Please wait a minute...
Journal of Arid Land  2021, Vol. 13 Issue (11): 1089-1102    DOI: 10.1007/s40333-021-0112-3
Research article     
A bibliometric analysis of carbon exchange in global drylands
LIU Zhaogang1,2, CHEN Zhi1,2,3,*(), YU Guirui1,2,3, ZHANG Tianyou4, YANG Meng1,2
1Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
2College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
3Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing 101408, China
4College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
Download: HTML     PDF(1122KB)
Export: BibTeX | EndNote (RIS)      


Drylands refer to regions with an aridity index lower than 0.65, and billions of people depend on services provided by the critically important ecosystems in these areas. How ecosystem carbon exchange in global drylands (CED) occurs and how climate change affects CED are critical to the global carbon cycle. Here, we performed a comprehensive bibliometric study on the fields of annual publications, marked journals, marked institutions, marked countries, popular keywords, and their temporal evolution to understand the temporal trends of CED research over the past 30 a (1991-2020). We found that the annual scientific publications on CED research increased significantly at an average growth rate of 7.93%. Agricultural Water Management ranked first among all journals and had the most citations. The ten most productive institutions were centered on drylands in America, China, and Australia that had the largest number and most citations of publications on CED research. "Climate change" and climate-related (such as "drought", "precipitation", "temperature", and "rainfall") research were found to be the most popular study areas. Keywords were classified into five clusters, indicating the five main research focuses on CED studies: hydrological cycle, effects of climate change, carbon and water balance, productivity, and carbon-nitrogen-phosphorous coupling cycles. The temporal evolution of keywords further showed that the areas of focus on CED studies were transformed from classical pedology and agricultural research to applied ecology and then to global change ecological research over the past 30 a. In future CED studies, basic themes (such as "water", "yield", and "salinity") and motor themes (such as "climate change", "sustainability", and "remote sensing") will be the focus of research on CED. In particular, multiple integrated methods to understand climate change and ecosystem sustainability are potential new research trends and hotspots.

Key wordsbibliometric analysis      drylands      carbon exchange      climate change      arid areas      water resources      sustainability     
Received: 01 July 2021      Published: 10 November 2021
Corresponding Authors: CHEN Zhi     E-mail:
Cite this article:

LIU Zhaogang, CHEN Zhi, YU Guirui, ZHANG Tianyou, YANG Meng. A bibliometric analysis of carbon exchange in global drylands. Journal of Arid Land, 2021, 13(11): 1089-1102.

URL:     OR

Description Result
Timespan 1991-2020
Sources (journals, books, etc.) 1516
Publications 11,360
Keywords 24,251
Authors 31,636
Annual years from publication (a) 9.45
Average citations per publication 22.63
Author appearances 50,327
Authors of single authored publications 597
Authors of multi authored publications 31,039
Publications per author 0.36
Authors per publication 2.78
Coauthors per publication 4.43
Collaboration index 2.91
Table 1 Main information regarding the collection
Fig. 1 Annual scientific production of publications on carbon exchange in global dryland (CED) research (a) and mean number of citations per publication (b) from 1991 to 2020
Journal Publications Journal Total citations
Agricultural Water Management 356 Agricultural Water Management 7884
Journal of Arid Environments 329 Agronomy Journal 7089
Field Crops Research 204 Global Change Biology 6644
Agronomy Journal 188 Field Crops Research 6185
Agricultural and Forest Meteorology 161 Science 6000
Agriculture, Ecosystems & Environment 132 Soil Science Society of America Journal 5756
Soil & Tillage Research 130 Agricultural and Forest Meteorology 5713
Science of the Total Environment 128 Journal of Arid Environments 5618
Agricultural Systems 109 Nature 5568
Global Change Biology 97 Plant and Soil 5391
Plant and Soil 96 Oecologia 5024
PLoS ONE 89 Soil Biology and Biochemistry 5006
Industrial Crops and Products 88 Ecology 4949
Journal of Dairy Science 88 Soil & Tillage Research 4135
Water 86 Remote Sensing of Environment 3780
Sustainability 85 Agriculture, Ecosystems & Environment 3666
Communications in Soil Science and Plant Analysis 78 Crop Science Water Resources Research 3639
Scientific Reports 74 Journal of Hydrology 3431
Oecologia 72 Proceedings of the National Academy of the Sciences of the United States of America 3405
Crop & Pasture Science 72 New Phytologist 3372
Table 2 Top 20 most productive and cited journals with the publications of carbon exchange in global dryland (CED) during the period of 1991-2020
Fig. 2 Temporal trend of publications for the top five marked journals on CED research. (a), Agricultural Water Management; (b), Journal of Arid Environments; (c), Field Crops Research; (d), Agronomy Journal; (e), Agricultural and Forest Meteorology.
