| Research article |
|
|
|
|
| Spatial variability characteristics and drivers of surface soil nitrogen fractions in the drylands of northern China |
ZHANG Shihang1,2, CHEN Yusen2,3, ZHOU Xiaobing3,*( ), ZHANG Yuanming3 |
1Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China |
|
|
|
Abstract In dryland ecosystems, nitrogen (N) is the primary limiting factor after water availability, constraining both plant productivity and organic matter decomposition while also regulating ecosystem function and service provision. However, the distributions of different soil N fraction stocks in drylands and the factors that influence them remain poorly understood. In this study, we collected 2076 soil samples from 173 sites across the drylands of northern China during the summers of 2021 and 2022. Using the best-performing eXtreme Gradient Boosting (XGBoost) model, we mapped the spatial distributions of the soil N fraction stocks and identified the key drivers of their variability. Our findings revealed that the stocks of total nitrogen (TN), inorganic nitrogen (IN), and microbial biomass nitrogen (MBN) in the top 30 cm soil layer were 1020.4, 92.2, and 40.8 Tg, respectively, with corresponding mean densities of 164.6, 14.9, and 6.6 g/m2. Climate variables—particularly mean annual temperature and aridity—along with human impacts emerged as the dominant drivers of soil N stock distribution. Notably, increased aridity and intensified human impacts exerted mutually counteracting effects on soil N fractions: aridity-driven moisture limitation generally suppressed N accumulation, whereas anthropogenic activities (e.g., fertilization and grazing) promoted N enrichment. By identifying the key environmental and anthropogenic factors shaping the soil N distribution, this study improves the accuracy of regional and global N stock estimates. These insights provide a scientific foundation for developing more effective soil N management strategies in dryland ecosystems, contributing to sustainable land use and long-term ecosystem resilience in drylands.
|
|
Received: 09 March 2025
Published: 30 November 2025
|
|
Corresponding Authors:
*ZHOU Xiaobing (E-mail: zhouxb@ms.xjb.ac.cn)
|
| About author: First author contact: The first and second authors contributed equally to this work. |
|
|
| [1] |
Bardgett R D, van der Putten W H. 2014. Belowground biodiversity and ecosystem functioning. Nature, 515(7528): 505-511.
doi: 10.1038/nature13855
|
|
|
| [2] |
Beer C, Reichstein M, Tomelleri E, et al. 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science, 329(5993): 834-838.
doi: 10.1126/science.1184984
pmid: 20603496
|
|
|
| [3] |
Brookes P C, Landman A, Pruden G, et al. 1985. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 17(6): 837-842.
doi: 10.1016/0038-0717(85)90144-0
|
|
|
| [4] |
Chen S S, Wang M, Zhang C, et al. 2023. Impacts of grazing disturbance on soil nitrogen component contents and storages in a Leymus chinensis Meadow Steppe. Agronomy, 13(6): 1574, doi: 10.3390/agronomy13061574.
|
|
|
| [5] |
Chi Y L, Fan M, Zhao C F, et al. 2022. Machine learning-based estimation of ground-level NO2 concentrations over China. Science of the Total Environment, 807(1): 150721, doi: 10.1016/j.scitotenv.2021.150721.
|
|
|
| [6] |
Collins S L, Sinsabaugh R L, Crenshaw C, et al. 2008. Pulse dynamics and microbial processes in aridland ecosystems. Journal of Ecology, 96(3): 413-420.
doi: 10.1111/jec.2008.96.issue-3
|
|
|
| [7] |
Compton J E, Harrison J A, Dennis R L, et al. 2011. Ecosystem services altered by human changes in the nitrogen cycle: a new perspective for US decision making. Ecology Letters, 14(8): 804-815.
|
|
|
| [8] |
Cornell S E. 2011. Atmospheric nitrogen deposition: Revisiting the question of the importance of the organic component. Environmental Pollution, 159(10): 2214-2222.
doi: 10.1016/j.envpol.2010.11.014
pmid: 21131113
|
|
|
| [9] |
Cui S H, Shi Y L, Groffman P M, et al. 2013. Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910-2010). Proceedings of the National Academy of Sciences of the United States of America, 110(6): 2052-2057.
