Please wait a minute...
Journal of Arid Land  2022, Vol. 14 Issue (1): 34-55    DOI: 10.1007/s40333-022-0051-7     CSTR: 32276.14.s40333-022-0051-7
Research article     
Isotope implications of groundwater recharge, residence time and hydrogeochemical evolution of the Longdong Loess Basin, Northwest China
LING Xinying1,2,*(), MA Jinzhu1, CHEN Peiyuan1, LIU Changjie2, Juske HORITA2,*()
1Key Laboratory of Western China's Environmental System (Ministry of Education), Lanzhou University, Lanzhou 730000, China
2Department of Geosciences, Texas Tech University, Lubbock TX79409, USA
Download: HTML     PDF(1908KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Groundwater plays a dominant role in the eco-environmental protection of arid and semi-arid regions. Understanding the sources and mechanisms of groundwater recharge, the interactions between groundwater and surface water and the hydrogeochemical evolution and transport processes of groundwater in the Longdong Loess Basin, Northwest China, is of importance for water resources management in this ecologically sensitive area. In this study, 71 groundwater samples (mainly distributed at the Dongzhi Tableland and along the Malian River) and 8 surface water samples from the Malian River were collected, and analysis of the aquifer system and hydrological conditions, together with hydrogeochemical and isotopic techniques were used to investigate groundwater sources, residence time and their associated recharge processes. Results show that the middle and lower reaches of the Malian River receive water mainly from groundwater discharge on both sides of valley, while the source of the Malian River mainly comes from local precipitation. Groundwater of the Dongzhi Tableland is of a HCO3-Ca-Na type with low salinity. The reverse hydrogeochemical simulation suggests that the dissolution of carbonate minerals and cation exchange between Ca2+, Mg2+ and Na+ are the main water-rock interactions in the groundwater system of the Dongzhi Tableland. The δ 18O (from -11.70‰ to -8.52‰) and δ2H (from -86.15‰ to -65.75‰) values of groundwater are lower than the annual weighted average value of precipitation but closer to summer-autumn precipitation and soil water in the unsaturated zone, suggesting that possible recharge comes from the summer-autumn monsoonal heavy precipitation in the recent past (≤220 a). The corrected14C ages of groundwater range from 3,000 to 25,000 a old, indicating that groundwater was mainly from precipitation during the humid and cold Late Pleistocene and Holocene periods. Groundwater flows deeper from the groundwater table and from the center to the east, south and west of the Dongzhi Tableland with estimated migration rate of 1.29-1.43 m/a. The oldest groundwater in the Quaternary Loess Aquifer in the Dongzhi Tableland is approximately 32,000 a old with poor renewability. Based on the δ 18O temperature indicator of groundwater, we speculate that temperature of the Last Glacial Maximum in the Longdong Loess Basin was 2.4°C-6.0°C colder than the present. The results could provide us the valuable information on groundwater recharge and evolution under thick loess layer, which would be significative for the scientific water resources management in semi-arid regions.



Key wordsgroundwater recharge      hydrogeochemical evolution      isotope technology      14C dating      paleoclimate      residence time      Chinese Loess Plateau     
Received: 07 April 2021      Published: 31 January 2022
Corresponding Authors: * LING Xinying (E-mail: lingxinying2009@126.com);Juske HORITA (E-mail: juske.horita@ttu.edu)
Cite this article:

LING Xinying, MA Jinzhu, CHEN Peiyuan, LIU Changjie, Juske HORITA. Isotope implications of groundwater recharge, residence time and hydrogeochemical evolution of the Longdong Loess Basin, Northwest China. Journal of Arid Land, 2022, 14(1): 34-55.

URL:

http://jal.xjegi.com/10.1007/s40333-022-0051-7     OR     http://jal.xjegi.com/Y2022/V14/I1/34

Fig. 1 Overview of the Longdong Loess Basin (a) and sample location (b). G1-G71, groundwater samples; SW1-SW8, surface water samples. A represents Pengyang village, B represents Gaolou village, and the line between A and B represents the geological profile of A-B transect showed in Figure 2. DEM, digital elevation model.
Fig. 2 Geological cross-section along A-B transect of the Dongzhi Tableland (modified from Huang et al. (2020)). K1h, Cretaceous Sandstone; K1lh, Tertiary Mudstone; Q1, Lower Pleistocene Series Wucheng Loess; Q2, Middle Pleistocene Series Stone Loess; Q3, Upper Pleistocene Series Malan Loess.
Fig. 3 Variations of ion concentrations in groundwater and surface water in the Longdong Loess Basin
Fig. 4 Relationships of Cl- with TDS (a) and major ions (b, c, d, e and f) of groundwater and surface water collected from the Longdong Loess Basin. TDS, total dissolved solids.
Fig. 5 δ2H and δ18O values of groundwater in the Dongzhi Tableland, surface water in the Malian River and precipitation in Xi'an and at the Malian River headwater. GMWL, global meteoric water line; LMWL, local meteoric water line.
