Isotope implications of groundwater recharge, residence time and hydrogeochemical evolution of the Longdong Loess Basin, Northwest China
LING Xinying1,2,*(), MA Jinzhu1, CHEN Peiyuan1, LIU Changjie2, Juske HORITA2,*()
1Key Laboratory of Western China's Environmental System (Ministry of Education), Lanzhou University, Lanzhou 730000, China 2Department of Geosciences, Texas Tech University, Lubbock TX79409, USA
Groundwater plays a dominant role in the eco-environmental protection of arid and semi-arid regions. Understanding the sources and mechanisms of groundwater recharge, the interactions between groundwater and surface water and the hydrogeochemical evolution and transport processes of groundwater in the Longdong Loess Basin, Northwest China, is of importance for water resources management in this ecologically sensitive area. In this study, 71 groundwater samples (mainly distributed at the Dongzhi Tableland and along the Malian River) and 8 surface water samples from the Malian River were collected, and analysis of the aquifer system and hydrological conditions, together with hydrogeochemical and isotopic techniques were used to investigate groundwater sources, residence time and their associated recharge processes. Results show that the middle and lower reaches of the Malian River receive water mainly from groundwater discharge on both sides of valley, while the source of the Malian River mainly comes from local precipitation. Groundwater of the Dongzhi Tableland is of a HCO3-Ca-Na type with low salinity. The reverse hydrogeochemical simulation suggests that the dissolution of carbonate minerals and cation exchange between Ca2+, Mg2+ and Na+ are the main water-rock interactions in the groundwater system of the Dongzhi Tableland. The δ 18O (from -11.70‰ to -8.52‰) and δ2H (from -86.15‰ to -65.75‰) values of groundwater are lower than the annual weighted average value of precipitation but closer to summer-autumn precipitation and soil water in the unsaturated zone, suggesting that possible recharge comes from the summer-autumn monsoonal heavy precipitation in the recent past (≤220 a). The corrected14C ages of groundwater range from 3,000 to 25,000 a old, indicating that groundwater was mainly from precipitation during the humid and cold Late Pleistocene and Holocene periods. Groundwater flows deeper from the groundwater table and from the center to the east, south and west of the Dongzhi Tableland with estimated migration rate of 1.29-1.43 m/a. The oldest groundwater in the Quaternary Loess Aquifer in the Dongzhi Tableland is approximately 32,000 a old with poor renewability. Based on the δ 18O temperature indicator of groundwater, we speculate that temperature of the Last Glacial Maximum in the Longdong Loess Basin was 2.4°C-6.0°C colder than the present. The results could provide us the valuable information on groundwater recharge and evolution under thick loess layer, which would be significative for the scientific water resources management in semi-arid regions.
LING Xinying, MA Jinzhu, CHEN Peiyuan, LIU Changjie, Juske HORITA. Isotope implications of groundwater recharge, residence time and hydrogeochemical evolution of the Longdong Loess Basin, Northwest China. Journal of Arid Land, 2022, 14(1): 34-55.
Fig. 1Overview of the Longdong Loess Basin (a) and sample location (b). G1-G71, groundwater samples; SW1-SW8, surface water samples. A represents Pengyang village, B represents Gaolou village, and the line between A and B represents the geological profile of A-B transect showed in Figure 2. DEM, digital elevation model.
Fig. 2Geological cross-section along A-B transect of the Dongzhi Tableland (modified from Huang et al. (2020)). K1h, Cretaceous Sandstone; K1lh, Tertiary Mudstone; Q1, Lower Pleistocene Series Wucheng Loess; Q2, Middle Pleistocene Series Stone Loess; Q3, Upper Pleistocene Series Malan Loess.
Fig. 3Variations of ion concentrations in groundwater and surface water in the Longdong Loess Basin
Fig. 4Relationships of Cl- with TDS (a) and major ions (b, c, d, e and f) of groundwater and surface water collected from the Longdong Loess Basin. TDS, total dissolved solids.
Fig. 5δ2H and δ18O values of groundwater in the Dongzhi Tableland, surface water in the Malian River and precipitation in Xi'an and at the Malian River headwater. GMWL, global meteoric water line; LMWL, local meteoric water line.