|
|
|
| [10] |
Dang P F, Li C F, Huang T T, et al. 2022. Effects of different continuous fertilizer managements on soil total nitrogen stocks in China: A meta-analysis. Pedosphere, 32(1): 39-48.
doi: 10.1016/S1002-0160(21)60059-0
|
|
|
| [11] |
Davidson E A, Janssens I A. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081): 165-173.
doi: 10.1038/nature04514
|
|
|
| [12] |
Delgado-Baquerizo M, Maestre F T, Gallardo A, et al. 2013. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature, 502(7473): 672-676.
doi: 10.1038/nature12670
|
|
|
| [13] |
Delgado-Baquerizo M, Maestre F T, Gallardo A, et al. 2016. Human impacts and aridity differentially alter soil N availability in drylands worldwide. Global Ecology and Biogeography, 25(1): 36-45.
doi: 10.1111/geb.2016.25.issue-1
|
|
|
| [14] |
Deng L, Shangguan Z P. 2016. Afforestation drives soil carbon and nitrogen changes in China. Land Degradation & Development, 28(1): 151-165.
doi: 10.1002/ldr.v28.1
|
|
|
| [15] |
Deng L, Peng C H, Kim D G, et al. 2021. Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems. Earth-Science Reviews, 214: 103501, doi: 10.1016/j.earscirev.2020.103501.
|
|
|
| [16] |
Dentener F, Drevet J, Lamarque J F, et al. 2006. Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochemical Cycles, 20(4): GB4003, doi: 10.1029/2005GB002672.
|
|
|
| [17] |
Dijkstra F A, Augustine D J, Brewer P, et al. 2012. Nitrogen cycling and water pulses in semiarid grasslands: are microbial and plant processes temporally asynchronous? Oecologia, 170(3): 799-808.
doi: 10.1007/s00442-012-2336-6
pmid: 22555358
|
|
|
| [18] |
Ding J Z, Li F, Yang G B, et al. 2016. The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores. Global Change Biology, 22(8): 2688-2701.
doi: 10.1111/gcb.13257
pmid: 26913840
|
|
|
| [19] |
Durán J, Delgado-Baquerizo M, Dougill A J, et al. 2018. Temperature and aridity regulate spatial variability of soil multifunctionality in drylands across the globe. Ecology, 99(5): 1184-1193.
doi: 10.1002/ecy.2199
pmid: 29484631
|
|
|
| [20] |
Elrys A S, Uwiragiye Y, Zhang Y H, et al. 2023. Expanding agroforestry can increase nitrate retention and mitigate the global impact of a leaky nitrogen cycle in croplands. Nature Food, 4(1): 109-121.
doi: 10.1038/s43016-022-00657-x
pmid: 37118576
|
|
|
| [21] |
Elrys A S, El-Maati M F A, Dan X Q, et al. 2024. Aridity creates global thresholds in soil nitrogen retention and availability. Global Change Biology, 30(1): e17003, doi: 10.1111/gcb.17003.
|
|
|
| [22] |
Ewing S A, Sutter B, Owen J, et al. 2006. A threshold in soil formation at Earth's arid-hyperarid transition. Geochimica et Cosmochimica Acta, 70(21): 5293-5322.
doi: 10.1016/j.gca.2006.08.020
|
|
|
| [23] |
Feng S, Fu Q. 2013. Expansion of global drylands under a warming climate. Atmospheric Chemistry and Physics, 13(19): 10081-10094.
|
|
|
| [24] |
Fujimaki R, Sakai A, Kaneko N. 2009. Ecological risks in anthropogenic disturbance of nitrogen cycles in natural terrestrial ecosystems. Ecological Research, 24(5): 955-964.
doi: 10.1007/s11284-008-0578-x
|
|
|
| [25] |
Galloway J N, Dentener F J, Capone D G, et al. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry, 70(2): 153-226.
