Research article |
|
|
|
|
A bibliometric analysis of carbon exchange in global drylands |
LIU Zhaogang1,2, CHEN Zhi1,2,3,*(), YU Guirui1,2,3, ZHANG Tianyou4, YANG Meng1,2 |
1Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China 2College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China 3Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing 101408, China 4College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China |
|
|
Abstract Drylands refer to regions with an aridity index lower than 0.65, and billions of people depend on services provided by the critically important ecosystems in these areas. How ecosystem carbon exchange in global drylands (CED) occurs and how climate change affects CED are critical to the global carbon cycle. Here, we performed a comprehensive bibliometric study on the fields of annual publications, marked journals, marked institutions, marked countries, popular keywords, and their temporal evolution to understand the temporal trends of CED research over the past 30 a (1991-2020). We found that the annual scientific publications on CED research increased significantly at an average growth rate of 7.93%. Agricultural Water Management ranked first among all journals and had the most citations. The ten most productive institutions were centered on drylands in America, China, and Australia that had the largest number and most citations of publications on CED research. "Climate change" and climate-related (such as "drought", "precipitation", "temperature", and "rainfall") research were found to be the most popular study areas. Keywords were classified into five clusters, indicating the five main research focuses on CED studies: hydrological cycle, effects of climate change, carbon and water balance, productivity, and carbon-nitrogen-phosphorous coupling cycles. The temporal evolution of keywords further showed that the areas of focus on CED studies were transformed from classical pedology and agricultural research to applied ecology and then to global change ecological research over the past 30 a. In future CED studies, basic themes (such as "water", "yield", and "salinity") and motor themes (such as "climate change", "sustainability", and "remote sensing") will be the focus of research on CED. In particular, multiple integrated methods to understand climate change and ecosystem sustainability are potential new research trends and hotspots.
|
Received: 01 July 2021
Published: 10 November 2021
|
Corresponding Authors:
CHEN Zhi (E-mail: chenz@igsnrr.ac.cn)
|
|
|
[1] |
Abdi A M, Boke-Olén N, Jin H, et al. 2019. First assessment of the plant phenology index (PPI) for estimating gross primary productivity in African semi-arid ecosystems. International Journal of Applied Earth Observation and Geoinformation, 78: 249-260.
doi: 10.1016/j.jag.2019.01.018
|
|
|
[2] |
Ahakpaz F, Abdi H, Neyestani E, et al. 2021. Genotype-by-environment interaction analysis for grain yield of barley genotypes under dryland conditions and the role of monthly rainfall. Agricultural Water Management, 245: 106665, doi: 10.1016/j.agwat.2020.106665.
doi: 10.1016/j.agwat.2020.106665
|
|
|
[3] |
Ahlstrom A, Raupach M R, Schurgers G, et al. 2015. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science, 348(6237): 895-899.
doi: 10.1126/science.aaa1668
|
|
|
[4] |
Arfaoui A, Ibrahimi K, Trabelsi F. 2019. Biochar application to soil under arid conditions: a bibliometric study of research status and trends. Arabian Journal of Geosciences, 12: 45, doi: 10.1007/s12517-018-4166-2.
doi: 10.1007/s12517-018-4166-2
|
|
|
[5] |
Aria M, Cuccurullo C. 2017. Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4): 959-975.
doi: 10.1016/j.joi.2017.08.007
|
|
|
[6] |
Barrow C J. 1992. World Atlas of Desertification (United Nations Environment Programme), edited by N. Middleton and D. S. G. Thomas. Edward Arnold, London, 1992. ISBN 0 340 55512 2, £89.50 (hardback), ix + 69 pp. Land Degradation & Development, 3(4): 249-249.
|
|
|
[7] |
Berdugo M, Kéfi S, Soliveres S, et al. 2017. Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands. Nature Ecology & Evolution, 1: 3, doi: 10.1038/s41559-016-0003.
doi: 10.1038/s41559-016-0003
|
|
|
[8] |
Biederman J A, Scott R L, Bell T W, et al. 2017. CO2 exchange and evapotranspiration across dryland ecosystems of southwestern North America. Global Change Biology, 23(10): 4204-4221.