Fig. 6 Contour maps of the δ18O (a) and δ2H (b) of groundwater in the Longdong Loess Basin
Fig. 7 Spatial distribution of groundwater ages in the Dongzhi Tableland
Fig. 8 Relationship between the δ18O value of surface water, groundwater and precipitation and the distance from the headwater of the Malian River
Fig. 9 Relationship between the ratio of (Ca2++Mg2+)/Na+ and the 14C age of groundwater
Fig. 10 Relationship between the δ18O value and groundwater age along with modern precipitation
Sample No. Depth
(m)
pH TDS
(mg/L)
Ca2+
(mg/L)
Mg2+
(mg/L)
Na+
(mg/L)
K+
(mg/L)
HCO3-
(mg/L)
Cl-
(mg/L)
SO42-
(mg/L)
NO3-
(mg/L)
F-
(mg/L)
δ2H
(‰)
δ18O
(‰)
G1 120 8.47 246 37.43 12.91 17.24 1.38 275 7.65 2.50 4.23 0.07 -68.77 -9.54
G2 120 7.07 254 51.60 4.71 22.06 0.71 231 4.73 4.84 9.37 0.42 -72.03 -10.08
G3 130 7.84 261 41.85 14.46 9.37 1.29 270 3.89 2.47 3.12 0.06 -71.57 -9.85
G4 80 7.83 255 65.44 6.26 21.82 0.30 281 5.80 7.52 13.15 0.00 -73.65 -10.52
G5 150 8.30 230 55.96 5.06 23.73 0.45 265 4.31 6.15 7.63 0.28 -69.70 -9.41
G6 110 8.02 240 35.38 12.56 20.20 1.65 267 3.10 1.46 3.88 0.07 -71.72 -9.77
G7 160 7.80 252 62.64 5.56 29.15 0.53 274 4.92 7.01 13.64 0.00 -74.43 -10.61
G8 180 8.11 236 32.51 3.27 72.55 0.39 271 4.41 5.14 9.47 0.00 -73.33 -10.24
G9 130 8.15 221 18.20 7.57 37.10 0.93 263 2.38 0.98 3.52 0.11 -70.54 -9.81
G10 80 7.45 246 51.78 4.89 17.56 0.79 240 3.07 3.47 8.09 0.34 -73.17 -10.04
G11 350 8.50 240 40.47 14.76 12.26 1.57 259 4.62 3.08 4.70 0.06 -71.22 -9.71
G12 185 8.14 256 57.49 5.83 34.29 0.51 292 5.69 4.63 13.80 0.35 -72.05 -9.91
G13 114 7.97 230 32.70 2.97 44.65 0.92 238 3.43 2.57 9.14 0.41 -71.92 -10.11
G14 110 8.26 252 59.54 6.02 29.93 0.47 308 3.87 5.43 10.39 0.27 -71.66 -9.89
G15 130 8.19 224 39.08 13.52 10.39 1.50 287 3.34 1.66 3.01 0.07 -70.22 -9.64
G16 120 8.30 224 48.02 4.26 19.14 0.75 227 3.30 3.19 8.29 0.35 -70.50 -9.64
G17 120 8.15 238 58.45 5.08 24.78 0.73 271 4.47 6.36 10.80 0.31 -71.78 -9.80
G18 130 7.67 236 46.71 4.14 20.21 0.79 221 3.03 3.14 6.26 0.31 -70.94 -9.79
G19 160 7.98 229 29.59 9.74 26.16 1.83 257 5.24 1.53 8.75 0.09 -72.10 -9.92
G20 114 8.38 221 37.91 3.14 36.46 0.49 231 3.18 3.52 6.69 0.43 -70.83 -10.23
G21 190 8.11 232 45.99 4.11 19.70 0.60 223 2.78 2.81 6.05 0.35 -69.83 -9.88
G22 48 7.99 249 47.86 3.83 24.08 0.51 230 3.19 3.12 7.65 0.34 -71.57 -10.09
G23 100 8.55 249 40.49 3.13 36.77 0.76 230 3.86 2.58 8.18 0.44 -73.14 -10.50
G24 110 8.24 243 45.12 14.47 9.61 0.93 298 3.62 3.26 3.35 0.07 -69.87 -9.55
G25 100 8.32 244 47.20 4.32 23.66 0.60 240 5.66 4.02 3.19 0.38 -70.74 -9.90
G26 130 8.18 236 26.79 10.06 33.28 1.70 287 3.35 1.54 2.11 0.11 -71.88 -9.82
G27 150 8.32 244 22.49 2.55 60.12 0.86 256 2.66 2.25 0.24 2.25 -72.94 -10.08
G28 150 8.16 236 17.86 7.83 42.66 2.08 281 3.81 1.00 1.92 0.13 -72.94 -9.97
G29 100 8.63 227 41.75 3.96 28.27 0.50 223 3.60 3.88 5.67 1.71 -72.95 -10.31
G30 200 8.48 246 46.52 4.54 20.59 0.63 226 2.95 3.85 5.96 0.37 -69.76 -9.97
G31 100 7.53 340 14.59 7.20 45.70 1.72 249 6.20 6.60 2.19 0.15 -72.40 -9.87
G32 150 8.02 234 52.14 4.26 16.15 0.72 219 3.14 3.70 6.07 0.35 -70.76 -9.79
G33 135 8.21 248 31.24 2.78 47.23 0.49 235 4.26 2.64 14.28 0.55 -74.56 -10.27