Country Institution Publications
China Northwest A&F University 596
China China Agricultural University 375
America Colorado State University 325
America University of Arizona 321
Australia The University of Western Australia 308
China University of Chinese Academy of Sciences 286
America Washington State University 280
China Lanzhou University 272
India International Crops Research Institute for the Semi-Arid Tropics 264
China Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences 244
Table 3 Top ten most marked institutions
Fig. 3 Top ten most cited countries (a) and top ten most relevant countries by the corresponding authors (b) related to CED research
Fig. 4 Top 50 keywords represented by the wordcloud. Labels are usually single words, and the frequency of each label is shown with font size and colour.
Fig. 5 Co-occurrence network of the top 50 keywords. The size of the circle represents the frequency of the keyword; the larger the circle is, the higher the frequency. The lines between two circles indicate the relationships between two keywords; the thicker the line is, the closer the relationship between two keywords. Different colours represent different clusters, indicating that these keywords appear more frequently in the same publication. Red cluster, productivity; dark blue cluster, hydrological cycle; green cluster, effects of climate change; purple cluster, carbon and water balance; orange cluster, carbon-nitrogen-phosphorous coupling cycles.
Fig. 6 Temporal evolution of popular keywords in regard to CED studies. The horizontal axis indicates the time period, and boxes of different colors indicate different keywords. The size of each box represents the frequency during the time period. The lines between each box reflect the temporal evolution, transfer, and inheritance of keywords.
Basic themes Frequency Motor themes Frequency
Productivity 119 Sustainability 89
Photosynthesis 156 Eddy covariance 90
Biomass 157 Arid 90
Salinity 174 Remote sensing 99
Water 187 Production 102
Evapotranspiration 198 Agriculture 106
Yield 216 Climate 108
Water use efficiency 223 Grazing 114
Irrigation 228 Semi-arid 263
Drought 267 Climate change 395
Table 4 Basic information of the thematic analysis on CED research
[1]   Abdi A M, Boke-Olén N, Jin H, et al. 2019. First assessment of the plant phenology index (PPI) for estimating gross primary productivity in African semi-arid ecosystems. International Journal of Applied Earth Observation and Geoinformation, 78: 249-260.
doi: 10.1016/j.jag.2019.01.018
[2]   Ahakpaz F, Abdi H, Neyestani E, et al. 2021. Genotype-by-environment interaction analysis for grain yield of barley genotypes under dryland conditions and the role of monthly rainfall. Agricultural Water Management, 245: 106665, doi: 10.1016/j.agwat.2020.106665.
doi: 10.1016/j.agwat.2020.106665
[3]   Ahlstrom A, Raupach M R, Schurgers G, et al. 2015. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science, 348(6237): 895-899.
doi: 10.1126/science.aaa1668
[4]   Arfaoui A, Ibrahimi K, Trabelsi F. 2019. Biochar application to soil under arid conditions: a bibliometric study of research status and trends. Arabian Journal of Geosciences, 12: 45, doi: 10.1007/s12517-018-4166-2.
doi: 10.1007/s12517-018-4166-2
[5]   Aria M, Cuccurullo C. 2017. Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4): 959-975.
doi: 10.1016/j.joi.2017.08.007
[6]   Barrow C J. 1992. World Atlas of Desertification (United Nations Environment Programme), edited by N. Middleton and D. S. G. Thomas. Edward Arnold, London, 1992. ISBN 0 340 55512 2, £89.50 (hardback), ix + 69 pp. Land Degradation & Development, 3(4): 249-249.