doi: 10.1111/gcb.13686
pmid: 28295911
|
|
|
[9] |
Chen D, Liu Z, Luo Z H, et al. 2016. Bibliometric and visualized analysis of emergy research. Ecological Engineering, 90: 285-293.
doi: 10.1016/j.ecoleng.2016.01.026
|
|
|
[10] |
Chen Z, Yu G R, Zhu X J, et al. 2015. Covariation between gross primary production and ecosystem respiration across space and the underlying mechanisms: A global synthesis. Agricultural and Forest Meteorology, 203: 180-190.
doi: 10.1016/j.agrformet.2015.01.012
|
|
|
[11] |
Chen Z, Yu G R, Wang Q F. 2018. Ecosystem carbon use efficiency in China: Variation and influence factors. Ecological Indicators, 90: 316-323.
doi: 10.1016/j.ecolind.2018.03.025
|
|
|
[12] |
Chiu W T, Ho Y S. 2007. Bibliometric analysis of tsunami research. Scientometrics, 73: 3-17.
doi: 10.1007/s11192-005-1523-1
|
|
|
[13] |
Choi J H, Yi S Y, Lee K C. 2011. Analysis of keyword networks in MIS research and implications for predicting knowledge evolution. Information & Management, 48(8): 371-381.
doi: 10.1016/j.im.2011.09.004
|
|
|
[14] |
Cobo M J, López-Herrera A G, Herrera-Viedma E, et al. 2011. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, 5(1): 146-166.
doi: 10.1016/j.joi.2010.10.002
|
|
|
[15] |
Echchelh A, Hess T, Sakrabani R. 2018. Reusing oil and gas produced water for irrigation of food crops in drylands. Agricultural Water Management, 206: 124-134.
doi: 10.1016/j.agwat.2018.05.006
|
|
|
[16] |
Grace J, Rayment M. 2000. Respiration in the balance. Nature, 404: 819-820.
doi: 10.1038/35009170
|
|
|
[17] |
Hessen D O, Ågren G I, Anderson T R, et al. 2004. Carbon sequestration in ecosystems: The role of stoichiometry. Ecology, 85(5): 1179-1192.
doi: 10.1890/02-0251
|
|
|
[18] |
Hobbie S E, Nadelhoffer K J, Högberg P. 2002. A synthesis: The role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant and Soil, 242: 163-170.
doi: 10.1023/A:1019670731128
|
|
|
[19] |
Huang J, Li Y, Fu C, et al. 2017. Dryland climate change: Recent progress and challenges. Reviews of Geophysics, 55(3): 719-778.
doi: 10.1002/rog.v55.3
|
|
|
[20] |
Huang J P, Yu H P, Guan X D, et al. 2016. Accelerated dryland expansion under climate change. Nature Climate Change, 6: 166-171.
doi: 10.1038/nclimate2837
|
|
|
[21] |
Ji Q, Pang X P, Zhao X. 2014. A bibliometric analysis of research on Antarctica during 1993-2012. Scientometrics, 101: 1925-1939.
doi: 10.1007/s11192-014-1332-5
|
|
|
[22] |
Kou D, Ma W H, Ding J Z, et al. 2018. Dryland soils in northern China sequester carbon during the early 2000s warming hiatus period. Functional Ecology, 32(6): 1620-1630.
doi: 10.1111/fec.2018.32.issue-6
|
|
|
[23] |
Krishnan P, Meyers T P, Scott R L, et al. 2012. Energy exchange and evapotranspiration over two temperate semi-arid grasslands in North America. Agricultural and Forest Meteorology, 153: 31-44.
doi: 10.1016/j.agrformet.2011.09.017
|
|
|
[24] |
Li Y Z, Li L H, Dong J Q, et al. 2021. Assessing MODIS carbon and water fluxes in grasslands and shrublands in semiarid regions using eddy covariance tower data. International Journal of Remote Sensing, 42(2): 595-616.
doi: 10.1080/01431161.2020.1811915
|
|
|
[25] |
Liu B, Xiao Z N, Ma Z G. 2010. Relationship between pan evaporation and actual evaporation in different humid and arid regions of China. Plateau Meteorology, 29: 629-636. (in Chinese)
|
|
|
[26] |
Liu X J, Zhan F B, Hong S, et al. 2012. A bibliometric study of earthquake research: 1900-2010. Scientometrics, 92: 747-765.
