Please wait a minute...
Journal of Arid Land  2022, Vol. 14 Issue (1): 56-69    DOI: 10.1007/s40333-022-0002-3
Research article     
Lithic soils in the semi-arid region of Brazil: edaphic characterization and susceptibility to erosion
Carlos R PINHEIRO JUNIOR1, Conan A SALVADOR1, Tiago R TAVARES2, Marcel C ABREU1, Hugo S FAGUNDES1, Wilk S ALMEIDA3, Eduardo C SILVA NETO1, Lúcia H C ANJOS1, Marcos G PEREIRA1,*()
1Federal Rural University of Rio de Janeiro (UFRRJ), Department of Soils, Seropédica, Rio de Janeiro 23890, Brazil
2Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo 13416, Brazil
3Federal Institute of Education, Science and Technology of Rondônia (IFRO), Rural Zone, Ariquemes, Rondônia 78930, Brazil
Download: HTML     PDF(3140KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Soils (Leptosols or Epileptic Regosols) with lithic contact at a depth of 50 cm occupy almost 20% of the Brazilian semi-arid region. These lithic soils are susceptible to erosion due to faster saturation of water-holding capacity during rainfall, which accelerates the beginning of runoff. However, erosion traits of lithic soils in the semi-arid region of Brazil are less studied. The aim of this study was to characterize the soil and landscape attributes in areas with Neossolos Litólicos (Entisols) in the Caatinga biome to identify region of high susceptibility to erosion. Results showed that the soils were characterized by a sandy texture, soil structure with poor development and low content of organic carbon. These attributes increase susceptibility to erosion and reduce water storage capacity, especially in the states of Ceará and Sergipe. In these states, the content of rock fragments in the soil reaches 790 g/kg. High contents of silt and fine sand, high silt/clay ratio, predominance of Leptosols and strong rainfall erosivity were observed in Piauí and northwestern Ceará. A very high degree of water erosion was observed in the states of Pernambuco and Paraíba. Despite the low degree of erosion observed in the state of Bahia, it is highly susceptible to erosion due to the predominance of very shallow soils, rugged relief and high values of rainfall erosivity. Lower vulnerability was observed in the state of Alagoas because of its more smoothed relief, greater effective soil depth, thicker A horizon of soil and lower rainfall erosivity. In general, the characteristics that intensify the susceptibility to erosion in the Caatinga biome are those soil structures with poor development or without aggregation, low contents of organic carbon, high contents of silt and fine sand, high values of silt/clay ratio and rugged relief in some regions. This study collected information contributing to a better characterization of soils with lithic contact in the semi-arid region of Brazil. In addition, regions with a higher susceptibility to erosion were identified, revealing insights that could help develop strategies for environmental risk mitigation.



Key wordsCaatinga biome      drylands      erosive processes      leptosols      soil degradation     
Received: 03 August 2021      Published: 31 January 2022
Corresponding Authors: * Marcos G PEREIRA (E-mail: mgervasiopereira01@gmail.com)
Cite this article:

Carlos R PINHEIRO JUNIOR, Conan A SALVADOR, Tiago R TAVARES, Marcel C ABREU, Hugo S FAGUNDES, Wilk S ALMEIDA, Eduardo C SILVA NETO, Lúcia H C ANJOS, Marcos G PEREIRA. Lithic soils in the semi-arid region of Brazil: edaphic characterization and susceptibility to erosion. Journal of Arid Land, 2022, 14(1): 56-69.

URL:

http://jal.xjegi.com/10.1007/s40333-022-0002-3     OR     http://jal.xjegi.com/Y2022/V14/I1/56

Fig. 1 Soil samples (a) and profile distribution (b and c) of Neossolos Litólicos in the Caatinga biome. CE, Ceará; RN, Rio Grande do Norte; PB, Paraíba; PE, Pernambuco; PI, Piauí; MA, Maranhão; AL, Alagoas; SE, Sergipe; BA, Bahia; MG, Minas Gerais.