Fig. 6Contour maps of the δ18O (a) and δ2H (b) of groundwater in the Longdong Loess Basin
Fig. 7Spatial distribution of groundwater ages in the Dongzhi Tableland
Fig. 8Relationship between the δ18O value of surface water, groundwater and precipitation and the distance from the headwater of the Malian River
Fig. 9Relationship between the ratio of (Ca2++Mg2+)/Na+ and the 14C age of groundwater
Fig. 10Relationship between the δ18O value and groundwater age along with modern precipitation
Sample No.
Depth (m)
pH
TDS (mg/L)
Ca2+ (mg/L)
Mg2+ (mg/L)
Na+ (mg/L)
K+ (mg/L)
HCO3- (mg/L)
Cl- (mg/L)
SO42- (mg/L)
NO3- (mg/L)
F- (mg/L)
δ2H (‰)
δ18O (‰)
G1
120
8.47
246
37.43
12.91
17.24
1.38
275
7.65
2.50
4.23
0.07
-68.77
-9.54
G2
120
7.07
254
51.60
4.71
22.06
0.71
231
4.73
4.84
9.37
0.42
-72.03
-10.08
G3
130
7.84
261
41.85
14.46
9.37
1.29
270
3.89
2.47
3.12
0.06
-71.57
-9.85
G4
80
7.83
255
65.44
6.26
21.82
0.30
281
5.80
7.52
13.15
0.00
-73.65
-10.52
G5
150
8.30
230
55.96
5.06
23.73
0.45
265
4.31
6.15
7.63
0.28
-69.70
-9.41
G6
110
8.02
240
35.38
12.56
20.20
1.65
267
3.10
1.46
3.88
0.07
-71.72
-9.77
G7
160
7.80
252
62.64
5.56
29.15
0.53
274
4.92
7.01
13.64
0.00
-74.43
-10.61
G8
180
8.11
236
32.51
3.27
72.55
0.39
271
4.41
5.14
9.47
0.00
-73.33
-10.24
G9
130
8.15
221
18.20
7.57
37.10
0.93
263
2.38
0.98
3.52
0.11
-70.54
-9.81
G10
80
7.45
246
51.78
4.89
17.56
0.79
240
3.07
3.47
8.09
0.34
-73.17
-10.04
G11
350
8.50
240
40.47
14.76
12.26
1.57
259
4.62
3.08
4.70
0.06
-71.22
-9.71
G12
185
8.14
256
57.49
5.83
34.29
0.51
292
5.69
4.63
13.80
0.35
-72.05
-9.91
G13
114
7.97
230
32.70
2.97
44.65
0.92
238
3.43
2.57
9.14
0.41
-71.92
-10.11
G14
110
8.26
252
59.54
6.02
29.93
0.47
308
3.87
5.43
10.39
0.27
-71.66
-9.89
G15
130
8.19
224
39.08
13.52
10.39
1.50
287
3.34
1.66
3.01
0.07
-70.22
-9.64
G16
120
8.30
224
48.02
4.26
19.14
0.75
227
3.30
3.19
8.29
0.35
-70.50
-9.64
G17
120
8.15
238
58.45
5.08
24.78
0.73
271
4.47
6.36
10.80
0.31
-71.78
-9.80
G18
130
7.67
236
46.71
4.14
20.21
0.79
221
3.03
3.14
6.26
0.31
-70.94
-9.79
G19
160
7.98
229
29.59
9.74
26.16
1.83
257
5.24
1.53
8.75
0.09
-72.10
-9.92
G20
114
8.38
221
37.91
3.14
36.46
0.49
231
3.18
3.52
6.69
0.43
-70.83
-10.23
G21
190
8.11
232
45.99
4.11
19.70
0.60
223
2.78
2.81
6.05
0.35
-69.83
-9.88
G22
48
7.99
249
47.86
3.83
24.08
0.51
230
3.19
3.12
7.65
0.34
-71.57
-10.09
G23
100
8.55
249
40.49
3.13
36.77
0.76
230
3.86
2.58
8.18
0.44
-73.14
-10.50
G24
110
8.24
243
45.12
14.47
9.61
0.93
298
3.62
3.26