doi: 10.1007/s11192-011-0599-z
|
|
|
[27] |
Lu Y L, Wang Y, Li B, et al. 2020. Temporal and spatial variations in haze research: a bibliometric analysis. Environmental Reviews, 28(1): 12-20.
|
|
|
[28] |
Lu N, Wang M, Ning B, et al. 2018. Research advances in ecosystem services in drylands under global environmental changes. Current Opinion in Environmental Sustainability, 33: 92-98.
doi: 10.1016/j.cosust.2018.05.004
|
|
|
[29] |
Lü Y H, Lü D, Feng X M, et al. 2021. Multi-scale analyses on the ecosystem services in the Chinese Loess Plateau and implications for dryland sustainability. Current Opinion in Environmental Sustainability, 48: 1-9.
doi: 10.1016/j.cosust.2020.08.001
|
|
|
[30] |
Ma X L, Huete A, Cleverly J, et al. 2016. Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia. Scientific Reports, 6: 37747, doi: 10.1038/srep37747.
doi: 10.1038/srep37747
|
|
|
[31] |
Maestre F T, Eldridge D J, Soliveres S, et al. 2016. Structure and functioning of dryland ecosystems in a changing world. Annual Review of Ecology, Evolution, and Systematics, 47: 215-237.
doi: 10.1146/ecolsys.2016.47.issue-1
|
|
|
[32] |
Magnani F, Mencuccini M, Borghetti M, et al. 2007. The human footprint in the carbon cycle of temperate and boreal forests. Nature, 447: 849-851.
doi: 10.1038/nature05847
|
|
|
[33] |
Menefee D, Rajan N, Cui S, et al. 2020. Carbon exchange of a dryland cotton field and its relationship with PlanetScope remote sensing data. Agricultural and Forest Meteorology, 294: 12, doi: 10.1016/j.agrformet.2020.108130.
doi: 10.1016/j.agrformet.2020.108130
|
|
|
[34] |
Miao L J, Li S Y, Zhang F, et al. 2020. Future drought in the dry lands of Asia under the 1.5 and 2.0 °C warming scenarios. Earth's Future, 8(6): 13, doi: 10.1029/2019EF001337.
doi: 10.1029/2019EF001337
|
|
|
[35] |
Oliveira J D, Pereira M G. 2021. Global soil science research on drylands: an analysis of research evolution, collaboration, and trends. Journal of Soils and Sediments, 21: 3856-3867
doi: 10.1007/s11368-021-03036-4
|
|
|
[36] |
Piao S L, Sitch S, Ciais P, et al. 2013. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Change Biology, 19(7): 2117-2132.
doi: 10.1111/gcb.12187
|
|
|
[37] |
Portner H O. 2008. Ecosystem effects of ocean acidification in times of ocean warming: a physiologist's view. Marine Ecology Progress Series, 373: 203-217.
doi: 10.3354/meps07768
|
|
|
[38] |
Poulter B, Frank D, Ciais P, et al. 2014. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature, 509: 600-603.
doi: 10.1038/nature13376
|
|
|
[39] |
Prăvălie R. 2016. Drylands extent and environmental issues. A global approach. Earth-Science Reviews, 161: 259-278.
doi: 10.1016/j.earscirev.2016.08.003
|
|
|
[40] |
Reynolds J F, Stafford Smith D M, Lambin E F, et al. 2007. Global desertification: Building a science for dryland development. Science, 316(5826): 847-851.
pmid: 17495163
|
|
|
[41] |
Schimel D S. 2010. Drylands in the earth system. Science, 327(5964): 418-419.
doi: 10.1126/science.1184946
pmid: 20093461
|
|
|
[42] |
Seneviratne S I, Corti T, Davin E L, et al. 2010. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews, 99(3-4): 125-161.
doi: 10.1016/j.earscirev.2010.02.004
|
|
|
[43] |
Smith W K, Dannenberg M P, Yan D, et al. 2019. Remote sensing of dryland ecosystem structure and function: Progress, challenges, and opportunities. Remote Sensing of Environment, 233: 111401, doi: 10.1016/j.rse.2019.111401.