Landscape attribute and morphology Particle-size attribute Chemical attribute
Degree of erosion* RF (rock fragment; >2 mm, g/kg) pH (H2O and KCl)
Local relief class ADFE (air-dried fine earth, g/kg) ΔpH (pH KCl-pH H2O)
Thickness of surface horizon
(cm)
Total sand (coarse and fine, g/kg) S (sum of bases (Ca2++Mg2++K+ Na+, cmol/kg)
Degree of structure development Silt (g/kg) T (effective cation exchange capacity (S+Al3++H+, cmol/kg))
Effective soil depth
(cm)
Clay (g/kg) V (base saturation (S/T)×100%)
S+FS (sum of silt and fine sand, g/kg) ESP (exchangeable sodium percentage (Na+/T)×100%)
S/C ratio (silt/clay ratio, dimensionless) TOC (total organic carbon, g/kg)
Coarse sand/fine sand ratio (dimensionless) TN (total nitrogen, g/kg)
C/N ratio (dimensionless)
Table 1 Landscape attributes, morphology, particle-size attributes and chemical attributes of the soils
Fig. 2 Rainfall erosivity (a), landscape attributes (b and c) and soil morphologies (d-f) of Neossolos Litólicos in the Caatinga biome
Fig. 3 Box plot of particle-size attributes (a and b) of A horizon of Neossolos Litólicos in the Caatinga biome. S, silt; FS, fine sand; S/C, silt/clay; CS/FS, coarse sand/fine sand.
Fig. 4 Box plot of particle-size attributes (a and b) of C horizon of Neossolos Litólicos in the Caatinga biome. S, silt; FS, fine sand; S/C, silt/clay; CS/FS, coarse sand/fine sand.
Fig. 5 Spatial distribution of particle-size attributes of A horizon of Neossolos Litólicos in the Caatinga biome. (a), rock fragment; (b), silt+fine sand (FS); (c), S/C, silt/clay; (d), CS/FS, coarse sand/fine sand.
Fig. 6 Textural class of A and C horizons of Neossolos Litólicos in the Caatinga biome
Fig. 7 Dendrogram plot by the hierarchical analysis of clusters based on soil physical attributes of A horizon of Neossolos Litólicos in the Caatinga biome
Physical attribute Group 1 Group 2 Group 3 Group 4 All surface horizons
Rock fragment (g/kg) 221.03±200.18 215.29±174.72 273.16±215.90 200.63±153.69 225.75±192.78
Air-dried fine earth (g/kg) 778.97±200.18 784.71±174.72 726.84±215.90 799.38±153.69 774.25±192.78
Total sand (g/kg) 580.44±202.06 575.88±160.28 617.37±159.79 531.25±234.83 579.08±194.42
Coarse sand (g/kg) 283.97±169.74 298.24±160.17 331.05±112.05 269.38±167.99 291.50±159.63
Fine sand (g/kg) 296.47±123.99 277.65±106.04 286.32±93.58 261.88±116.29 287.58±115.52
Clay (g/kg) 180.15±110.28 135.29±62.66 129.47±58.35 185.00±141.23 166.42±104.48
Silt (g/kg) 239.41±127.28 288.82±119.26 253.16±108.83 283.75±174.20 254.50±130.63
S+FS (g/kg) 535.88±129.40 566.47±146.71 539.47±77.78 545.63±162.52 542.08±129.13
S/C ratio 1.64±0.86 2.42±0.98 2.03±0.51 2.23±1.56 1.89±0.99
CS/FS ratio 1.11±0.75 1.30±0.97 1.23±0.49 1.16±0.76 1.16±0.74
Table 2 Average and standard derivation (SD) of physical attributes of the surface horizons of Neossolos Litólicos for each group formed in the cluster analysis and for all surface horizons
Fig. 8 Box plot of chemical attributes of A horizon of Neossolos Litólicos in the Caatinga biome. ΔpH =pH-KCl-pH-H2O; S, sum of bases; T, effective cation exchange capacity; TOC, total organic carbon; TN, total nitrogen; V, base saturation; ESP, exchangeable sodium percentage.
Fig. 9 Box plot of chemical attributes of C horizon of Neossolos Litólicos in the Caatinga biome. ΔpH =pH-KCl-pH-H2O; S, sum of bases; T, effective cation exchange capacity; TOC, total organic carbon; TN, total nitrogen; V, base saturation; ESP, exchangeable sodium percentage.
Fig. 10 Spatial distribution of chemical attributes of A horizon of Neossolos Litólicos in the Caatinga biome. (a), pH-H2O; (b), V, base saturation; (c), ESP, exchangeable sodium percentage; (d), SOC, soil organic carbon.