3.35
0.07
-69.87
-9.55
G25
100
8.32
244
47.20
4.32
23.66
0.60
240
5.66
4.02
3.19
0.38
-70.74
-9.90
G26
130
8.18
236
26.79
10.06
33.28
1.70
287
3.35
1.54
2.11
0.11
-71.88
-9.82
G27
150
8.32
244
22.49
2.55
60.12
0.86
256
2.66
2.25
0.24
2.25
-72.94
-10.08
G28
150
8.16
236
17.86
7.83
42.66
2.08
281
3.81
1.00
1.92
0.13
-72.94
-9.97
G29
100
8.63
227
41.75
3.96
28.27
0.50
223
3.60
3.88
5.67
1.71
-72.95
-10.31
G30
200
8.48
246
46.52
4.54
20.59
0.63
226
2.95
3.85
5.96
0.37
-69.76
-9.97
G31
100
7.53
340
14.59
7.20
45.70
1.72
249
6.20
6.60
2.19
0.15
-72.40
-9.87
G32
150
8.02
234
52.14
4.26
16.15
0.72
219
3.14
3.70
6.07
0.35
-70.76
-9.79
G33
135
8.21
248
31.24
2.78
47.23
0.49
235
4.26
2.64
14.28
0.55
-74.56
-10.27
G34
151
8.18
227
28.22
2.60
43.77
0.62
226
3.08
2.10
8.94
0.55
-72.92
-10.29
G35
92
8.30
240
53.98
4.18
16.95
0.46
210
5.76
4.55
13.12
0.39
-71.36
-10.08
G36
110
8.31
220
40.94
3.66
25.05
0.61
215
4.11
3.73
9.55
0.47
-70.66
-10.04
G37
300
7.81
246
31.24
10.98
18.88
1.14
248
5.24
1.75
6.47
0.06
-73.29
-9.94
G38
110
7.92
220
28.48
10.01
22.64
1.60
255
3.76
1.91
2.98
0.07
-73.49
-9.94
G39
150
7.96
241
28.97
12.49
43.82
1.60
236
7.71
1.90
14.29
0.10
-76.64
-10.39
G40
75
8.57
242
31.22
2.87
44.16
0.90
230
3.38
3.20
11.01
0.47
-72.17
-10.05
G41
150
8.49
150
10.91
4.32
28.50
1.25
187
3.12
2.02
4.17
0.11
-65.76
-8.53
G42
100
8.93
220
38.66
13.28
11.00
1.77
259
5.24
2.36
3.16
0.06
-72.26
-9.79
G43
150
8.04
266
54.40
4.84
15.96
0.32
223
3.22
15.99
9.32
0.39
-72.17
-10.06
G44
155
7.96
250
37.84
12.92
10.99
1.62
240
3.48
1.76
3.49
0.07
-68.48
-9.37
Sample No.
Depth (m)
pH
TDS (mg/L)
Ca2+ (mg/L)
Mg2+ (mg/L)
Na+ (mg/L)
K+ (mg/L)
HCO3- (mg/L)
Cl- (mg/L)
SO42- (mg/L)
NO3- (mg/L)
F- (mg/L)
δ2H (‰)
δ18O (‰)
G45
180
8.73
224
35.52
12.82
11.35
1.04
243
3.44
1.71
3.59
0.06
-68.65
-9.35
G46
110
8.33
234
15.60
7.35
41.90
1.43
269
3.41
1.60
3.18
0.10
-71.69
-9.53
G47
250
8.39
266
23.66
2.35
72.05
1.82
231
2.41
2.41
4.39
0.57
-74.37
-10.32
G48
170
8.07
228
25.50
10.47
29.18
1.61
270
3.14
1.50
3.07
0.10
-69.45
-9.41
G49
100
8.34
211
34.38
3.25
29.39
0.77
210
1.90
3.85
7.57
0.64
-72.39
-9.88
G50
90
8.18
199
22.32
8.52
12.83
1.47
223
2.36
1.49
3.01
0.07
-71.21
-9.65
G51
120
8.13
210
36.96
12.98
8.69
0.97
249
2.85
2.30
3.28
0.06
-70.53
-9.59
G52
120
8.11
137
18.86
7.13
12.34
1.26
155
4.42
3.09
1.65
0.05
-72.65
-9.88
G53
200
8.26
226
28.06
3.30
39.75
0.56
206
2.54
2.68
6.42
0.55
-72.20
-9.94
G54
110
8.30
78
8.91
1.91
11.68
1.21
127
4.60
3.92