doi: 10.1007/s10533-004-0370-0
|
|
|
| [26] |
Gao D C, Bai E, Wang S Y, et al. 2022. Three-dimensional mapping of carbon, nitrogen, and phosphorus in soil microbial biomass and their stoichiometry at the global scale. Global Change Biology, 28(22): 6728-6740.
doi: 10.1111/gcb.v28.22
|
|
|
| [27] |
Gao G Y, Tuo D F, Han X Y, et al. 2020. Effects of land-use patterns on soil carbon and nitrogen variations along revegetated hillslopes in the Chinese Loess Plateau. Science of the Total Environment, 746: 141156, doi: 10.1016/j.scitotenv.2020.141156.
|
|
|
| [28] |
Gross C D, Harrison R B. 2019. The case for digging deeper: soil organic carbon storage, dynamics, and controls in our changing world. Soil Systems, 3(2): 28, doi: 10.3390/soilsystems3020028.
|
|
|
| [29] |
Gross N, Bagousse-Pinguet Y L, Liancourt P, et al. 2017. Functional trait diversity maximizes ecosystem multifunctionality. Nature Ecology & Evolution, 1(5): 132, doi: 10.1038/s41559-017-0132
|
|
|
| [30] |
Handa I T, Aerts R, Berendse F, et al. 2014. Consequences of biodiversity loss for litter decomposition across biomes. Nature, 509: 218-221.
doi: 10.1038/nature13247
|
|
|
| [31] |
Handley L L, Austin A T, Robinson D, et al. 1999. The 15N natural abundance (δ15N) of ecosystem samples reflects measures of water availability. Australian Journal of Botany, 26: 185-199.
|
|
|
| [32] |
Haynes R J, Williams P H. 1993. Nutrient cycling and soil fertility in the grazed pasture ecosystem. Advances in Agronomy, 49: 119-199.
|
|
|
| [33] |
He N P, Yu Q, Wu L, et al. 2008. Carbon and nitrogen store and storage potential as affected by land-use in a Leymus chinensis grassland of northern China. Soil Biology & Biochemistry, 40(12): 2952-2959.
doi: 10.1016/j.soilbio.2008.08.018
|
|
|
| [34] |
He Y T, Zhang W J, Xu M G, et al. 2015. Long-term combined chemical and manure fertilizations increase soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China. Science of the Total Environment, 532: 635-644.
doi: 10.1016/j.scitotenv.2015.06.011
|
|
|
| [35] |
Heuck C, Weig A, Spohn M. 2015. Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus. Soil Biology & Biochemistry, 85: 119-129.
doi: 10.1016/j.soilbio.2015.02.029
|
|
|
| [36] |
Hu H W, Trivedi P, He J Z, et al. 2017. Microbial nitrous oxide emissions in dryland ecosystems: mechanisms, microbiome and mitigation. Environmental Microbiology, 19(12): 4808-4828.
doi: 10.1111/emi.2017.19.issue-12
|
|
|
| [37] |
Huang J P, Yu H P, Guan X D, et al. 2016. Accelerated dryland expansion under climate change. Nature Climate Change, 6(2): 166-171.
doi: 10.1038/NCLIMATE2837
|
|
|
| [38] |
Iqbal S, Khan H Z, Li T, et al. 2018. Organic nitrogen source addition for improving the physicochemical properties of sandy loam soil and maize performance. Communications in Soil Science and Plant Analysis, 49(1): 13-29.
doi: 10.1080/00103624.2017.1420798
|
|
|
| [39] |
Jenkinson D S, Brookes P C, Powlson D S. 2004. Measuring soil microbial biomass. Soil Biology & Biochemistry, 36(1): 5-7.
doi: 10.1016/j.soilbio.2003.10.002
|
|
|
| [40] |
Jia Y L, Yu G R, He N P, et al. 2014. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Scientific Reports, 4: 3763, doi: 10.1038/srep03763.
pmid: 24441731
|
|
|
| [41] |
Kettler T A, Doran J W, Gilbert T L. 2001. Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Science Society of America Journal, 65(3): 849-852.
doi: 10.2136/sssaj2001.653849x
|
|
|
| [42] |
Knapp A K, Beier C, Briske D D, et al. 2008. Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience, 58(9): 811-821.