G34 151 8.18 227 28.22 2.60 43.77 0.62 226 3.08 2.10 8.94 0.55 -72.92 -10.29
G35 92 8.30 240 53.98 4.18 16.95 0.46 210 5.76 4.55 13.12 0.39 -71.36 -10.08
G36 110 8.31 220 40.94 3.66 25.05 0.61 215 4.11 3.73 9.55 0.47 -70.66 -10.04
G37 300 7.81 246 31.24 10.98 18.88 1.14 248 5.24 1.75 6.47 0.06 -73.29 -9.94
G38 110 7.92 220 28.48 10.01 22.64 1.60 255 3.76 1.91 2.98 0.07 -73.49 -9.94
G39 150 7.96 241 28.97 12.49 43.82 1.60 236 7.71 1.90 14.29 0.10 -76.64 -10.39
G40 75 8.57 242 31.22 2.87 44.16 0.90 230 3.38 3.20 11.01 0.47 -72.17 -10.05
G41 150 8.49 150 10.91 4.32 28.50 1.25 187 3.12 2.02 4.17 0.11 -65.76 -8.53
G42 100 8.93 220 38.66 13.28 11.00 1.77 259 5.24 2.36 3.16 0.06 -72.26 -9.79
G43 150 8.04 266 54.40 4.84 15.96 0.32 223 3.22 15.99 9.32 0.39 -72.17 -10.06
G44 155 7.96 250 37.84 12.92 10.99 1.62 240 3.48 1.76 3.49 0.07 -68.48 -9.37
Sample No. Depth
(m)
pH TDS
(mg/L)
Ca2+
(mg/L)
Mg2+
(mg/L)
Na+
(mg/L)
K+
(mg/L)
HCO3-
(mg/L)
Cl-
(mg/L)
SO42-
(mg/L)
NO3-
(mg/L)
F-
(mg/L)
δ2H
(‰)
δ18O
(‰)
G45 180 8.73 224 35.52 12.82 11.35 1.04 243 3.44 1.71 3.59 0.06 -68.65 -9.35
G46 110 8.33 234 15.60 7.35 41.90 1.43 269 3.41 1.60 3.18 0.10 -71.69 -9.53
G47 250 8.39 266 23.66 2.35 72.05 1.82 231 2.41 2.41 4.39 0.57 -74.37 -10.32
G48 170 8.07 228 25.50 10.47 29.18 1.61 270 3.14 1.50 3.07 0.10 -69.45 -9.41
G49 100 8.34 211 34.38 3.25 29.39 0.77 210 1.90 3.85 7.57 0.64 -72.39 -9.88
G50 90 8.18 199 22.32 8.52 12.83 1.47 223 2.36 1.49 3.01 0.07 -71.21 -9.65
G51 120 8.13 210 36.96 12.98 8.69 0.97 249 2.85 2.30 3.28 0.06 -70.53 -9.59
G52 120 8.11 137 18.86 7.13 12.34 1.26 155 4.42 3.09 1.65 0.05 -72.65 -9.88
G53 200 8.26 226 28.06 3.30 39.75 0.56 206 2.54 2.68 6.42 0.55 -72.20 -9.94
G54 110 8.30 78 8.91 1.91 11.68 1.21 127 4.60 3.92 1.06 0.03 -74.72 -10.15
G55 145 7.86 251 49.70 4.85 18.67 0.45 219 2.93 4.30 6.69 0.31 -72.32 -10.22
G56 180 8.12 267 53.20 4.68 19.45 0.42 226 5.57 3.68 20.53 0.41 -72.68 -10.33
G57 150 8.68 241 39.43 3.34 33.59 0.65 224 3.66 2.71 10.35 0.47 -72.77 -10.31
G58 100 7.30 239 65.63 4.79 13.14 2.21 263 3.49 5.75 9.70 0.41 -74.10 -10.26
G59 190 7.86 251 52.79 4.38 17.59 0.63 230 2.58 3.33 7.00 0.28 -72.58 -10.36
G60 110 8.02 249 52.12 4.37 16.52 0.58 230 4.00 4.08 7.82 0.36 -70.13 -9.67
G61 263 8.14 249 32.24 3.71 75.53 0.74 288 3.43 4.19 5.63 0.35 -74.78 -10.26
G62 180 8.17 235 49.19 4.31 15.49 0.53 215 3.41 4.20 4.96 0.31 -69.26 -9.44
G63 75 7.81 246 64.51 5.59 19.80 0.32 261 5.22 12.16 10.73 0.30 -69.59 -9.05
G64 170 8.19 227 35.14 2.93 35.62 0.58 220 3.95 3.79 9.79 0.38 -70.75 -9.93
G65 210 8.13 226 43.03 3.94 19.43 0.66 212 2.35 3.14 5.89 0.31 -69.32 -9.64
G66 15 7.67 576 51.02 11.90 148.25 1.79 271 72.13 144.98 12.18 0.90 -72.01 -9.80
G67 26 7.71 457 47.73 12.06 103.38 1.57 324 41.56 45.62 37.00 0.58 -68.95 -9.09
G68 13 7.95 998 120.45 27.58 133.70 7.70 200 315.61 138.47 46.02 0.00 -69.84 -9.85
G69 7 7.90 970 75.80 20.68 234.80 1.69 346 234.31 215.99 13.27 0.00 -74.83 -10.45
G70 12 7.83 1189 97.80 26.24 274.78 1.61 287 295.11 306.65 34.27 0.00 -78.57 -11.08
G71 10 7.67 3410 335.66 110.41 810.95 9.16 283 818.72 1462.75 221.53 0.00 -86.15 -11.70