1.06
0.03
-74.72
-10.15
G55
145
7.86
251
49.70
4.85
18.67
0.45
219
2.93
4.30
6.69
0.31
-72.32
-10.22
G56
180
8.12
267
53.20
4.68
19.45
0.42
226
5.57
3.68
20.53
0.41
-72.68
-10.33
G57
150
8.68
241
39.43
3.34
33.59
0.65
224
3.66
2.71
10.35
0.47
-72.77
-10.31
G58
100
7.30
239
65.63
4.79
13.14
2.21
263
3.49
5.75
9.70
0.41
-74.10
-10.26
G59
190
7.86
251
52.79
4.38
17.59
0.63
230
2.58
3.33
7.00
0.28
-72.58
-10.36
G60
110
8.02
249
52.12
4.37
16.52
0.58
230
4.00
4.08
7.82
0.36
-70.13
-9.67
G61
263
8.14
249
32.24
3.71
75.53
0.74
288
3.43
4.19
5.63
0.35
-74.78
-10.26
G62
180
8.17
235
49.19
4.31
15.49
0.53
215
3.41
4.20
4.96
0.31
-69.26
-9.44
G63
75
7.81
246
64.51
5.59
19.80
0.32
261
5.22
12.16
10.73
0.30
-69.59
-9.05
G64
170
8.19
227
35.14
2.93
35.62
0.58
220
3.95
3.79
9.79
0.38
-70.75
-9.93
G65
210
8.13
226
43.03
3.94
19.43
0.66
212
2.35
3.14
5.89
0.31
-69.32
-9.64
G66
15
7.67
576
51.02
11.90
148.25
1.79
271
72.13
144.98
12.18
0.90
-72.01
-9.80
G67
26
7.71
457
47.73
12.06
103.38
1.57
324
41.56
45.62
37.00
0.58
-68.95
-9.09
G68
13
7.95
998
120.45
27.58
133.70
7.70
200
315.61
138.47
46.02
0.00
-69.84
-9.85
G69
7
7.90
970
75.80
20.68
234.80
1.69
346
234.31
215.99
13.27
0.00
-74.83
-10.45
G70
12
7.83
1189
97.80
26.24
274.78
1.61
287
295.11
306.65
34.27
0.00
-78.57
-11.08
G71
10
7.67
3410
335.66
110.41
810.95
9.16
283
818.72
1462.75
221.53
0.00
-86.15
-11.70
SW1
-
8.39
899
63.61
69.42
138.98
7.17
194
139.26
145.29
5.96
0.00
-72.03
-9.44
SW2
-
8.96
1236
70.76
77.97
166.52
9.43
229
175.00
170.69
7.20
0.00
-66.74
-8.70
SW3
-
8.42
2080
99.19
137.49
269.72
9.11
193
360.30
289.45
15.49
0.00
-70.68
-9.13
SW4
-
8.48
2380
157.79
56.77
629.95
4.50
232
759.60
769.55
60.16
0.00
-70.57
-9.03
SW5
-
8.70
816
57.65
16.63
217.33
1.88
261
157.55
203.30
7.79
0.94
-66.28
-8.76
SW6
-
8.64
2760
197.07
71.14
709.39
3.21
225
832.62
816.81
78.03
0.00
-59.13
-7.04
SW7
-
8.41
1533
127.55
34.52
410.63
3.84
260
397.98
472.77
27.54
0.00
-59.70
-7.01
SW8
-
8.36
7330
654.38
218.79
1843.86
12.95
162
2647.73
2214.16
292.63
0.00
-64.30
-7.23
Table S1 Concentrations of chemical ions and values of the δ2H and δ18O of groundwater (G) and surface water (SW) samples in the Longdong Loess Basin
Fig. S1Relationship between the concentration of Ca2++Mg2+ and Na+ in groundwater of the Dongzhi Tableland
[1]
Amanambu A C, Obarein O A, Mossa J, et al. 2020. Groundwater system and climate change: Present status and future considerations. Journal of Hydrology, 589:125-163.