Fig. 11 Soil classification result according to World Reference Base for soil resources
[1]   Almagro A, Oliveira P T S, Nearing M A, et al. 2017. Projected climate change impacts in rainfall erosivity over Brazil. Scientific Reports, 7:8130, doi: 10.1038/s41598-017-08298-y.
doi: 10.1038/s41598-017-08298-y pmid: 28811512
[2]   Andrade-Lima D. 1981. The Caatinga dominium. Brazilian Botanical Journal, 4:149-163.
[3]   Araújo E L, Castro C C, de Albuquerque U P. 2007. Dynamics of Brazilian Caatinga review concerning the plants, environment and people. Functional Ecosystems & Communities, 1:15-29.
[4]   Araújo Filho J C, Ribeiro M R, Burgos N, et al. 2017. Soils of the Caatinga. In: Curi N, Ker J C, Novais R F, et al. Pedology-Soils of the Brazilian Biomes. Viçosa: SBCS, 227-260. (in Portuguese)
[5]   Arcoverde S N, Cortez J W, Olszevski N, et al. 2019. Multivariate analysis of chemical and physical attributes of quartzipsamments under different agricultural uses. Engenharia Agrícola, 39(4):457-465.
doi: 10.1590/1809-4430-eng.agric.v39n4p457-465/2019
[6]   Bhering A S, Carmo M G F, Matos T S, 2017. Soil factors related to the severity of club root in Rio de Janeiro, Brazil. Plant Disease, 101(8):1345-1353.
doi: 10.1094/PDIS-07-16-1024-SR pmid: 30678583
[7]   Bouyoucos G J. 1935. The clay ratio as a criterion of susceptibility of soils to erosion. Journal of American Society of Agronomy, 27:738-741.
doi: 10.2134/agronj1935.00021962002700090007x
[8]   Cantón Y, Solé-Benet A, de Vente J, et al. 2011. A review of runoff generation and soil erosion across scales in semiarid south-eastern Spain. Journal of Arid Environments, 75(12):1254-1261.
doi: 10.1016/j.jaridenv.2011.03.004
[9]   Chaves H M L, Lozada C M C, Gaspar R O. 2017. Soil quality index of an Oxisol under different land uses in the Brazilian savannah. Geoderma Regional, 10:183-190.
doi: 10.1016/j.geodrs.2017.07.007
[10]   Cornelis W M. 2006. Hydroclimatology of wind erosion in arid and semiarid environments. Chapter 9. In: D´Odorico, Porporato A. Dryland Ecohydrology. Netherlands: Springer, 141-159.
[11]   Dimoyiannis D G, Tsadials C D, Valmis S. 1998. Factors affecting aggregate instability of Greek agriculture soils. Communications in Soil Science and Plant Analysis, 29:1239-1251.
doi: 10.1080/00103629809370023
[12]   Duiker S W, Flanagan D C, Lal R. 2001. Erodibility and infiltration characteristics of five major soils of southwest Spain. CATENA, 45:103-121.
doi: 10.1016/S0341-8162(01)00145-X
[13]   Fraser R H. 1999. Sedmod: a GIS-based delivery model for diffuse source pollutants. PhD Dissertation. New Haven: Yale University.
[14]   IBGE (Brazilian Institute of Geography and Statistics). 2011. Demographic Census 2010. [2021-03-21]. https://biblioteca.ibge.gov.br/visualizacao/periodicos/93/cd_2010_caracteristicas_populacao_domicilios.pdf.
[15]   IBGE (Brazilian Institute of Geography and Statistics). 2012. Technical Manual of Brazilian Vegetation (2nd ed.). Rio de Janeiro: IBGE, 60-62. (in Portuguese)
[16]   IBGE (Brazilian Institute of Geography and Statistics). 2017. Organization of the Territory-Brazilian Semi-arid. [2021-03-21]. https://www.ibge.gov.br/geociencias/organizacao-do-territorio/estruturaterritorial/15974-semiarido-brasileiro.html?=&t=acesso-ao-produto.
[17]   IUSS Working Group WRB (World Reference Base). 2015. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. In: World Soil Resources Reports No. 106. Rome, Italy.