[7]   Berdugo M, Kéfi S, Soliveres S, et al. 2017. Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands. Nature Ecology & Evolution, 1: 3, doi: 10.1038/s41559-016-0003.
doi: 10.1038/s41559-016-0003
[8]   Biederman J A, Scott R L, Bell T W, et al. 2017. CO2 exchange and evapotranspiration across dryland ecosystems of southwestern North America. Global Change Biology, 23(10): 4204-4221.
doi: 10.1111/gcb.13686 pmid: 28295911
[9]   Chen D, Liu Z, Luo Z H, et al. 2016. Bibliometric and visualized analysis of emergy research. Ecological Engineering, 90: 285-293.
doi: 10.1016/j.ecoleng.2016.01.026
[10]   Chen Z, Yu G R, Zhu X J, et al. 2015. Covariation between gross primary production and ecosystem respiration across space and the underlying mechanisms: A global synthesis. Agricultural and Forest Meteorology, 203: 180-190.
doi: 10.1016/j.agrformet.2015.01.012
[11]   Chen Z, Yu G R, Wang Q F. 2018. Ecosystem carbon use efficiency in China: Variation and influence factors. Ecological Indicators, 90: 316-323.
doi: 10.1016/j.ecolind.2018.03.025
[12]   Chiu W T, Ho Y S. 2007. Bibliometric analysis of tsunami research. Scientometrics, 73: 3-17.
doi: 10.1007/s11192-005-1523-1
[13]   Choi J H, Yi S Y, Lee K C. 2011. Analysis of keyword networks in MIS research and implications for predicting knowledge evolution. Information & Management, 48(8): 371-381.
doi: 10.1016/
[14]   Cobo M J, López-Herrera A G, Herrera-Viedma E, et al. 2011. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, 5(1): 146-166.
doi: 10.1016/j.joi.2010.10.002
[15]   Echchelh A, Hess T, Sakrabani R. 2018. Reusing oil and gas produced water for irrigation of food crops in drylands. Agricultural Water Management, 206: 124-134.
doi: 10.1016/j.agwat.2018.05.006
[16]   Grace J, Rayment M. 2000. Respiration in the balance. Nature, 404: 819-820.
doi: 10.1038/35009170
[17]   Hessen D O, Ågren G I, Anderson T R, et al. 2004. Carbon sequestration in ecosystems: The role of stoichiometry. Ecology, 85(5): 1179-1192.
doi: 10.1890/02-0251
[18]   Hobbie S E, Nadelhoffer K J, Högberg P. 2002. A synthesis: The role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant and Soil, 242: 163-170.
doi: 10.1023/A:1019670731128
[19]   Huang J, Li Y, Fu C, et al. 2017. Dryland climate change: Recent progress and challenges. Reviews of Geophysics, 55(3): 719-778.
doi: 10.1002/rog.v55.3
[20]   Huang J P, Yu H P, Guan X D, et al. 2016. Accelerated dryland expansion under climate change. Nature Climate Change, 6: 166-171.
doi: 10.1038/nclimate2837
[21]   Ji Q, Pang X P, Zhao X. 2014. A bibliometric analysis of research on Antarctica during 1993-2012. Scientometrics, 101: 1925-1939.
doi: 10.1007/s11192-014-1332-5
[22]   Kou D, Ma W H, Ding J Z, et al. 2018. Dryland soils in northern China sequester carbon during the early 2000s warming hiatus period. Functional Ecology, 32(6): 1620-1630.
doi: 10.1111/fec.2018.32.issue-6
[23]   Krishnan P, Meyers T P, Scott R L, et al. 2012. Energy exchange and evapotranspiration over two temperate semi-arid grasslands in North America. Agricultural and Forest Meteorology, 153: 31-44.
doi: 10.1016/j.agrformet.2011.09.017
[24]   Li Y Z, Li L H, Dong J Q, et al. 2021. Assessing MODIS carbon and water fluxes in grasslands and shrublands in semiarid regions using eddy covariance tower data. International Journal of Remote Sensing, 42(2): 595-616.
doi: 10.1080/01431161.2020.1811915
[25]   Liu B, Xiao Z N, Ma Z G. 2010. Relationship between pan evaporation and actual evaporation in different humid and arid regions of China. Plateau Meteorology, 29: 629-636. (in Chinese)
[26]   Liu X J, Zhan F B, Hong S, et al. 2012. A bibliometric study of earthquake research: 1900-2010. Scientometrics, 92: 747-765.
doi: 10.1007/s11192-011-0599-z
[27]   Lu Y L, Wang Y, Li B, et al. 2020. Temporal and spatial variations in haze research: a bibliometric analysis. Environmental Reviews, 28(1): 12-20.