[2]
Choi S U, Yoon B, Woo H. 2005. Effects of dam-induced flow regime change on downstream river morphology and vegetation cover in the Hwang River, Korea. River Research and Applications, 21(2-3):315-325.
doi: 10.1002/(ISSN)1535-1467
[3]
Christensen N S, Wood A W, Voisin N, et al. 2004. Effects of climate change on the hydrology and water resources of the Colorado River basin. Climatic Change, 62(1):337-363.
doi: 10.1023/B:CLIM.0000013684.13621.1f
[4]
Cigna F, Tapete D. 2021. Satellite InSAR survey of structurally-controlled land subsidence due to groundwater exploitation in the Aguascalientes Valley, Mexico. Remote Sensing of Environment, 254:112254, doi: 10.1016/j.rse.2020.112254.
doi: 10.1016/j.rse.2020.112254
[5]
Clark I D, Fritz P. 1997. Environmental Isotopes in Hydrogeology. Boca Raton: CRC Press, 153-154.
[6]
Cochand M, Molson J, Barth J A C, et al. 2020. Rapid groundwater recharge dynamics determined from hydrogeochemical and isotope data in a small permafrost watershed near Umiujaq (Nunavik, Canada). Hydrogeology Journal, 28:853-868.
doi: 10.1007/s10040-020-02109-x
[7]
Conway D. 2005. From headwater tributaries to international river: Observing and adapting to climate variability and change in the Nile basin. Global Environmental Change, 15(2):99-114.
doi: 10.1016/j.gloenvcha.2005.01.003
[8]
Cook P G, Herczeg A L. 2000. Environmental Tracers in Subsurface Hydrology. Boston: Springer, 72-73.
[9]
Dansgaard W. 1964. Stable isotopes in precipitation. Tellus, 16(4):436-468.
doi: 10.3402/tellusa.v16i4.8993
[10]
Deng Y, Zheng Z, Cour P, et al. 2002. Relation between pollen ratios and climate in east China and an attempt of paleoclimate reconstruction. Acta Palaeontologica Sinica, 41(4):508-516.
[11]
Ding Z Y, Ma J Z, He J H. 2009. Geochemical evolution of groundwater in the southwest of Tengger desert, NW of China. Arid Land Geography, 32(6):948-957. (in Chinese)
[12]
Dong J B, Eiler J, An Z S, et al. 2020. Clumped and stable isotopes of land snail shells on the Chinese Loess Plateau and their climatic implications. Chemical Geology, 533:119414, doi: 10.1016/j.chemgeo.2019.119414.
doi: 10.1016/j.chemgeo.2019.119414
[13]
Dong W H. 2005. Application of inverse hydrogeochemical modeling in 14C age correction of deep groundwater in the Ordos Cretaceous Artesian Basin. PhD Dissertation. Changchun: Jilin University. (in Chinese)
[14]
Eagle R A, Risi C, Mitchell J L, et al. 2013. High regional climate sensitivity over continental China constrained by glacial-recent changes in temperature and the hydrological cycle. Proceedings of the National Academy of Sciences of the United States of America, 110(22):8813-8818.
[15]
Edmunds W M, Guendouz A H, Mamou A. 2003. Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators. Applied Geochemistry, 18(6):805-822.
doi: 10.1016/S0883-2927(02)00189-0
[16]
Edmunds W M, Ma J Z, Aeschbach-Hertig W, et al. 2006. Groundwater recharge history and hydeogeochemical evolution in the Minqin Basin, North West China. Applied Geochemistry, 21(12):2148-2170.
doi: 10.1016/j.apgeochem.2006.07.016
[17]
Fontes J C, Garnier J M. 1979. Determination of the initial 14C activity of the total dissolved carbon: A review of the existing models and a new approach. Water Resources Research, 15(2):399-413.
doi: 10.1029/WR015i002p00399
[18]
Gerber C, Vaikmäe R, Aeschbach W, et al. 2017. Using 81Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale. Geochimica et Cosmochimica Acta, 205:187-210.
doi: 10.1016/j.gca.2017.01.033
Gonfiantini R. 1986. Environmental isotopes in lake studies. In: Fritz P, Fontes J C. Handbook of Environmental Isotope Geochemistry. Amsterdam: Elsevier, 113-168.
