L, Zhang W H, Yang B, et al. 2019. Seed rain, soil seed bank and seedling regeneration of Quercus aliena var. acureserrata in different slope directions on the middle Qinling Mountains, China. Chinese Journal of Applied Ecology, 30(6): 1965-1973. (in Chinese)
[28]   Luo Y X, Liu R T, Zhang J, et al. 2019. Soil particle composition, fractal dimension and their effects on soil properties following sand-binding revegetation within straw checekerboard in Tengger Desert, China. Chinese Journal of Applied Ecology, 30(2): 525-535. (in Chinese)
[29]   Martini A M Z, dos Santos F A M. 2007. Effects of distinct types of disturbance on seed rain in the Atlantic forest of NE Brazil. Plant Ecology, 190: 81-95.
doi: 10.1007/s11258-006-9192-6
[30]   McCreadie J W, Adler P H. 2018. Patterns of regional beta diversity in a widespread group of North American aquatic insects. Freshwater Science, 37(3): 631-639.
doi: 10.1086/699388
[31]   Muñoz-Rojas M, Erickson T E, Martini D C, et al. 2016. Climate and soil factors influencing seedling recruitment of plant species used for dryland restoration. Soil, 2(2): 287-298.
doi: 10.5194/soil-2-287-2016
[32]   Nathan R, Muller-Landau H C. 2000. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology & Evolution, 15(7): 278-285.
doi: 10.1016/S0169-5347(00)01874-7
[33]   Prasse R, Bornkamm R. 2000. Effect of microbiotic soil surface crusts on emergence of vascular plants. Plant Ecology, 150: 65-75.
doi: 10.1023/A:1026593429455
[34]   Siewert W, Tielbörger K. 2010. Dispersal-dormancy relationships in annual plants: putting model predictions to the test. American Naturalist, 176(4): 490-500.
doi: 10.1086/656271
[35]   Sonkoly J, Valkó O, Deák B, et al. 2017. A new aspect of grassland vegetation dynamics: cyanobacterium colonies affect establishment success of plants. Journal of Vegetation Science, 28(3): 475-483.
doi: 10.1111/jvs.2017.28.issue-3
[36]   Souza de Paula A, Sfair J C, Trindade D P F, et al. 2023. The role of seed rain and soil seed bank in the regeneration of a Caatinga dry forest following slash-and-burn agriculture. Journal of Arid Environments, 211: 104948, doi: 10.1016/j.jaridenv.2023.104948.
[37]   Tang X M, Li M L, Qu J J, et al. 2021. Culvation of Caragana korshinskii in southeastern edge of Tengger Desert. Bulletin of Soil and Water Conservation, 41(2): 135-141. (in Chinese)
[38]   Thompson S E, Assouline S, Chen L, et al. 2014. Secondary dispersal driven by overland flow in drylands: Review and mechanistic model development. Movement Ecology, 2: 7, doi: 10.1186/2051-3933-2-7.
pmid: 25520817
[39]   Wang N, He X Y, Zhao F W, et al. 2020. Soil seed bank in different vegetation types in the Loess Plateau region and its role in vegetation restoration. Restoration Ecology, 28(S1): A5-A12.
[40]   Wang Q, Malanson G P. 2008. Spatial hyperdynamism in a post-disturbance simulated forest. Ecological Modelling, 215(4): 337-344.
doi: 10.1016/j.ecolmodel.2008.04.002
[41]   Wang R Z. 2002. Photosynthetic pathways, life forms, and reproductive types for forage species along the desertification gradient on Hunshandake Desert, North China. Photosynthetica, 40: 321-329.
doi: 10.1023/A:1022623920812
[42]   Webb C O, Gilbert G S, Donoghue M J. 2006. Phylodiversity-dependent seedling mortality, size structure, and disease in a Bornean rain forest. Ecology, 87(sp7): S123-S131.
[43]   Xie L N, Ma C C, Guo H Y, et al. 2014. Distribution pattern of Caragana species under the influence of climate gradient in the Inner Mongolia region, China. Journal of Arid Land, 6(3): 311-323.
doi: 10.1007/s40333-013-0227-2
[44]   Xu Y, Shen Z H, Lü N, et al. 2012. Ten years' observation of seed rain in a Fagus lucida community in Dalaoling Nature Reserve in the Three Gorges, seed rain density, species composition and their correlation with community. Chinese Journal of Plant Ecology, 36(8): 708-716. (in Chinese)
doi: 10.3724/SP.J.1258.2012.00708
[45]   Yu W J, Chen Y, Jiao J Y, et al. 2015. Characteristics of seed rain on abandoned slopes in the hilly-gullied Loess Plateau, Northwest China. Chinese Journal of Applied Ecology, 26(2): 395-403. (in Chinese)
[46]   Zhang Y X, Li X B, Chen Y H. 2003. Overview of field and multi-scale remote sensing measurement approaches to grassland vegetation coverage. Advances in Earth Science, 18(1): 85-93. (in Chinese)
[47]   Zhang Y Y, Zhao W Z. 2015. Vegetation and soil property response of short-time fencing in temperate desert of the Hexi Corridor, northwestern China. Catena, 133: 43-51.