doi: 10.1641/B580908
|
|
|
| [43] |
Knoepp J D, Swank W T. 2002. Using soil temperature and moisture to predict forest soil nitrogen mineralization. Biology and Fertility of Soils, 36(3): 177-182.
doi: 10.1007/s00374-002-0536-7
|
|
|
| [44] |
Kou D, Ding J Z, Li F, et al. 2019. Spatially-explicit estimate of soil nitrogen stock and its implication for land model across Tibetan alpine permafrost region. Science of the Total Environment, 650(2): 1795-1804.
doi: 10.1016/j.scitotenv.2018.09.252
|
|
|
| [45] |
Lefcheck J S. 2016. PiecewiseSEM: piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7(5): 573-579.
doi: 10.1111/mee3.2016.7.issue-5
|
|
|
| [46] |
Li C J, Fu B J, Wang S, et al. 2021. Drivers and impacts of changes in China's drylands. Nature Reviews Earth & Environment, 2(12): 858-873.
|
|
|
| [47] |
Li D J, Niu S L, Luo Y Q. 2012. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytologist, 195(1): 172-181.
doi: 10.1111/j.1469-8137.2012.04150.x
pmid: 22512731
|
|
|
| [48] |
Li J R, Okin G S, Alvarez L, et al. 2007. Quantitative effects of vegetation cover on wind erosion and soil nutrient loss in a desert grassland of southern New Mexico, USA. Biogeochemistry, 85(3): 317-332.
doi: 10.1007/s10533-007-9142-y
|
|
|
| [49] |
Liang C, VandenBygaart A J, MacDonald D, et al. 2023. Change in soil organic carbon storage as influenced by forestland and grassland conversion to cropland in Canada. Geoderma Regional, 33: e00648, doi: 10.1016/j.geodrs.2023e00648.
|
|
|
| [50] |
Liu J, You L Z, Amini M, et al. 2010. A high-resolution assessment on global nitrogen flows in cropland. Proceedings of the National Academy of Sciences of the United States of America, 107(17): 8035-8040.
|
|
|
| [51] |
Liu L, He X Y, Du H, et al. 2017a. The relationships among nitrogen-fixing microbial communities, plant communities, and soil properties in karst regions. Acta Ecologica Sinica, 37(12): 4037-4044. (in Chinese).
|
|
|
| [52] |
Liu X, Yang T, Wang Q, et al. 2018. Dynamics of soil carbon and nitrogen stocks after afforestation in arid and semi-arid regions: A meta-analysis. Science of the Total Environment, 618: 1658-1664.
doi: 10.1016/j.scitotenv.2017.10.009
|
|
|
| [53] |
Liu Y, Wang C H, He N P, et al. 2017b. A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: Latitudinal patterns and mechanisms. Global Change Biology, 23(1): 455-464.
doi: 10.1111/gcb.2017.23.issue-1
|
|
|
| [54] |
Liu Z P, Shao M A, Wang Y Q. 2011. Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region, China. Agriculture, Ecosystems & Environment, 142(3-4): 184-194.
doi: 10.1016/j.agee.2011.05.002
|
|
|
| [55] |
Liu Z P, Shao M A, Wang Y Q. 2013. Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China. Geoderma, 197-198: 67-78.
doi: 10.1016/j.geoderma.2012.12.011
|
|
|
| [56] |
Luo Y Q, Su B, Currie W S, et al. 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience, 54(8): 731-739.
doi: 10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2
|
|
|
| [57] |
Maestre F T, Delgado-Baquerizo M, Jeffries T C, et al. 2015. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences of the United States of Americ, 112(51): 15684-15689.
|
|
|
| [58] |
Meena V S, Mondal T, Pandey B M, et al. 2018. Land use changes: Strategies to improve soil carbon and nitrogen storage pattern in the mid-Himalaya ecosystem, India. Geoderma, 321: 69-78.
doi: 10.1016/j.geoderma.2018.02.002
|
|
|
| [59] |
Mikan C J, Schimel J P, Doyle A P. 2002. Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biology & Biochemistry, 34(11): 1785-1795.