[21]
He J H, Zhang J, Ding Z Y, et al. 2011. Evolution of groundwater geochemistry in the Minqin Basin: Taking chloride as an indicator of groundwater recharge. Resources Science, 33(3):416-421. (in Chinese)
[22]
He J H. 2013. The 14C age correction of the groundwater in the Shule River Basin. PhD Dissertation. Lanzhou: Lanzhou University. (in Chinese)
[23]
Hu J, Emile-Geay J, Tabor C, et al. 2019. Deciphering oxygen isotope records from Chinese speleothems with an isotope-enabled climate model. Paleoceanography and Paleoclimatology, 34(12):2098-2112.
doi: 10.1029/2019PA003741
[24]
Huang T M, Ma B Q, Pang Z H, et al. 2020. How does precipitation recharge groundwater in loess aquifers? Evidence from multiple environmental tracers. Journal of Hydrology, 583:124532, doi: 10.1016/j.jhydrol.2019.124532.
doi: 10.1016/j.jhydrol.2019.124532
[25]
Jesiya N P, Gopinath G, Resmi T R. 2021. Comprehending the groundwater recharge of a coastal city in humid tropical setting using stable isotopes. Journal of Environmental Management, 287:112260, doi: 10.1016/j.jenvman.2021.112260.
doi: 10.1016/j.jenvman.2021.112260
pmid: 33714731
[26]
Jia B. 2010. Study on evolution of water quality and impact of oil development in the Malian River Basin of Longdong Loess Plateau. MSc Thesis. Lanzhou: Lanzhou University. (in Chinese)
[27]
Jia W H, Yin L H, Zhang M S, et al. 2021. Quantification of groundwater recharge and evapotranspiration along a semi-arid wetland transect using diurnal water table fluctuations. Journal of Arid Land, 13(5):455-469.
doi: 10.1007/s40333-021-0100-7
[28]
Kinzelbach W, Bauer P, Siegfried T, et al. 2003. Sustainable groundwater management—problems and scientific tools. Episodes, 26(4):279-284.
doi: 10.18814/epiiugs/2003/v26i4/002
[29]
Li C B, Qi J G, Wang S B, et al. 2014. A holistic system approach to understanding underground water dynamics in the Loess Tableland: A case study of the Dongzhi Loess Tableland in Northwest China. Water Resources Management, 28:2937-2951.
doi: 10.1007/s11269-014-0647-6
[30]
Li H X. 2015. Analysis of groundwater level change in recent 30 years in Dongzhi Tableland. Ground Water, 37(6):63-64. (in Chinese)
[31]
Li P C. 1999. Study on rational determination of specific yield in aquifer of loess area. Journal of Hydraulic Engineering, 11:38-41. (in Chinese)
[32]
Li W Y. 2013. Dynamics of underground water system and rational utilization of water resources in the Dongzhi Loess Tableland. MSc Thesis. Lanzhou: Lanzhou University. (in Chinese)
[33]
Liang J N. 2011. Study on soil's heavy metal contents and soil quality evaluation of Longdong Tableland area. MSc Thesis. Lanzhou: Lanzhou University. (in Chinese)
[34]
Ling X Y. 2019. Study on groundwater recharge and hydrogeochemical evolution of the loess plateau in East Gansu. MSc Thesis. Lanzhou: Lanzhou University. (in Chinese)
[35]
Ling X Y, Ma J Z, Chen P Y, et al. 2021. Hydrogeochemical characteristics and radiocarbon dating of groundwater in the Dongzhi Tableland of Longdong Loess Plateau. Journal of Lanzhou University (Natural Sciences), 57(1):24-32. (in Chinese)
[36]
Liu C M, Xia J. 2004. Water problems and hydrological research in the Yellow River and the Huai and Hai River basins of China. Hydrological Processes, 18:2197-2210.
doi: 10.1002/(ISSN)1099-1085
[37]
Liu D S. 1985. Loess and Environment. Beijing: Science Press, 85-87. (in Chinese)
[38]
Liu J R, Song X F, Yuan G F, et al. 2008. Characteristics of δ 18O in precipitation over Northwest China and its water vapor sources. Acta Geographica Sinica, 63(1):12-22. (in Chinese)
[39]
Liu J Y, Zhang F P, Feng Q, et al. 2019. Stable isotopes characteristics of precipitation over Shaanxi-Gansu-Ningxia and its water vapor sources. Chinese Journal of Applied Ecology, 30(7):2191-2200. (in Chinese)
[40]
Ma J Z, Chen F H, Zhao H. 2004. Groundwater recharge and climatic change during the last 1000 years from unsaturated zone of SE Badain Jaran Desert. Chinese Science Bulletin, 49(14):22-26. (in Chinese)
[41]
Ma J Z, Li X H, Huang T M, et al. 2005. Chemical evolution and recharge characteristics of water resources in the Shiyang River Basin. Resources Science, 27(3):117-122. (in Chinese)
[42]
Ma J Z, Edmunds W M. 2006. Groundwater and lake evolution in the Badain Jaran Desert ecosystem, Inner Mongolia. Hydrogeology Journal, 14:1231-1243.