[18]   Jacomine P K T, Silva F B R, Formiga R A, et al. 1971. Exploratory Survey-Soil Reconnaissance of the State of Rio Grande do Norte. Recife: EMBRAPA-CPP, 531. (in Portuguese)
[19]   Jacomine P K T, Ribeiro M R, Montenegro J O, et al. 1972a. Exploratory Survey-Soil Reconnaissance of the State of Paraíba. Rio de Janeiro: Pedology and Soil Fertility Team, 670. (in Portuguese)
[20]   Jacomine P K T, Cavalcanti A C, Burgos N, et al. 1972b. Exploratory Survey-Soil Reconnaissance of the State of Pernambuco. Recife: EMBRAPA-SNLCS/SUDENE-DRN, 354. (in Portuguese)
[21]   Jacomine P K T. 1973. Exploratory Survey-Soil Reconnaissance of the State of Ceará. Recife: SUDENE-DRN; Brasília: MA- Pedological Research Division, 502. (in Portuguese)
[22]   Jacomine P K T, Cavalcanti A C, Silveira C O, et al. 1975a. Exploratory Survey-Soil Reconnaissance of the State of Alagoas. Recife: EMBRAPA-CPP, 532. (in Portuguese)
[23]   Jacomine P K T, Montenegro J O, Ribeiro M R, et al. 1975b. Exploratory Survey-Reconnaissance of Soils of the State of Sergipe. Recife: EMBRAPA-CPP, 506. (in Portuguese)
[24]   Jacomine P K T, Cavalcanti A C, Ribeiro M R, et al. 1976. Exploratory Survey- Reconnaissance of Soils on the Left Bank of the São Francisco River in the State of Bahia. Recife: EMBRAPA-SNLCS/SUDENE-DRN, 404. (in Portuguese)
[25]   Jacomine P K T, Cavalcanti A C, Silva F B R, et al. 1979a. Exploratory Survey- Reconnaissance of Soils on the Right Bank of the São Francisco River in the State of Bahia. Recife: EMBRAPA-SNLCS/SUDENE-DRN,1296. (in Portuguese)
[26]   Jacomine P K T, Cavalcanti A C, Formiga R A, et al. 1979b. Exploratory Survey-Soil Reconnaissance in the north of Minas Gerais: Area Where the Company Operates SUDENE. Recife: EMBRAPA-SNLCS/SUDENE-DRN, 407. (in Portuguese)
[27]   Jacomine P K T. 1986a. Exploratory Survey-Recognition of Soils in the State of Piauí. Rio de Janeiro: EMBRAPA- SNLCS/SUDENE-DRN, 782. (in Portuguese)
[28]   Jacomine P K T. 1986b. Exploratory survey-Recognition of Soils in the State of Maranhão. Rio de Janeiro: EMBRAPA- SNLCS/SUDENE-DRN, 964. (in Portuguese)
[29]   Kosmas C, Gerontidis S, Marathianou M. 2000. The effect of land use change on soils and vegetation over various lithological formations on Lesvos (Greece). CATENA, 40:51-68.
doi: 10.1016/S0341-8162(99)00064-8
[30]   Lapola D M, Martinelli L A, Peres C A, et al. 2014. Pervasive transition of the Brazilian land-use system. Nature Climate Change, 4:27-35.
doi: 10.1038/nclimate2056
[31]   Ludwig J A, Wilcox B P, Breshears D D, et al. 2005. Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes. Ecology, 86(2):288-297.
doi: 10.1890/03-0569
[32]   Lybrand R A, Rasmussen C. 2018. Climate, topography, and dust influences on the mineral and geochemical evolution of granitic soils in southern Arizona. Geoderma, 314:245-261.
doi: 10.1016/j.geoderma.2017.10.042
[33]   Mbagwu J S C, Piccolo A, Mbila M O. 1993. Water-stability of aggregates of some tropical soils treated with humic substances. Pedologie, 43:269-284.