SW1 - 8.39 899 63.61 69.42 138.98 7.17 194 139.26 145.29 5.96 0.00 -72.03 -9.44
SW2 - 8.96 1236 70.76 77.97 166.52 9.43 229 175.00 170.69 7.20 0.00 -66.74 -8.70
SW3 - 8.42 2080 99.19 137.49 269.72 9.11 193 360.30 289.45 15.49 0.00 -70.68 -9.13
SW4 - 8.48 2380 157.79 56.77 629.95 4.50 232 759.60 769.55 60.16 0.00 -70.57 -9.03
SW5 - 8.70 816 57.65 16.63 217.33 1.88 261 157.55 203.30 7.79 0.94 -66.28 -8.76
SW6 - 8.64 2760 197.07 71.14 709.39 3.21 225 832.62 816.81 78.03 0.00 -59.13 -7.04
SW7 - 8.41 1533 127.55 34.52 410.63 3.84 260 397.98 472.77 27.54 0.00 -59.70 -7.01
SW8 - 8.36 7330 654.38 218.79 1843.86 12.95 162 2647.73 2214.16 292.63 0.00 -64.30 -7.23
Table S1 Concentrations of chemical ions and values of the δ2H and δ18O of groundwater (G) and surface water (SW) samples in the Longdong Loess Basin
Sample No. Vogel
Model
Tamers
Model
CMB
Model
Improved Pearson
Model
F-G Model Average age
(a)
Uncorrected
14C age
Huang et al.
(2020)
G2 8870 7835 9622 6634 4656 7452±2796 9925±37 -
G22 13,717 12,682 14,149 11,794 9675 12,404±2728 14,635±60 -
G30 9641 8607 10,219 6673 5816 8191±2375 10,675±39 -
G35 8621 7586 9805 5974 4021 7201±3181 9680±36 -
G43 7803 6768 8491 4765 3992 6364±2372 8900±35 -
G47 25,392 24,357 25,788 21,146 19,447 23,226±3779 25,980±120 -
G59 15,272 14,238 15,705 12,927 11,179 13,864±2685 16,150±54 -
G65 9790 8755 10,896 6890 6027 8472±2444 10,815±45 -
XF3
XF5
XF6
XF9
XF11
XF14
XF16
XF20
XF22
XF24
XF25
19,333
21,253
7551
18,563
17,692
24,479
9793
24,111
7923
11,558
5481
18,298
20,218
6516
17,528
16,657
23,444
8758
23,077
6888
10,524
4446
16,607
18,981
4536
16,240
15,065
22,207
7392
22,184
5995
8857
3717
17,557
18,275
4371
16,345
15,565
21,794
6913
21,710
4844
8969
2892
15,104
16,867
3608
14,083
13,607
20,037
5182
19,502
3469
7165
947
17,380±2276
19,119±2252
5316±1709
16,552±2469
15,717±2110
22,392±2355
7608±2425
22,117±2615
5824±2354
9415±2249
3497±2550
- 14,074
15,995
2293
13,305
12,434
19,220
4535
18,853
2665
6300
220
-
-
-
-
-
-
-
-
-
-
Table S2 14C age of groundwater
Fig. S1 Relationship between the concentration of Ca2++Mg2+ and Na+ in groundwater of the Dongzhi Tableland
[1]   Amanambu A C, Obarein O A, Mossa J, et al. 2020. Groundwater system and climate change: Present status and future considerations. Journal of Hydrology, 589:125-163.
[2]   Choi S U, Yoon B, Woo H. 2005. Effects of dam-induced flow regime change on downstream river morphology and vegetation cover in the Hwang River, Korea. River Research and Applications, 21(2-3):315-325.
doi: 10.1002/(ISSN)1535-1467
[3]   Christensen N S, Wood A W, Voisin N, et al. 2004. Effects of climate change on the hydrology and water resources of the Colorado River basin. Climatic Change, 62(1):337-363.
doi: 10.1023/B:CLIM.0000013684.13621.1f
[4]   Cigna F, Tapete D. 2021. Satellite InSAR survey of structurally-controlled land subsidence due to groundwater exploitation in the Aguascalientes Valley, Mexico. Remote Sensing of Environment, 254:112254, doi: 10.1016/j.rse.2020.112254.
doi: 10.1016/j.rse.2020.112254
[5]   Clark I D, Fritz P. 1997. Environmental Isotopes in Hydrogeology. Boca Raton: CRC Press, 153-154.