doi: 10.1007/s10040-006-0045-0
[43]
Ma J Z, Pan F, Chen L H. et al. 2010. Isotopic and geochemical evidence of recharge sources and water quality in the Quaternary aquifer beneath Jinchang city, NW China. Applied Geochemistry, 25(7):996-1007.
doi: 10.1016/j.apgeochem.2010.04.006
[44]
Ma J Z, He J H, Qi S, et al. 2013. Groundwater recharge and evolution in the Dunhuang Basin, northwestern China. Applied Geochemistry, 28:19-31.
doi: 10.1016/j.apgeochem.2012.10.007
[45]
Magilligan F J, Nislow K H. 2005. Changes in hydrologic regime by dams. Geomorphology, 71(1-2):61-78.
doi: 10.1016/j.geomorph.2004.08.017
[46]
Majoube M. 1971. Oxygen-18 and deuterium fractionation between water and steam. Journal de Chimie Physique et de Physico-Chimie Biologique, 68:1423-1436. (in French)
[47]
Murad A A, Garamoon H, Hussein S, et al. 2011. Hydrogeochemical characterization and isotope investigations of a carbonate aquifer of the northern part of the United Arab Emirates. Journal of Asian Earth Sciences, 40(1):213-225.
doi: 10.1016/j.jseaes.2010.07.013
[48]
Obeidat M, Awawdeh M, Al-Kharabsheh N, et al. 2021. Source identification of nitrate in the upper aquifer system of the Wadi Shueib catchment area in Jordan based on stable isotope composition. Journal of Arid Land, 13(4):350-374.
doi: 10.1007/s40333-021-0055-8
[49]
Pan F, Chen L H, Fu S J, et al. 2012. A study on the transport performance of the petroleum contaminants in soil of the Longdong loess plateau. Acta Scientiae Circumstantiae, 32(2):410-418. (in Chinese)
[50]
Pan F, Zhang Q H, He J H. 2014. Groundwater recharge environment and geochemistry evolution of the Quaternary aquifer in the Dongzhiyuan region, Gansu Province. Arid Land Geography, 37(1):9-18. (in Chinese)
[51]
Pang Y J, Zhang H, Cheng H H, et al. 2020. The modulation of groundwater exploitation on crustal stress in the North China Plain, and its implications on seismicity. Journal of Asian Earth Sciences, 189:104141, doi: 10.1016/j.jseaes.2019.104141.
doi: 10.1016/j.jseaes.2019.104141
[52]
Patil N S, Chetan N L, Nataraja M, et al. 2020. Climate change scenarios and its effect on groundwater level in the Hiranyakeshi watershed. Groundwater for Sustainable Development, 10:100323, doi: 10.1016/j.gsd.2019.100323.
doi: 10.1016/j.gsd.2019.100323
[53]
Pearson F J, Hanshaw B B. 1970. Sources of dissolved carbonate species in groundwater and their effects on carbon-14 dating. In: I.A.E.A. Symposium on the Use of Isotopes in Hydrology. Vienna: International Atomic Energy Agency, 9-13.
[54]
Plummer L N, Prestemon E C, Parkhurst D L. 1991. An interactive code (NETPATH) for modeling net geochemical reactions along a flow path. In: Water-Resource Investigations Report 91-4078. Department of the Interior, US Geological Survey. Reston, USA.
[55]
Qu H L. 1991. China Arid and Semi-arid Areas Groundwater Resources Assessment. Beijing: Science Press. (in Chinese)
[56]
Ragab R, Prudhomme C. 2002. SW—soil and water: climate change and water resources management in arid and semi-arid regions: Prospective and challenges for the 21st century. Biosystems Engineering, 81(1):3-34.
doi: 10.1006/bioe.2001.0013
[57]
Shiklomanov I A, Rodda J C. 2003. World Water Resources at the Beginning of the Twenty-First Century. Cambridge: Cambridge University Press, 289-290.
[58]
Sklash M G. 1990. Environmental isotope studies of storm and snow melt runoff generation. In: Anderson M G, Burt T P. Process Studies in Hillslope Hydrology. Hoboken: John Wiley & Sons Inc., 401-436.