[28]   Lu N, Wang M, Ning B, et al. 2018. Research advances in ecosystem services in drylands under global environmental changes. Current Opinion in Environmental Sustainability, 33: 92-98.
doi: 10.1016/j.cosust.2018.05.004
[29]   Lü Y H, Lü D, Feng X M, et al. 2021. Multi-scale analyses on the ecosystem services in the Chinese Loess Plateau and implications for dryland sustainability. Current Opinion in Environmental Sustainability, 48: 1-9.
doi: 10.1016/j.cosust.2020.08.001
[30]   Ma X L, Huete A, Cleverly J, et al. 2016. Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia. Scientific Reports, 6: 37747, doi: 10.1038/srep37747.
doi: 10.1038/srep37747
[31]   Maestre F T, Eldridge D J, Soliveres S, et al. 2016. Structure and functioning of dryland ecosystems in a changing world. Annual Review of Ecology, Evolution, and Systematics, 47: 215-237.
doi: 10.1146/ecolsys.2016.47.issue-1
[32]   Magnani F, Mencuccini M, Borghetti M, et al. 2007. The human footprint in the carbon cycle of temperate and boreal forests. Nature, 447: 849-851.
doi: 10.1038/nature05847
[33]   Menefee D, Rajan N, Cui S, et al. 2020. Carbon exchange of a dryland cotton field and its relationship with PlanetScope remote sensing data. Agricultural and Forest Meteorology, 294: 12, doi: 10.1016/j.agrformet.2020.108130.
doi: 10.1016/j.agrformet.2020.108130
[34]   Miao L J, Li S Y, Zhang F, et al. 2020. Future drought in the dry lands of Asia under the 1.5 and 2.0 °C warming scenarios. Earth's Future, 8(6): 13, doi: 10.1029/2019EF001337.
doi: 10.1029/2019EF001337
[35]   Oliveira J D, Pereira M G. 2021. Global soil science research on drylands: an analysis of research evolution, collaboration, and trends. Journal of Soils and Sediments, 21: 3856-3867
doi: 10.1007/s11368-021-03036-4
[36]   Piao S L, Sitch S, Ciais P, et al. 2013. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Change Biology, 19(7): 2117-2132.
doi: 10.1111/gcb.12187
[37]   Portner H O. 2008. Ecosystem effects of ocean acidification in times of ocean warming: a physiologist's view. Marine Ecology Progress Series, 373: 203-217.
doi: 10.3354/meps07768
[38]   Poulter B, Frank D, Ciais P, et al. 2014. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature, 509: 600-603.
doi: 10.1038/nature13376
[39]   Prăvălie R. 2016. Drylands extent and environmental issues. A global approach. Earth-Science Reviews, 161: 259-278.
doi: 10.1016/j.earscirev.2016.08.003
[40]   Reynolds J F, Stafford Smith D M, Lambin E F, et al. 2007. Global desertification: Building a science for dryland development. Science, 316(5826): 847-851.
pmid: 17495163
[41]   Schimel D S. 2010. Drylands in the earth system. Science, 327(5964): 418-419.
doi: 10.1126/science.1184946 pmid: 20093461
[42]   Seneviratne S I, Corti T, Davin E L, et al. 2010. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews, 99(3-4): 125-161.
doi: 10.1016/j.earscirev.2010.02.004
[43]   Smith W K, Dannenberg M P, Yan D, et al. 2019. Remote sensing of dryland ecosystem structure and function: Progress, challenges, and opportunities. Remote Sensing of Environment, 233: 111401, doi: 10.1016/j.rse.2019.111401.
doi: 10.1016/j.rse.2019.111401
[44]   Soegaard H, Jensen N O, Boegh E, et al. 2003. Carbon dioxide exchange over agricultural landscape using eddy correlation and footprint modelling. Agricultural and Forest Meteorology, 114(3-4): 153-173.
doi: 10.1016/S0168-1923(02)00177-6
[45]   Stoy P C. 2018. Deforestation intensifies hot days. Nature Climate Change, 8: 366-368.