[6]   Cochand M, Molson J, Barth J A C, et al. 2020. Rapid groundwater recharge dynamics determined from hydrogeochemical and isotope data in a small permafrost watershed near Umiujaq (Nunavik, Canada). Hydrogeology Journal, 28:853-868.
doi: 10.1007/s10040-020-02109-x
[7]   Conway D. 2005. From headwater tributaries to international river: Observing and adapting to climate variability and change in the Nile basin. Global Environmental Change, 15(2):99-114.
doi: 10.1016/j.gloenvcha.2005.01.003
[8]   Cook P G, Herczeg A L. 2000. Environmental Tracers in Subsurface Hydrology. Boston: Springer, 72-73.
[9]   Dansgaard W. 1964. Stable isotopes in precipitation. Tellus, 16(4):436-468.
doi: 10.3402/tellusa.v16i4.8993
[10]   Deng Y, Zheng Z, Cour P, et al. 2002. Relation between pollen ratios and climate in east China and an attempt of paleoclimate reconstruction. Acta Palaeontologica Sinica, 41(4):508-516.
[11]   Ding Z Y, Ma J Z, He J H. 2009. Geochemical evolution of groundwater in the southwest of Tengger desert, NW of China. Arid Land Geography, 32(6):948-957. (in Chinese)
[12]   Dong J B, Eiler J, An Z S, et al. 2020. Clumped and stable isotopes of land snail shells on the Chinese Loess Plateau and their climatic implications. Chemical Geology, 533:119414, doi: 10.1016/j.chemgeo.2019.119414.
doi: 10.1016/j.chemgeo.2019.119414
[13]   Dong W H. 2005. Application of inverse hydrogeochemical modeling in 14C age correction of deep groundwater in the Ordos Cretaceous Artesian Basin. PhD Dissertation. Changchun: Jilin University. (in Chinese)
[14]   Eagle R A, Risi C, Mitchell J L, et al. 2013. High regional climate sensitivity over continental China constrained by glacial-recent changes in temperature and the hydrological cycle. Proceedings of the National Academy of Sciences of the United States of America, 110(22):8813-8818.
[15]   Edmunds W M, Guendouz A H, Mamou A. 2003. Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators. Applied Geochemistry, 18(6):805-822.
doi: 10.1016/S0883-2927(02)00189-0
[16]   Edmunds W M, Ma J Z, Aeschbach-Hertig W, et al. 2006. Groundwater recharge history and hydeogeochemical evolution in the Minqin Basin, North West China. Applied Geochemistry, 21(12):2148-2170.
doi: 10.1016/j.apgeochem.2006.07.016
[17]   Fontes J C, Garnier J M. 1979. Determination of the initial 14C activity of the total dissolved carbon: A review of the existing models and a new approach. Water Resources Research, 15(2):399-413.
doi: 10.1029/WR015i002p00399
[18]   Gerber C, Vaikmäe R, Aeschbach W, et al. 2017. Using 81Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale. Geochimica et Cosmochimica Acta, 205:187-210.
doi: 10.1016/j.gca.2017.01.033
[19]   Godwin H. 1962. Half-life of radiocarbon. Nature, 195(4845):984, doi: 10.1038/195984a0.
doi: 10.1038/195984a0
[20]   Gonfiantini R. 1986. Environmental isotopes in lake studies. In: Fritz P, Fontes J C. Handbook of Environmental Isotope Geochemistry. Amsterdam: Elsevier, 113-168.
[21]   He J H, Zhang J, Ding Z Y, et al. 2011. Evolution of groundwater geochemistry in the Minqin Basin: Taking chloride as an indicator of groundwater recharge. Resources Science, 33(3):416-421. (in Chinese)
[22]   He J H. 2013. The 14C age correction of the groundwater in the Shule River Basin. PhD Dissertation. Lanzhou: Lanzhou University. (in Chinese)
[23]   Hu J, Emile-Geay J, Tabor C, et al. 2019. Deciphering oxygen isotope records from Chinese speleothems with an isotope-enabled climate model. Paleoceanography and Paleoclimatology, 34(12):2098-2112.
doi: 10.1029/2019PA003741
[24]   Huang T M, Ma B Q, Pang Z H, et al. 2020. How does precipitation recharge groundwater in loess aquifers? Evidence from multiple environmental tracers. Journal of Hydrology, 583:124532, doi: 10.1016/j.jhydrol.2019.124532.
doi: 10.1016/j.jhydrol.2019.124532
[25]   Jesiya N P, Gopinath G, Resmi T R. 2021. Comprehending the groundwater recharge of a coastal city in humid tropical setting using stable isotopes. Journal of Environmental Management, 287:112260, doi: 10.1016/j.jenvman.2021.112260.
doi: 10.1016/j.jenvman.2021.112260 pmid: 33714731
[26]   Jia B. 2010. Study on evolution of water quality and impact of oil development in the Malian River Basin of Longdong Loess Plateau. MSc Thesis. Lanzhou: Lanzhou University. (in Chinese)
[27]   Jia W H, Yin L H, Zhang M S, et al. 2021. Quantification of groundwater recharge and evapotranspiration along a semi-arid wetland transect using diurnal water table fluctuations. Journal of Arid Land, 13(5):455-469.