[59]
Su X S, Wan Y Y, Dong W H, et al. 2009. Hydraulic relationship between Malianhe River and groundwater: Hydrogeochemical and isotopic evidences. Journal of Jilin University (Earth Science Edition), 39(6):1087-1094. (in Chinese)
[60]
Su Y H, Zhu G F, Feng Q, et al. 2009. Chemical evolution of shallow groundwater and the residence time in the Ejina Basin. Arid Land Geography, 32(4):544-551. (in Chinese)
[61]
Tamers M A. 1966. Instituto venezolano de investigaciones cientificas natural radiocarbon measurements II. Radiocarbon, 8:204-212.
doi: 10.1017/S0033822200000114
[62]
Vogel J C. 1967. Investigation of groundwater flow with radiocarbon. In: Symposium on Isotopes in Hydrology. Vienna: International Atomic Energy Agency, 355-369.
[63]
Walling D E, Fang D. 2003. Recent trends in the suspended sediment loads of the world's rivers. Global and Planetary Change, 39(1-2):111-126.
doi: 10.1016/S0921-8181(03)00020-1
[64]
Wang P, Zhang F E, Chen Z Y. 2020. Characterization of recharge processes and groundwater flow paths using isotopes in the arid Santanghu basin, Northwest China. Hydrogeology Journal, 28:1037-1051.
doi: 10.1007/s10040-020-02119-9
[65]
Wang W H, Chen Y N, Wang W R. 2020. Groundwater recharge in the oasis-desert areas of northern Tarim Basin, Northwest China. Hydrology Research, 51(6):1506-1520.
doi: 10.2166/nh.2020.071
[66]
Wang Y, Liu R Q. 2005. Groundwater resources in Dongzhiyuan and its sustainable utilization. Water Resources Protection, 21(1):64-66. (in Chinese)
[67]
Wang Y S, Cheng X X, Zhang M N, et al. 2018. Tracing the interactions between river water and groundwater in the lower reaches of Malian River. Water Resources and Power, 36(9):48-51. (in Chinese)
[68]
Wheater H S, Tompkins J A, van Leeuwen M, et al. 2010. Uncertainty in groundwater flow and transport modelling—a stochastic analysis of well-protection zones. Hydrological Processes, 14(11-12):2019-2029.
doi: 10.1002/(ISSN)1099-1085
[69]
Xia J, Zhang Y Y. 2008. Water security in north China and countermeasure to climate change and human activity. Physics and Chemistry of the Earth, Parts A/B/C, 33(5):359-363.
doi: 10.1016/j.pce.2008.02.009
[70]
Ye B S, Yang D Y, Kane D L. 2003. Changes in Lena River streamflow hydrology: Human impacts versus natural variations. Water Resources Research, 39(7):1200-1214.
[71]
Yu G, Xue B, Liu J, et al. 2003. LGM lake records from China and an analysis of climate dynamics using a modelling approach. Global and Planetary Change, 38(3-4):223-256.
doi: 10.1016/S0921-8181(02)00257-6
[72]
Zhang E L, Chang J, Shulmeister J, et al. 2019. Summer temperature fluctuations in Southwestern China during the end of the LGM and the last deglaciation. Earth and Planetary Science Letters, 509:78-87.
doi: 10.1016/j.epsl.2018.12.024
[73]
Zhang Q H, Zhang Y R, Zhao Y P, et al. 2011. Geochemical evolution of groundwater and hydrogeochemical modeling in Jinta Basin. Arid Land Geography, 34(5):772-778. (in Chinese)
[74]
Zhang Q H, Luo Z X, Lu W, et al. 2020. Using water isotopes and hydrogeochemical evidences to characterize groundwater age and recharge rate in the Zhangjiakou area, North China. Journal of Geographical Sciences, 30:935-948.
doi: 10.1007/s11442-020-1763-2
[75]
Zheng H H, Theng B K G, Whitton J S. 1994. Mineral composition of Loess-Paleosol samples form the Loess Plateau of China and its environmental significance. Chinese Journal of Geochimica, 13:61-72.
[76]
Zhu G F, Su Y H, Feng Q. 2008. The hydrogeochemical characteristics and evolution of groundwater and surface water in the Heihe River Basin, northwest China. Hydrogeology Journal, 16:167-182.
doi: 10.1007/s10040-007-0216-7