doi: 10.1038/s41558-018-0153-6
[46]   Tagesson T, Fensholt R, Cappelaere B, et al. 2016. Spatiotemporal variability in carbon exchange fluxes across the Sahel. Agricultural and Forest Meteorology, 226-227: 108-118.
doi: 10.1016/j.agrformet.2016.05.013
[47]   Tarin T, Nolan R H, Medlyn B E, et al. 2020. Water-use efficiency in a semi-arid woodland with high rainfall variability. Global Change Biology, 26(2): 496-508.
doi: 10.1111/gcb.v26.2
[48]   Wang H B, Li X, Xiao J F, et al. 2021. Evapotranspiration components and water use efficiency from desert to alpine ecosystems in drylands. Agricultural and Forest Meteorology, 298-299: 108283, doi: 10.1016/j.agrformet.2020.108283.
doi: 10.1016/j.agrformet.2020.108283
[49]   Wang S, Song S, Zhang J Z, et al. 2021. Achieving a fit between social and ecological systems in drylands for sustainability. Current Opinion in Environmental Sustainability, 48: 53-58.
doi: 10.1016/j.cosust.2020.09.008
[50]   Wang Y, Lai N, Zuo J, et al. 2016. Characteristics and trends of research on waste-to-energy incineration: A bibliometric analysis, 1999-2015. Renewable and Sustainable Energy Reviews, 66: 95-104.
doi: 10.1016/j.rser.2016.07.006
[51]   Xiang H M, Zhang J E, Zhu Q D, 2015. A scientometric analysis of worldwide soil carbon stocks research from 2000 to 2014. Current Science, 109(3): 513-519.
[52]   Yang Z S, Zhang Q, Hao X C, et al. 2019. Changes in evapotranspiration over global semiarid regions 1984-2013. Journal of Geophysical Research-Atmospheres, 124(6): 2946-2963.
doi: 10.1029/2018JD029533
[53]   Yao J Y, Liu H P, Huang J P, et al. 2020. Accelerated dryland expansion regulates future variability in dryland gross primary production. Nature Communications, 11(1): 1665, doi: 10.1038/s41467-020-15515-2.
doi: 10.1038/s41467-020-15515-2
[54]   Yi C X, Pendall E, Ciais P. 2015. Focus on extreme events and the carbon cycle. Environmental Research Letters, 10(7): 70201, doi: 10.1088/1748-9326/10/7/070201.
doi: 10.1088/1748-9326/10/7/070201
[55]   Zhang K, Kimball J S, Nemani R R, et al. 2015. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Scientific Reports, 5: 15956, doi: 10.1038/srep15956.
doi: 10.1038/srep15956 pmid: 26514110
[56]   Zhang Y, Chen Y P. 2020. Research trends and areas of focus on the Chinese Loess Plateau: A bibliometric analysis during 1991-2018. CATENA, 194: 104798, doi: 10.1016/j.catena.2020.104798.
doi: 10.1016/j.catena.2020.104798
[57]   Zhu L L. 1999. Basic research in China. Science, 283: 637-637.
doi: 10.1126/science.283.5402.637
[58]   Zscheischler J, Reichstein M, Harmeling S, et al. 2014. Extreme events in gross primary production: a characterization across continents. Biogeosciences, 11: 2909-2924.
doi: 10.5194/bg-11-2909-2014
[59]   Zyoud S H. 2016. Global research trends of Middle East respiratory syndrome coronavirus: a bibliometric analysis. BMC Infectious Diseases, 16: 255, doi: 10.1186/s12879-016-1600-5.
doi: 10.1186/s12879-016-1600-5
[1] YU Yang, CHEN Xi, Ireneusz MALIK, Malgorzata WISTUBA, CAO Yiguo, HOU Dongde, TA Zhijie, HE Jing, ZHANG Lingyun, YU Ruide, ZHANG Haiyan, SUN Lingxiao. Spatiotemporal changes in water, land use, and ecosystem services in Central Asia considering climate changes and human activities[J]. Journal of Arid Land, 2021, 13(9): 881-890.
[2] Farhad YAZDANDOOST, Sogol MORADIAN. Climate change impacts on the streamflow of Zarrineh River, Iran[J]. Journal of Arid Land, 2021, 13(9): 891-904.