doi: 10.1016/j.catena.2015.04.019
[48]   Zhao C G, Li H Y, Yu F G, et al. 2022. Effects of artificial vegetation construction on soil physical properties in the northeastern edge of Tengger Desert. Arid Zone Research, 39(4): 1112-1121. (in Chinese)
[49]   Zhao L J, Wang X G, Zhang Y C, et al. 2019. Plant water use strategies in the Shapotou artificial sand-fixed vegetation of the southeastern margin of the Tengger Desert, northwestern China. Journal of Mountain Science, 16: 898-908.
doi: 10.1007/s11629-018-5028-9
[1] QU Wenjie, ZHAO Wenzhi, YANG Xinguo, WANG Lei, ZHANG Xue, QU Jianjun. Effects of wind speed, underlying surface, and seed morphological traits on the secondary seed dispersal in the Tengger Desert, China[J]. Journal of Arid Land, 2024, 16(4): 531-549.
[2] BAO Anming, YU Tao, XU Wenqiang, LEI Jiaqiang, JIAPAER Guli, CHEN Xi, Tojibaev KOMILJON, Shomurodov KHABIBULLO, Xabibullaev B SAGIDULLAEVICH, Idirisov KAMALATDIN. Ecological problems and ecological restoration zoning of the Aral Sea[J]. Journal of Arid Land, 2024, 16(3): 315-330.
[3] PAN Yaqing, KANG Peng, QU Xuan, RAN Yichao, LI Xinrong. Effects of long-term fencing on soil microbial community structure and function in the desert steppe, China[J]. Journal of Arid Land, 2024, 16(3): 431-446.
[4] YANG Jingyi, LUO Weicheng, ZHAO Wenzhi, LIU Jiliang, WANG Dejin, LI Guang. Soil seed bank is affected by transferred soil thickness and properties in the reclaimed coal mine in the Qilian Mountains, China[J]. Journal of Arid Land, 2023, 15(12): 1529-1543.
[5] LI Chunming, MA Jiahui, LI Liangyu, HUANG Junlin, LU Jinhua, HUANG Mei, Allan DEGEN, SHANG Zhanhuan. Effects of degradation and species composition on soil seed density in the alpine grasslands, China[J]. Journal of Arid Land, 2023, 15(12): 1510-1528.
[6] GOU Qianqian, MA Gailing, QU Jianjun, WANG Guohua. Diversity of soil bacteria and fungi communities in artificial forests of the sandy-hilly region of Northwest China[J]. Journal of Arid Land, 2023, 15(1): 109-126.
[7] LIU Yabin, SHI Chuan, YU Dongmei, WANG Shu, PANG Jinghao, ZHU Haili, LI Guorong, HU Xiasong. Characteristics of root pullout resistance of Caragana korshinskii Kom. in the loess area of northeastern Qinghai-Tibet Plateau, China[J]. Journal of Arid Land, 2022, 14(7): 811-823.
[8] ZHANG Yu, ZHANG Mingjun, QU Deye, WANG Shengjie, Athanassios A ARGIRIOU, WANG Jiaxin, YANG Ye. Water use characteristics of different pioneer shrubs at different ages in western Chinese Loess Plateau: Evidence from δ2H offset correction[J]. Journal of Arid Land, 2022, 14(6): 653-672.
[9] Cintia Vanesa LEDER, Dianela Alejandra CALVO, Guadalupe PETER. Seed rain and soil seed bank compensatory roles on Nassella tenuis (Phil.) Barkworth seedling recruitment in ungrazed and grazed sites[J]. Journal of Arid Land, 2022, 14(5): 550-560.
[10] WANG Zhao, WEI Junjie, PENG Wenbin, ZHANG Rui, ZHANG Haobo. Contents and spatial distribution patterns of heavy metals in the hinterland of the Tengger Desert, China[J]. Journal of Arid Land, 2022, 14(10): 1086-1098.
[11] ZHOU Siyuan, DUAN Yufeng, ZHANG Yuxiu, GUO Jinjin. Vegetation dynamics of coal mining city in an arid desert region of Northwest China from 2000 to 2019[J]. Journal of Arid Land, 2021, 13(5): 534-547.
[12] MA Gailing, GOU Qianqian, WANG Guohua, QU Jianjun. Succession of soil bacterial and fungal communities of Caragana korshinskii plantation in a typical agro-pastoral ecotone in northern China over a 50-a period[J]. Journal of Arid Land, 2021, 13(10): 1071-1086.
[13] Fengqin JIA, TIYIP Tashpolat, Nan WU, Changyan TIAN, Yuanming ZHANG. Characteristics of soil seed banks at different geomorphic positions within the longitudinal sand dunes of the Gurbantunggut Desert, China[J]. Journal of Arid Land, 2017, 9(3): 355-367.
[14] WEN Qing, DONG Zhibao. Geomorphologic patterns of dune networks in the Tengger Desert, China[J]. Journal of Arid Land, 2016, 8(5): 660-669.
[15] PENG Jun, DONG Zhibao, HAN Fengqing. Optically stimulated luminescence dating of sandy deposits from Gulang county at the southern margin of the Tengger Desert, China[J]. Journal of Arid Land, 2016, 8(1): 1-12.