doi: 10.1016/j.rse.2019.111401
|
|
|
[44] |
Soegaard H, Jensen N O, Boegh E, et al. 2003. Carbon dioxide exchange over agricultural landscape using eddy correlation and footprint modelling. Agricultural and Forest Meteorology, 114(3-4): 153-173.
doi: 10.1016/S0168-1923(02)00177-6
|
|
|
[45] |
Stoy P C. 2018. Deforestation intensifies hot days. Nature Climate Change, 8: 366-368.
doi: 10.1038/s41558-018-0153-6
|
|
|
[46] |
Tagesson T, Fensholt R, Cappelaere B, et al. 2016. Spatiotemporal variability in carbon exchange fluxes across the Sahel. Agricultural and Forest Meteorology, 226-227: 108-118.
doi: 10.1016/j.agrformet.2016.05.013
|
|
|
[47] |
Tarin T, Nolan R H, Medlyn B E, et al. 2020. Water-use efficiency in a semi-arid woodland with high rainfall variability. Global Change Biology, 26(2): 496-508.
doi: 10.1111/gcb.v26.2
|
|
|
[48] |
Wang H B, Li X, Xiao J F, et al. 2021. Evapotranspiration components and water use efficiency from desert to alpine ecosystems in drylands. Agricultural and Forest Meteorology, 298-299: 108283, doi: 10.1016/j.agrformet.2020.108283.
doi: 10.1016/j.agrformet.2020.108283
|
|
|
[49] |
Wang S, Song S, Zhang J Z, et al. 2021. Achieving a fit between social and ecological systems in drylands for sustainability. Current Opinion in Environmental Sustainability, 48: 53-58.
doi: 10.1016/j.cosust.2020.09.008
|
|
|
[50] |
Wang Y, Lai N, Zuo J, et al. 2016. Characteristics and trends of research on waste-to-energy incineration: A bibliometric analysis, 1999-2015. Renewable and Sustainable Energy Reviews, 66: 95-104.
doi: 10.1016/j.rser.2016.07.006
|
|
|
[51] |
Xiang H M, Zhang J E, Zhu Q D, 2015. A scientometric analysis of worldwide soil carbon stocks research from 2000 to 2014. Current Science, 109(3): 513-519.
|
|
|
[52] |
Yang Z S, Zhang Q, Hao X C, et al. 2019. Changes in evapotranspiration over global semiarid regions 1984-2013. Journal of Geophysical Research-Atmospheres, 124(6): 2946-2963.
doi: 10.1029/2018JD029533
|
|
|
[53] |
Yao J Y, Liu H P, Huang J P, et al. 2020. Accelerated dryland expansion regulates future variability in dryland gross primary production. Nature Communications, 11(1): 1665, doi: 10.1038/s41467-020-15515-2.
doi: 10.1038/s41467-020-15515-2
|
|
|
[54] |
Yi C X, Pendall E, Ciais P. 2015. Focus on extreme events and the carbon cycle. Environmental Research Letters, 10(7): 70201, doi: 10.1088/1748-9326/10/7/070201.
doi: 10.1088/1748-9326/10/7/070201
|
|
|
[55] |
Zhang K, Kimball J S, Nemani R R, et al. 2015. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Scientific Reports, 5: 15956, doi: 10.1038/srep15956.
doi: 10.1038/srep15956
pmid: 26514110
|
|
|
[56] |
Zhang Y, Chen Y P. 2020. Research trends and areas of focus on the Chinese Loess Plateau: A bibliometric analysis during 1991-2018. CATENA, 194: 104798, doi: 10.1016/j.catena.2020.104798.
doi: 10.1016/j.catena.2020.104798
|
|
|
[57] |
Zhu L L. 1999. Basic research in China. Science, 283: 637-637.
doi: 10.1126/science.283.5402.637
|
|
|
[58] |
Zscheischler J, Reichstein M, Harmeling S, et al. 2014. Extreme events in gross primary production: a characterization across continents. Biogeosciences, 11: 2909-2924.
doi: 10.5194/bg-11-2909-2014
|
|
|
[59] |
Zyoud S H. 2016. Global research trends of Middle East respiratory syndrome coronavirus: a bibliometric analysis. BMC Infectious Diseases, 16: 255, doi: 10.1186/s12879-016-1600-5.
doi: 10.1186/s12879-016-1600-5
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|