Please wait a minute...
Journal of Arid Land  2022, Vol. 14 Issue (4): 359-373    DOI: 10.1007/s40333-022-0092-y     CSTR: 32276.14.s40333-022-0092-y
Research article     
Impact of rainfed and irrigated agriculture systems on soil carbon stock under different climate scenarios in the semi-arid region of Brazil
André L CARVALHO1,*(), Renato A ARAÚJO-NETO1, Guilherme B LYRA1, Carlos E P CERRI2, Stoécio M F MAIA3
1Center for Agrarian Sciences, Federal University of Alagoas, Rio Largo 57072-900, Brazil
2Luiz de Queiroz College of Agriculture, The University of São Paulo, Piracicaba 13418-900, Brazil
3Federal Institute of Alagoas, Marechal Deodoro 57160-000, Brazil
Download: HTML     PDF(916KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Understanding the dynamics of soil organic carbon (SOC) is of fundamental importance in land use and management, whether in the current researches or in future scenarios of agriculture systems considering climate change. In order to evaluate SOC stock of the three districts (Delmiro Gouveia, Pariconha, and Inhapi districts) in the semi-arid region of Brazil in rainfed and irrigated agriculture systems under different climate scenarios using the Century model, we obtained RCP4.5 and RCP8.5 climate scenarios derived from the Eta Regional Climate Model (Eta-HadGEM2-ES and Eta-MIROC5) from the National Institute for Space Research, and then input the data of bulk density, pH, soil texture, maximum temperature, minimum temperature, and rainfall into the soil and climate files of the Century model. The results of this study showed that the Eta-HadGEM2-ES model was effective in estimating air temperature in the future period. In rainfed agriculture system, SOC stock under the baseline scenario was lower than that under RCP4.5 and RCP8.5 climate scenarios, while in irrigated agriculture system, SOC stock in the almost all climate scenarios (RCP4.5 and RCP8.5) and models (Eta-HadGEM2-ES and Eta-MIROC5) will increase by 2100. The results of this study will help producers in the semi-arid region of Brazil adopt specific agriculture systems aimed at mitigating greenhouse gas emissions.



Key wordssoil carbon stock      agriculture systems      climate scenarios      Century model      semi-arid region     
Received: 29 January 2021      Published: 30 April 2022
Corresponding Authors: *André L CARVALHO (E-mail: del.andre2@hotmail.com)
Cite this article:

André L CARVALHO, Renato A ARAÚJO-NETO, Guilherme B LYRA, Carlos E P CERRI, Stoécio M F MAIA. Impact of rainfed and irrigated agriculture systems on soil carbon stock under different climate scenarios in the semi-arid region of Brazil. Journal of Arid Land, 2022, 14(4): 359-373.

URL:

http://jal.xjegi.com/10.1007/s40333-022-0092-y     OR     http://jal.xjegi.com/Y2022/V14/I4/359