[34]   Mello C R, Viola M R, Beskow S, et al. 2013. Multivariate models for annual rainfall erosivity in Brazil. Geoderma, 202-203:88-102.
doi: 10.1016/j.geoderma.2013.03.009
[35]   Miqueloni D P, Bueno C R P. 2011. Multivariate analysis and spatial variability to estimate soil erodibility of an anfisol. Revista Brasileira de Ciência do Solo, 35(6):2175-2182. (in Portuguese)
doi: 10.1590/S0100-06832011000600032
[36]   Moghadam B K, Jabarifar M, Bagheri M, et al. 2015. Effects of land use change on soil splash erosion in the semi-arid region of Iran. Geoderma, 241-242:210-220.
doi: 10.1016/j.geoderma.2014.11.025
[37]   Moro M F, Nic Lughadha E, de Araújo F S, et al. 2016. A phytogeographical meta-analysis of the semiarid Caatinga domain in Brazil. Botanical Review, 82:91-148.
doi: 10.1007/s12229-016-9164-z
[38]   Oliveira Filho J S, Vieira J N, da Silva E M R, et al. 2019. Assessing the effects of 17 years of grazing exclusion in degraded semi-arid soils: evaluation of soil fertility, nutrients pools and stoichiometry. Journal of Arid Environments, 166:1-10.
doi: 10.1016/j.jaridenv.2019.03.006
[39]   Oliveira G C, Francelino M R, Arruda D M, et al. 2019. Climate and soils at the Brazilian semiarid and the forest-Caatinga problem: new insights and implications for conservation. Environmental Research Letters, 14(10):104007, doi: 10.1088/1748-9326/ab3d7b.
doi: 10.1088/1748-9326/ab3d7b
[40]   Oliveira P T S, Wendland E C, Nearing M A. 2013. Rainfall erosivity in Brazil: a review. CATENA, 100:139-147.
doi: 10.1016/j.catena.2012.08.006
[41]   Pachepsky Y, Rawls W. 2003. Soil structure and pedotransfer functions. European Journal of Soil Science. 54:443-451.
doi: 10.1046/j.1365-2389.2003.00485.x
[42]   Parysow P, Wang G, Gertner G, et al. 2003. Spatial uncertainly analysis for mapping soil erodibility on joint sequential simulation. CATENA, 53:65-78.
doi: 10.1016/S0341-8162(02)00198-4
[43]   Pedron F D A, Fink J R, Rodrigues M F, et al. 2011. Hydraulic conductivity and water retention in leptosols-regosols and saprolite derived from sandstone, Brazil. Revista Brasileira de Ciência do Solo, 35:1253-1262. (in Portuguese)
doi: 10.1590/S0100-06832011000400018
[44]   Pérez-Rodríguez R, Marques M J, Bienes R. 2007. Spatial variability of the soil erodibility parameters and their relation with the soil map at subgroup level. Science of the Total Environment. 378:166-173.
pmid: 17379278
[45]   Pinheiro Junior C R, Pereira M G, Filho J S O, et al. 2019. Can topography affect the restoration of soil properties after deforestation in a semiarid ecosystem?. Journal of Arid Environments, 162:45-52.
doi: 10.1016/j.jaridenv.2018.11.004
[46]   Pravalie R. 2016. Drylands extent and environmental issues. A global approach. Earth-Science Reviews. 161:259-278.
doi: 10.1016/j.earscirev.2016.08.003
[47]   Quan X, He J, Cai Q, et al. 2020. Soil erosion and deposition characteristics of slope surfaces for two loess soils using indoor simulated rainfall experiment. Soil and Tillage Research, 204:104714, doi: 10.1016/j.still.2020.104714.
doi: 10.1016/j.still.2020.104714
[48]   Queiroz L P, Cardoso D, Fernandes M F, et al. 2017. Diversity and Evolution of Flowering Plants of the Caatinga Domain. Caatinga: Springer International Publishing, 40.
[49]   Rabot E, Wiesmeier M, Schlüter S, et al. 2018. Soil structure as an indicator of soil functions: a review. Geoderma, 314:122-137.
doi: 10.1016/j.geoderma.2017.11.009
[50]   Ribeiro M R, Sampaio E V S B, Galindo I C L. 2009. Soils and the desertification process in the Brazilian semi-arid region. Topics in Soil Science, 6:413-459.