doi: 10.1007/s40333-021-0100-7
[28]   Kinzelbach W, Bauer P, Siegfried T, et al. 2003. Sustainable groundwater management—problems and scientific tools. Episodes, 26(4):279-284.
doi: 10.18814/epiiugs/2003/v26i4/002
[29]   Li C B, Qi J G, Wang S B, et al. 2014. A holistic system approach to understanding underground water dynamics in the Loess Tableland: A case study of the Dongzhi Loess Tableland in Northwest China. Water Resources Management, 28:2937-2951.
doi: 10.1007/s11269-014-0647-6
[30]   Li H X. 2015. Analysis of groundwater level change in recent 30 years in Dongzhi Tableland. Ground Water, 37(6):63-64. (in Chinese)
[31]   Li P C. 1999. Study on rational determination of specific yield in aquifer of loess area. Journal of Hydraulic Engineering, 11:38-41. (in Chinese)
[32]   Li W Y. 2013. Dynamics of underground water system and rational utilization of water resources in the Dongzhi Loess Tableland. MSc Thesis. Lanzhou: Lanzhou University. (in Chinese)
[33]   Liang J N. 2011. Study on soil's heavy metal contents and soil quality evaluation of Longdong Tableland area. MSc Thesis. Lanzhou: Lanzhou University. (in Chinese)
[34]   Ling X Y. 2019. Study on groundwater recharge and hydrogeochemical evolution of the loess plateau in East Gansu. MSc Thesis. Lanzhou: Lanzhou University. (in Chinese)
[35]   Ling X Y, Ma J Z, Chen P Y, et al. 2021. Hydrogeochemical characteristics and radiocarbon dating of groundwater in the Dongzhi Tableland of Longdong Loess Plateau. Journal of Lanzhou University (Natural Sciences), 57(1):24-32. (in Chinese)
[36]   Liu C M, Xia J. 2004. Water problems and hydrological research in the Yellow River and the Huai and Hai River basins of China. Hydrological Processes, 18:2197-2210.
doi: 10.1002/(ISSN)1099-1085
[37]   Liu D S. 1985. Loess and Environment. Beijing: Science Press, 85-87. (in Chinese)
[38]   Liu J R, Song X F, Yuan G F, et al. 2008. Characteristics of δ 18O in precipitation over Northwest China and its water vapor sources. Acta Geographica Sinica, 63(1):12-22. (in Chinese)
[39]   Liu J Y, Zhang F P, Feng Q, et al. 2019. Stable isotopes characteristics of precipitation over Shaanxi-Gansu-Ningxia and its water vapor sources. Chinese Journal of Applied Ecology, 30(7):2191-2200. (in Chinese)
[40]   Ma J Z, Chen F H, Zhao H. 2004. Groundwater recharge and climatic change during the last 1000 years from unsaturated zone of SE Badain Jaran Desert. Chinese Science Bulletin, 49(14):22-26. (in Chinese)
[41]   Ma J Z, Li X H, Huang T M, et al. 2005. Chemical evolution and recharge characteristics of water resources in the Shiyang River Basin. Resources Science, 27(3):117-122. (in Chinese)
[42]   Ma J Z, Edmunds W M. 2006. Groundwater and lake evolution in the Badain Jaran Desert ecosystem, Inner Mongolia. Hydrogeology Journal, 14:1231-1243.
doi: 10.1007/s10040-006-0045-0
[43]   Ma J Z, Pan F, Chen L H. et al. 2010. Isotopic and geochemical evidence of recharge sources and water quality in the Quaternary aquifer beneath Jinchang city, NW China. Applied Geochemistry, 25(7):996-1007.
doi: 10.1016/j.apgeochem.2010.04.006
[44]   Ma J Z, He J H, Qi S, et al. 2013. Groundwater recharge and evolution in the Dunhuang Basin, northwestern China. Applied Geochemistry, 28:19-31.
doi: 10.1016/j.apgeochem.2012.10.007
[45]   Magilligan F J, Nislow K H. 2005. Changes in hydrologic regime by dams. Geomorphology, 71(1-2):61-78.
doi: 10.1016/j.geomorph.2004.08.017
[46]   Majoube M. 1971. Oxygen-18 and deuterium fractionation between water and steam. Journal de Chimie Physique et de Physico-Chimie Biologique, 68:1423-1436. (in French)
[47]   Murad A A, Garamoon H, Hussein S, et al. 2011. Hydrogeochemical characterization and isotope investigations of a carbonate aquifer of the northern part of the United Arab Emirates. Journal of Asian Earth Sciences, 40(1):213-225.
doi: 10.1016/j.jseaes.2010.07.013
[48]   Obeidat M, Awawdeh M, Al-Kharabsheh N, et al. 2021. Source identification of nitrate in the upper aquifer system of the Wadi Shueib catchment area in Jordan based on stable isotope composition. Journal of Arid Land, 13(4):350-374.