doi: 10.1016/S0038-0717(02)00168-2
|
|
|
| [60] |
Niu X Y, Wang Y H, Yang H, et al. 2015. Effect of land use on soil erosion and nutrients in Dianchi Lake watershed, China. Pedosphere, 25(1): 103-111.
doi: 10.1016/S1002-0160(14)60080-1
|
|
|
| [61] |
Ochoa-Hueso R, Arroniz-Crespo M, Bowker M A, et al. 2014. Biogeochemical indicators of elevated nitrogen deposition in semiarid Mediterranean ecosystems. Environmental Monitoring and Assessment, 186(9): 5831-5842.
doi: 10.1007/s10661-014-3822-6
pmid: 24894911
|
|
|
| [62] |
Pan S Y, Song Y C, Yuan R Y, et al. 2024. Variations in soil inorganic nitrogen content under canopies of two shrubs in the Junggar Desert. Acta Prataculturae Sinica, 33(5): 183-195. (in Chinese)
doi: 10.11686/cyxb2023232
|
|
|
| [63] |
Paul K I, Polglase P J, Nyakuengama J G, et al. 2002. Change in soil carbon following afforestation. Forest Ecology and Management, 168(1-3): 241-257.
doi: 10.1016/S0378-1127(01)00740-X
|
|
|
| [64] |
Pinder R W, Bettez N D, Bonan G B, et al. 2013. Impacts of human alteration of the nitrogen cycle in the US on radiative forcing. Biogeochemistry, 114(1-3): 25-40.
|
|
|
| [65] |
Plaza C, Zaccone C, Sawicka K, et al. 2018. Soil resources and element stocks in drylands to face global issues. Scientific Reports, 8: 13788, doi: 10.1038/s41598-018-32229-0.
pmid: 30214005
|
|
|
| [66] |
Powlson D S, Prookes P C, Christensen B T. 1987. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biology & Biochemistry, 19(2): 159-164.
doi: 10.1016/0038-0717(87)90076-9
|
|
|
| [67] |
Pu C, Kan Z R, Liu P, et al. 2019. Residue management induced changes in soil organic carbon and total nitrogen under different tillage practices in the North China Plain. Journal of Integrative Agriculture, 18(6): 1337-1347.
doi: 10.1016/S2095-3119(18)62079-9
|
|
|
| [68] |
Ren Z B, Li C J, Fu B J, et al. 2024. Effects of aridification on soil total carbon pools in China's drylands. Global Change Biology, 30(1): e17091, doi: 10.1111/gcb.17091.
|
|
|
| [69] |
Reynolds J F, Stafford Smith D M, Lambin E F, et al. 2007. Global desertification: Building a science for dryland development. Science, 316(5826): 847-851.
doi: 10.1126/science.1131634
pmid: 17495163
|
|
|
| [70] |
Rillig M C, Mummey D L. 2006. Mycorrhizas and soil structure. New Phytologist, 171(1): 41-53.
pmid: 16771981
|
|
|
| [71] |
Rodell M, Houser P R, Jambor U, et al. 2004. The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3): 381-394.
doi: 10.1175/BAMS-85-3-381
|
|
|
| [72] |
Rumpel C, Kögel-Knabner I. 2010. Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant and Soil, 338(1-2): 143-158.
doi: 10.1007/s11104-010-0391-5
|
|
|
| [73] |
Sardans J, Peñuelas J, Estiarte M. 2008. Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Applied Soil Ecology, 39(2): 223-235.
doi: 10.1016/j.apsoil.2007.12.011
|
|
|
| [74] |
Schimel D S. 2010. Drylands in the Earth system. Science, 327(5964): 418-419.
doi: 10.1126/science.1184946
pmid: 20093461
|
|
|
| [75] |
Schimel J, Balser T C, Wallenstein M. 2007. Microbial stress-response physiology and its implications for ecosystem function. Ecology, 88(6): 1386-1394.
doi: 10.1890/06-0219
pmid: 17601131
|
|
|
| [76] |
Schimel J P, Bennett J. 2004. Nitrogen mineralization: Challenges of a changing paradigm. Ecology, 85(3): 591-602.