[51]   Santos H G, Jacomine P K T, Anjos L H C, et al. 2018. Brazilian Soil Classification System (5th ed.). Rio de Janeiro: National Center for Soil Research, 287-306. (in Portuguese)
[52]   Santos A, da Silva Matos E, da Silva Freddi O, et al. 2020. Cotton production systems in the Brazilian Cerrado: The impact of soil attributes on field-scale yield. European Journal of Agronomy, 118:126090, doi: 10.1016/j.eja.2020.126090.
doi: 10.1016/j.eja.2020.126090
[53]   Six J, Conant R T, Paul E A, et al. 2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 241:155-176.
doi: 10.1023/A:1016125726789
[54]   SUDENE (Superintendência Do Desenvolvimento Do Nordeste). 2017. Resolution No. 115. Approves Proposition No. 113/2017, which adds municipalities to the list approved by Condel Resolution. [2021-06-30]. .https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/739568/do1-2017-12-05-resolucao-n-115-de-23-de-novembro-de-2017-739564
[55]   Vaezi A R, Bahrami H A, Sadeghi S H R, et al. 2008. Modeling the USLE K-factor for calcareous soils in northwestern Iran. Geomorphology, 97:414-423.
doi: 10.1016/j.geomorph.2007.08.017
[56]   Vaezi A R, Hasanzadah H, Cerda A. 2016. Developing an erodibility triangle for soil textures in semi-arid regions, NW Iran. CATENA, 142:221-232.
doi: 10.1016/j.catena.2016.03.015
[57]   Vaezi A R, Ahmadi M, Cerda A. 2017. Contribution of raindrop impact to the change of soil physical properties and water erosion under semi-arid rainfalls. Science of the Total Environment. 583:382-392.
doi: 10.1016/j.scitotenv.2017.01.078
[58]   Vaezi A R, Eslami S F, Keesstra S. 2018. Interrill erodibility in relation to aggregate size class in a semi-arid soil under simulated rainfalls. CATENA, 167:385-398.
doi: 10.1016/j.catena.2018.05.003
[59]   Valtera M, Samonil P, Svoboda M, et al. 2015. Effects of topography and forest stand dynamics on soil morphology in three natural Picea abies mountain forests. Plant and Soil, 392:57-69.
doi: 10.1007/s11104-015-2442-4
[60]   Vásquez-Méndez R, Ventura-Ramos E, Oleschko K, et al. 2011. Soil erosion processes in semi-arid areas: The importance of native vegetation. In: Godone D, Stanchi S. Soil Erosion Studies. London: InTech Open Limited, 25-40.
[61]   Wachendorf C, Potthoff M, Ludwig B, et al. 2014. Effects of addition of maize litter and earthworms on C mineralization and aggregate formation in single and mixed soils differing in soil organic carbon and clay content. Pedobiologia, 57(3):161-169.
doi: 10.1016/j.pedobi.2014.03.001
[62]   Ward J H. 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58:236-244.
doi: 10.1080/01621459.1963.10500845
[63]   Wei W, Chen L, Fu B, et al. 2007. The effect of land uses and rainfall regimes on runoff and soil erosion in the semi-arid loess hilly area, China. Journal of Hydrology, 335:247-258.
doi: 10.1016/j.jhydrol.2006.11.016
[1] LIU Zhaogang, CHEN Zhi, YU Guirui, ZHANG Tianyou, YANG Meng. A bibliometric analysis of carbon exchange in global drylands[J]. Journal of Arid Land, 2021, 13(11): 1089-1102.
[2] Samia S CORTéS, Juan I WHITWORTH-HULSE, Eduardo L PIOVANO, Diego E GURVICH, Patricio N MAGLIANO. Changes in rainfall partitioning caused by the replacement of native dry forests of Lithraea molleoides by exotic plantations of Pinus elliottii in the dry Chaco mountain forests, central Argentina[J]. Journal of Arid Land, 2020, 12(5): 717-729.
[3] Alisher MIRZABAEV, Mohamed AHMED, Jutta WERNER, John PENDER, Mounir LOUHAICHI. Rangelands of Central Asia: challenges and opportunities[J]. Journal of Arid Land, 2016, 8(1): 93-108.
[4] Rawan MLIH, Roland BOL, Wulf AMELUNG, Nadhem BRAHIM. Soil organic matter amendments in date palm groves of the Middle Eastern and North African region: a mini-review[J]. Journal of Arid Land, 2016, 8(1): 77-92.
[5] Jie LIAN, XueYong ZHAO, XiaoAn ZUO, ShaoKun WANG, XinYuan WANG, YongQing LUO. Land cover changes and the effects of cultivation on soil properties in Shelihu wetland, Horqin Sandy Land, Northern China[J]. Journal of Arid Land, 2013, 5(1): 71-79.