doi: 10.1007/s40333-021-0055-8
[49]   Pan F, Chen L H, Fu S J, et al. 2012. A study on the transport performance of the petroleum contaminants in soil of the Longdong loess plateau. Acta Scientiae Circumstantiae, 32(2):410-418. (in Chinese)
[50]   Pan F, Zhang Q H, He J H. 2014. Groundwater recharge environment and geochemistry evolution of the Quaternary aquifer in the Dongzhiyuan region, Gansu Province. Arid Land Geography, 37(1):9-18. (in Chinese)
[51]   Pang Y J, Zhang H, Cheng H H, et al. 2020. The modulation of groundwater exploitation on crustal stress in the North China Plain, and its implications on seismicity. Journal of Asian Earth Sciences, 189:104141, doi: 10.1016/j.jseaes.2019.104141.
doi: 10.1016/j.jseaes.2019.104141
[52]   Patil N S, Chetan N L, Nataraja M, et al. 2020. Climate change scenarios and its effect on groundwater level in the Hiranyakeshi watershed. Groundwater for Sustainable Development, 10:100323, doi: 10.1016/j.gsd.2019.100323.
doi: 10.1016/j.gsd.2019.100323
[53]   Pearson F J, Hanshaw B B. 1970. Sources of dissolved carbonate species in groundwater and their effects on carbon-14 dating. In: I.A.E.A. Symposium on the Use of Isotopes in Hydrology. Vienna: International Atomic Energy Agency, 9-13.
[54]   Plummer L N, Prestemon E C, Parkhurst D L. 1991. An interactive code (NETPATH) for modeling net geochemical reactions along a flow path. In: Water-Resource Investigations Report 91-4078. Department of the Interior, US Geological Survey. Reston, USA.
[55]   Qu H L. 1991. China Arid and Semi-arid Areas Groundwater Resources Assessment. Beijing: Science Press. (in Chinese)
[56]   Ragab R, Prudhomme C. 2002. SW—soil and water: climate change and water resources management in arid and semi-arid regions: Prospective and challenges for the 21st century. Biosystems Engineering, 81(1):3-34.
doi: 10.1006/bioe.2001.0013
[57]   Shiklomanov I A, Rodda J C. 2003. World Water Resources at the Beginning of the Twenty-First Century. Cambridge: Cambridge University Press, 289-290.
[58]   Sklash M G. 1990. Environmental isotope studies of storm and snow melt runoff generation. In: Anderson M G, Burt T P. Process Studies in Hillslope Hydrology. Hoboken: John Wiley & Sons Inc., 401-436.
[59]   Su X S, Wan Y Y, Dong W H, et al. 2009. Hydraulic relationship between Malianhe River and groundwater: Hydrogeochemical and isotopic evidences. Journal of Jilin University (Earth Science Edition), 39(6):1087-1094. (in Chinese)
[60]   Su Y H, Zhu G F, Feng Q, et al. 2009. Chemical evolution of shallow groundwater and the residence time in the Ejina Basin. Arid Land Geography, 32(4):544-551. (in Chinese)
[61]   Tamers M A. 1966. Instituto venezolano de investigaciones cientificas natural radiocarbon measurements II. Radiocarbon, 8:204-212.
doi: 10.1017/S0033822200000114
[62]   Vogel J C. 1967. Investigation of groundwater flow with radiocarbon. In: Symposium on Isotopes in Hydrology. Vienna: International Atomic Energy Agency, 355-369.
[63]   Walling D E, Fang D. 2003. Recent trends in the suspended sediment loads of the world's rivers. Global and Planetary Change, 39(1-2):111-126.
doi: 10.1016/S0921-8181(03)00020-1
[64]   Wang P, Zhang F E, Chen Z Y. 2020. Characterization of recharge processes and groundwater flow paths using isotopes in the arid Santanghu basin, Northwest China. Hydrogeology Journal, 28:1037-1051.
doi: 10.1007/s10040-020-02119-9
[65]   Wang W H, Chen Y N, Wang W R. 2020. Groundwater recharge in the oasis-desert areas of northern Tarim Basin, Northwest China. Hydrology Research, 51(6):1506-1520.
doi: 10.2166/nh.2020.071
[66]   Wang Y, Liu R Q. 2005. Groundwater resources in Dongzhiyuan and its sustainable utilization. Water Resources Protection, 21(1):64-66. (in Chinese)
[67]   Wang Y S, Cheng X X, Zhang M N, et al. 2018. Tracing the interactions between river water and groundwater in the lower reaches of Malian River. Water Resources and Power, 36(9):48-51. (in Chinese)
[68]   Wheater H S, Tompkins J A, van Leeuwen M, et al. 2010. Uncertainty in groundwater flow and transport modelling—a stochastic analysis of well-protection zones. Hydrological Processes, 14(11-12):2019-2029.
doi: 10.1002/(ISSN)1099-1085
[69]   Xia J, Zhang Y Y. 2008. Water security in north China and countermeasure to climate change and human activity. Physics and Chemistry of the Earth, Parts A/B/C, 33(5):359-363.
doi: 10.1016/j.pce.2008.02.009
[70]   Ye B S, Yang D Y, Kane D L. 2003. Changes in Lena River streamflow hydrology: Human impacts versus natural variations. Water Resources Research, 39(7):1200-1214.