doi: 10.1890/03-8002
|
|
|
| [77] |
Schlesinger W H, Reynolds J F, Cunningham G L, et al. 1990. Biological feedbacks in global desertification. Science, 247(4946): 1043-1048.
doi: 10.1126/science.247.4946.1043
pmid: 17800060
|
|
|
| [78] |
Schmidt B H M, Kalbitz K, Braun S, et al. 2011. Microbial immobilization and mineralization of dissolved organic nitrogen from forest floors. Soil Biology & Biochemistry, 43(8): 1742-1745.
doi: 10.1016/j.soilbio.2011.04.021
|
|
|
| [79] |
Sirulnik A G, Allen E B, Meixner T, et al. 2007. Impacts of anthropogenic N additions on nitrogen mineralization from plant litter in exotic annual grasslands. Soil Biology & Biochemistry, 39(1): 24-32.
doi: 10.1016/j.soilbio.2006.04.048
|
|
|
| [80] |
Sodhi G P S, Beri V, Benbi D K. 2009. Soil aggregation and distribution of carbon and nitrogen in different fractions under long-term application of compost in rice-wheat system. Soil and Tillage Research, 103(2): 412-418.
doi: 10.1016/j.still.2008.12.005
|
|
|
| [81] |
Spohn M. 2016. Element cycling as driven by stoichiometric homeostasis of soil microorganisms. Basic and Applied Ecology, 17(6): 471-478.
doi: 10.1016/j.baae.2016.05.003
|
|
|
| [82] |
Sun J, Ma B B, Lu X Y. 2018. Grazing enhances soil nutrient effects: Trade-offs between aboveground and belowground biomass in alpine grasslands of the Tibetan Plateau. Land Degradation & Development, 29(2): 337-348.
doi: 10.1002/ldr.v29.2
|
|
|
| [83] |
Tian H Q, Wang S Q, Liu J Y, et al. 2006. Patterns of soil nitrogen storage in China. Global Biogeochemical Cycles, 20(1): GB1001, doi: 10.1016/j.scitotenv.2019.136201.
|
|
|
| [84] |
Uwiragiye Y, Wang J, Huang Y Y, et al. 2024. Global ecosystem nitrogen cycling reciprocates between land-use conversion and its reversal. Global Change Biology, 30(10): e17537, doi: 10.1111/gcb.17537.
|
|
|
| [85] |
Venter O, Sanderson E W, Magrach A, et al. 2016. Global terrestrial Human Footprint maps for 1993 and 2009. Scientific Data, 3: 160067, doi: 10.1038/sdata.2016.67.
|
|
|
| [86] |
Vicente-Serrano S M, Zouber A, Lasanta T, et al. 2012. Dryness is accelerating degradation of vulnerable shrublands in semiarid Mediterranean environments. Ecological Monographs, 82(4): 407-428.
doi: 10.1890/11-2164.1
|
|
|
| [87] |
Wang C, Wang X B, Liu D W, et al. 2014. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nature Communications, 5: 4799, doi: 10.1038/ncomms5799.
pmid: 25185641
|
|
|
| [88] |
Wang S F, Wang X K, Ouyang Z Y. 2012. Effects of land use, climate, topography and soil properties on regional soil organic carbon and total nitrogen in the Upstream Watershed of Miyun Reservoir, North China. Journal of Environmental Sciences, 24(3): 387-395.
pmid: 22655350
|
|
|
| [89] |
Wang X, Cui L L, Yang S H, et al. 2019. Human-induced changes in Holocene nitrogen cycling in North China: An isotopic perspective from sedimentary pyrogenic material. Geophysical Research Letters, 46(9): 4599-4608.
doi: 10.1029/2019GL082306
|
|
|
| [90] |
Xi N X, Chen D X, Bahn M, et al. 2022. Drought soil legacy alters drivers of plant diversity-productivity relationships in oldfield systems. Science Advances, 8(18): eabn3368, doi: 10.1126/sciadvabn3368.