[3] BAI Jie, LI Junli, BAO Anmin, CHANG Cun. Spatial-temporal variations of ecological vulnerability in the Tarim River Basin, Northwest China[J]. Journal of Arid Land, 2021, 13(8): 814-834.
[4] WU Jun, DENG Guoning, ZHOU Dongmei, ZHU Xiaoyan, MA Jing, CEN Guozhang, JIN Yinli, ZHANG Jun. Effects of climate change and land-use changes on spatiotemporal distributions of blue water and green water in Ningxia, Northwest China[J]. Journal of Arid Land, 2021, 13(7): 674-687.
[5] WANG Yuejian, GU Xinchen, YANG Guang, YAO Junqiang, LIAO Na. Impacts of climate change and human activities on water resources in the Ebinur Lake Basin, Northwest China[J]. Journal of Arid Land, 2021, 13(6): 581-598.
[6] SA Chula, MENG Fanhao, LUO Min, LI Chenhao, WANG Mulan, ADIYA Saruulzaya, BAO Yuhai. Spatiotemporal variation in snow cover and its effects on grassland phenology on the Mongolian Plateau[J]. Journal of Arid Land, 2021, 13(4): 332-349.
[7] Abdulrahim M AL-ISMAILI, Moustafa A FADEL, Hemantha JAYASURIYA, L H Janitha JEEWANTHA, Adel AL-MAHDOURI, Talal AL-SHUKEILI. Potential reduction in water consumption of greenhouse evaporative coolers in arid areas via earth-tube heat exchangers[J]. Journal of Arid Land, 2021, 13(4): 388-396.
[8] Ayad M F AL-QURAISHI, Heman A GAZNAYEE, Mattia CRESPI. Drought trend analysis in a semi-arid area of Iraq based on Normalized Difference Vegetation Index, Normalized Difference Water Index and Standardized Precipitation Index[J]. Journal of Arid Land, 2021, 13(4): 413-430.
[9] ZHANG Yongkun, HUANG Mingbin. Spatial variability and temporal stability of actual evapotranspiration on a hillslope of the Chinese Loess Plateau[J]. Journal of Arid Land, 2021, 13(2): 189-204.
[10] Sanim BISSENBAYEVA, Jilili ABUDUWAILI, Assel SAPAROVA, Toqeer AHMED. Long-term variations in runoff of the Syr Darya River Basin under climate change and human activities[J]. Journal of Arid Land, 2021, 13(1): 56-70.
[11] Adilov BEKZOD, Shomurodov HABIBULLO, FAN Lianlian, LI Kaihui, MA Xuexi, LI Yaoming. Transformation of vegetative cover on the Ustyurt Plateau of Central Asia as a consequence of the Aral Sea shrinkage[J]. Journal of Arid Land, 2021, 13(1): 71-87.
[12] HUANG Xiaotao, LUO Geping, CHEN Chunbo, PENG Jian, ZHANG Chujie, ZHOU Huakun, YAO Buqing, MA Zhen, XI Xiaoyan. How precipitation and grazing influence the ecological functions of drought-prone grasslands on the northern slopes of the Tianshan Mountains, China?[J]. Journal of Arid Land, 2021, 13(1): 88-97.
[13] Farzaneh KHAJOEI NASAB, Ahmadreza MEHRABIAN, Hossein MOSTAFAVI. Mapping the current and future distributions of Onosma species endemic to Iran[J]. Journal of Arid Land, 2020, 12(6): 1031-1045.
[14] Mahsa MIRDASHTVAN, Mohsen MOHSENI SARAVI. Influence of non-stationarity and auto-correlation of climatic records on spatio-temporal trend and seasonality analysis in a region with prevailing arid and semi-arid climate, Iran[J]. Journal of Arid Land, 2020, 12(6): 964-983.
[15] Samia S CORTéS, Juan I WHITWORTH-HULSE, Eduardo L PIOVANO, Diego E GURVICH, Patricio N MAGLIANO. Changes in rainfall partitioning caused by the replacement of native dry forests of Lithraea molleoides by exotic plantations of Pinus elliottii in the dry Chaco mountain forests, central Argentina[J]. Journal of Arid Land, 2020, 12(5): 717-729.