[71]   Yu G, Xue B, Liu J, et al. 2003. LGM lake records from China and an analysis of climate dynamics using a modelling approach. Global and Planetary Change, 38(3-4):223-256.
doi: 10.1016/S0921-8181(02)00257-6
[72]   Zhang E L, Chang J, Shulmeister J, et al. 2019. Summer temperature fluctuations in Southwestern China during the end of the LGM and the last deglaciation. Earth and Planetary Science Letters, 509:78-87.
doi: 10.1016/j.epsl.2018.12.024
[73]   Zhang Q H, Zhang Y R, Zhao Y P, et al. 2011. Geochemical evolution of groundwater and hydrogeochemical modeling in Jinta Basin. Arid Land Geography, 34(5):772-778. (in Chinese)
[74]   Zhang Q H, Luo Z X, Lu W, et al. 2020. Using water isotopes and hydrogeochemical evidences to characterize groundwater age and recharge rate in the Zhangjiakou area, North China. Journal of Geographical Sciences, 30:935-948.
doi: 10.1007/s11442-020-1763-2
[75]   Zheng H H, Theng B K G, Whitton J S. 1994. Mineral composition of Loess-Paleosol samples form the Loess Plateau of China and its environmental significance. Chinese Journal of Geochimica, 13:61-72.
[76]   Zhu G F, Su Y H, Feng Q. 2008. The hydrogeochemical characteristics and evolution of groundwater and surface water in the Heihe River Basin, northwest China. Hydrogeology Journal, 16:167-182.
doi: 10.1007/s10040-007-0216-7
[1] QIN Guoqiang, WU Bin, DONG Xinguang, DU Mingliang, WANG Bo. Evolution of groundwater recharge-discharge balance in the Turpan Basin of China during 1959-2021[J]. Journal of Arid Land, 2023, 15(9): 1037-1051.
[2] WANG Yaobin, SHANGGUAN Zhouping. Formation mechanisms and remediation techniques for low-efficiency artificial shelter forests on the Chinese Loess Plateau[J]. Journal of Arid Land, 2022, 14(8): 837-848.
[3] Youssef HAJHOUJI, Younes FAKIR, Simon GASCOIN, Vincent SIMONNEAUX, Abdelghani CHEHBOUNI. Dynamics of groundwater recharge near a semi-arid Mediterranean intermittent stream under wet and normal climate conditions[J]. Journal of Arid Land, 2022, 14(7): 739-752.
[4] WU Huining, CUI Qiaoyu. High-frequency climatic fluctuations over the past 30 ka in northwestern margin of the East Asian monsoon region, China[J]. Journal of Arid Land, 2022, 14(12): 1331-1343.
[5] CHEN Shumin, JIN Zhao, ZHANG Jing, YANG Siqi. Soil quality assessment in different dammed-valley farmlands in the hilly-gully mountain areas of the northern Loess Plateau, China[J]. Journal of Arid Land, 2021, 13(8): 777-789.
[6] JIA Wuhui, YIN Lihe, ZHANG Maosheng, ZHANG Xinxin, ZHANG Jun, TANG Xiaoping, DONG Jiaqiu. Quantification of groundwater recharge and evapotranspiration along a semi-arid wetland transect using diurnal water table fluctuations[J]. Journal of Arid Land, 2021, 13(5): 455-469.
[7] CHENG Junhui, SHI Xiaojun, FAN Pengrui, ZHOU Xiaobing, SHENG Jiandong, ZHANG Yuanming. Relationship of species diversity between overstory trees and understory herbs along the environmental gradients in the Tianshan Wild Fruit Forests, Northwest China[J]. Journal of Arid Land, 2020, 12(4): 618-629.
[8] Hongfen ZHU, Yi CAO, Yaodong JING, Geng LIU, Rutian BI, Wude YANG. Multi-scale spatial relationships between soil total nitrogen and influencing factors in a basin landscape based on multivariate empirical mode decomposition[J]. Journal of Arid Land, 2019, 11(3): 385-399.
[9] SHI Peihong, YANG Taibao, TIAN Qingchun, LI Chengxiu. A warmer but drier Marine Isotope Stage 11 during the past 650 ka as revealed by the thickest loess on the western Chinese Loess Plateau[J]. Journal of Arid Land, 2016, 8(3): 315-330.
[10] WU Huawu, LI Xiaoyan, LI Jing, JIANG Zhiyun, LI Guangyong, LIU Lei. Evaporative enrichment of stable isotopes (δ18O and δD) in lake water and the relation to lake-level change of Lake Qinghai, Northeast Tibetan Plateau of China[J]. Journal of Arid Land, 2015, 7(5): 623-635.
[11] Yi LUO, Marios SOPHOCLEOUS. Two-way coupling of unsaturated-saturated flow by integrating the SWAT and MODFLOW models with application in an irrigation district in arid region of West China[J]. Journal of Arid Land, 2011, 3(3): 164-173.