|
|
|
| [91] |
Xu L, He N P, Yu G R. 2020. Nitrogen storage in China's terrestrial ecosystems. Science of the Total Environment, 709: 136201, doi: 10.1016/j.scitotenv.2019.136201.
|
|
|
| [92] |
Yang W, Zhang D, Cai X W, et al. 2023. Natural revegetation over ∼ 160 years alters carbon and nitrogen sequestration and stabilization in soil organic matter on the Loess Plateau of China. CATENA, 220: 106647, doi: 10.1016/j.catena.2022.106647.
|
|
|
| [93] |
Yang Y H, Ma W H, Mohammat A, et al. 2007. Storage, patterns and controls of soil nitrogen in China. Pedosphere, 17(6): 776-785.
doi: 10.1016/S1002-0160(07)60093-9
|
|
|
| [94] |
Zhan T. 2022. Effects and mechanism of nitrogen and phosphorus reduction combined with selenium on growth of Guanxi pomelo and soil nitrogen utilization. PhD Dissertation. Wuhan: Huazhong Agricultural University. (in Chinese)
|
|
|
| [95] |
Zhang C, Liu G B, Xue S, et al. 2013. Soil organic carbon and total nitrogen storage as affected by land use in a small watershed of the Loess Plateau, China. European Journal of Soil Biology, 54: 16-24.
doi: 10.1016/j.ejsobi.2012.10.007
|
|
|
| [96] |
Zhang K R, Cheng X L, Dang H S, et al. 2020. Biomass:N:K:Ca:Mg:P ratios in forest stands world-wide: Biogeographical variations and environmental controls. Global Ecology and Biogeography, 29(12): 2176-2189.
doi: 10.1111/geb.v29.12
|
|
|
| [97] |
Zhang M Y, Wang K L, Liu H Y, et al. 2015. How ecological restoration alters ecosystem services: an analysis of vegetation carbon sequestration in the karst area of northwest Guangxi, China. Environmental Earth Sciences, 74(6): 5307-5317.
doi: 10.1007/s12665-015-4542-0
|
|
|
| [98] |
Zhang S H, Tao Y, Chen Y S, et al. 2022. Spatial pattern of soil multifunctionality and its correlation with environmental and vegetation factors in the Junggar Desert, China. Biodiversity Science, 30(8): 140-150. (in Chinese)
|
|
|
| [99] |
Zhang W T, Li S Y, Du X Z, et al. 2014. Accounting methods, uncertainties and influential factors of net anthropogenic nitrogen input (NANI). Acta Ecologica Sinica, 34(24): 7454-7464. (in Chinese)
|
|
|
| [100] |
Zheng M H, Zhou Z H, Zhao P, et al. 2020. Effects of human disturbance activities and environmental change factors on terrestrial nitrogen fixation. Global Change Biology, 26(11): 6203-6217.
doi: 10.1111/gcb.v26.11
|
|
|
| [101] |
Zhou G Y, Zhou X H, He Y H, et al. 2017. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: A meta-analysis. Global Change Biology, 23(3): 1167-1179.
doi: 10.1111/gcb.13431
pmid: 27416555
|
|
|
| [102] |
Zhu E X, Cao Z J, Jia J, et al. 2021. Inactive and inefficient: Warming and drought effect on microbial carbon processing in alpine grassland at depth. Global Change Biology, 27(10): 2241-2253.
doi: 10.1111/gcb.15541
pmid: 33528033
|
|
|
| [103] |
Zhu J X, Wang Q F, He N P, et al. 2016. Imbalanced atmospheric nitrogen and phosphorus depositions in China: Implications for nutrient limitation. Journal of Geophysical Research: Biogeosciences, 121(6): 1605-1616.
doi: 10.1002/jgrg.v121.6
|
|
|
| [104] |
Zhu Q L, Elrys A S, Liu L J, et al. 2025. Converting acidic forests to managed plantations reduces soil nitrogen loss by inhibiting autotrophic nitrification while inducing nitrate immobilization in the tropics. Biology and Fertility of Soils, 61(3): 595-607.
doi: 10.1007/s00374-023-01777-7
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|