District Site Adopted management systems in differnet period
Native vegetation Cultivation Pasture Fallow
Delmiro Gouveia EqNV 1900-2014 - - -
EqCC15 1900-1999 2000-2003, 2005-2009, and 2011-2014 - 2004 and 2010
EqCC4 1900-2010 2011-2014 - -
Pariconha EpNV 1900-2014 - - -
EpPa10 1900-1973 1974-1975, 1978-1982, 1985-1989, 1992-1996, and 1999-2003 2005-2014 1976-1977, 1983-1984, 1990-1991, 1997-1998, and 2004
EpCC4 1900-2010 2011-2014 - -
Inhapi U1NV 1900-2014 - - -
U1CC30 1900-1985 1986-1990, 1992-1996, 1999-2003, 2006-2010, and 2012-2014 - 1991, 1997-1998, 2004-2005, and 2011
Table 1 Adopted land management systems in different period of Delmiro Gouveia, Pariconha, and Inhapi districts
District Site Soil texture (%) Bulk density (g/cm3) pH
Sand Silt Clay
Delmiro Gouveia EqNV 88.8±1.8 2.7±2.8 8.5±1.0 1.4±0.02 4.4±0.1
EqCC15 86.5±2.3 5.0±6.9 8.4±4.6 1.5±0.01 5.0±0.1
EqCC4 88.6±4.0 4.6±1.6 6.8±2.4 1.4±0.00 4.7±0.3
Pariconha EpNV 88.5±1.2 7.2±2.4 4.3±1.3 1.5±0.01 5.1±0.1
EpPa10 85.3±2.4 11.6±1.7 3.0±0.6 1.6±0.02 5.9±0.1
EpCC4 77.8±3.7 14.7±3.0 7.5±0.7 1.5±0.02 5.4±0.0
Inhapi U1NV 64.3±3.5 15.9±2.4 19.8±5.8 1.5±0.01 5.4±0.2
U1CC30 58.3±6.3 19.9±4.8 21.8±1.6 1.5±0.01 5.9±0.1
Table 2 Soil texture, bulk density, and pH in Delmiro Gouveia, Pariconha, and Inhapi districts
Month Eta-HadGEM2-ES
Delmiro Gouveia District Pariconha District Inhapi District
Tmin (°C) Tmax (°C) Tmin (°C) Tmax (°C) Tmin (°C) Tmax (°C)
Obs Sim Corr Obs Sim Corr Obs Sim Corr Obs Sim Corr Obs Sim Corr Obs Sim Corr
Jan 21.2 18.2 21.2 34.5 32.7 35.2 21.2 18.1 21.3 34.5 31.8 35.2 21.2 18.1 21.3 34.5 31.5 35.2
Feb 21.5 19.6 22.1 34.6 32.4 34.9 21.5 19.2 22.0 34.6 31.5 34.8 21.5 19.1 21.9 34.6 31.3 34.9
Mar 21.6 19.7 21.7 34.3 32.4 34.5 21.6 19.4 21.7 34.3 31.6 34.5 21.6 19.3 21.7 34.3 31.4 34.5
Apr 21.2 18.4 20.9 32.6 31.1 33.0 21.2 18.2 21.0 32.6 30.3 33.0 21.2 18.1 21.0 32.6 30.0 33.0
May 20.3 17.1 20.2 29.6 29.4 30.0 20.3 17.0 20.3 29.6 28.7 30.1 20.3 17.0 20.3 29.6 28.3 30.1
Jun 19.2 15.5 18.9 28.0 28.5 28.5 19.2 15.6 19.0 28.0 27.7 28.5 19.2 15.7 19.0 28.0 27.4 28.5
Jul 18.3 14.9 18.2 27.4 28.4 27.8 18.3 15.1 18.2 27.4 27.7 27.8 18.3 15.1 18.2 27.4 27.3 27.8
Aug 18.1 15.0 17.8 28.2 29.2 28.6 18.1 15.1 17.9 28.2 28.4 28.5 18.1 15.1 17.9 28.2 28.0 28.6
Sep 19.1 15.7 18.8 30.7 30.7 31.1 19.1 15.8 18.8 30.7 30.0 31.0 19.1 15.8 18.8 30.7 29.7 31.0
Oct 20.2 16.7 20.2 33.4 32.1 34.0 20.2 16.7 20.2 33.4 31.3 34.0 20.2 16.6 20.1 33.4 31.0 34.0
Nov 21.0 17.3 21.0 34.8 32.9 35.8 21.0 17.3 21.0 34.8 32.2 35.8 21.0 17.3 21.0 34.8 31.9 35.9
Dec 21.2 18.0 21.2 34.6 32.9 35.3 21.2 17.9 21.2 34.6 32.1 35.3 21.2 17.9 21.2 34.6 31.8 35.3
Month Eta-MIROC5
Delmiro Gouveia District Pariconha District Inhapi District
Tmin (°C) Tmax (°C) Tmin (°C) Tmax (°C) Tmin (°C) Tmax (°C)
Obs Sim Corr Obs Sim Corr Obs Sim Corr Obs Sim Corr Obs Sim Corr Obs Sim Corr
Jan 21.2 17.6 20.7 34.5 29.7 32.2 21.2 17.3 20.5 34.5 28.8 32.2 21.2 17.2 20.4 34.5 28.4 32.0
Feb 21.5 18.5 21.1 34.6 29.2 31.7 21.5 18.0 20.8 34.6 28.4 31.7 21.5 17.9 20.7 34.6 28.0 31.6
Mar 21.6 18.9 20.9 34.3 28.8 30.9 21.6 18.3 20.7 34.3 28.0 30.9 21.6 18.2 20.6 34.3 27.6 30.8
Apr 21.2 18.2 20.7 32.6 27.4 29.3 21.2 17.7 20.4 32.6 26.5 29.1 21.2 17.5 20.4 32.6 26.0 29.0
May 20.3 17.0 20.2 29.6 26.4 27.0 20.3 16.7 20.0 29.6 25.6 27.0 20.3 16.6 20.0 29.6 25.1 26.8
Jun 19.2 16.4 19.7 28.0 26.2 26.2 19.2 16.2 19.5 28.0 25.5 26.2 19.2 16.1 19.5 28.0 25.0 26.1
Jul 18.3 15.4 18.6 27.4 26.6 26.0 18.3 15.3 18.4 27.4 25.9 26.0 18.3 15.2 18.3 27.4 25.5 25.9
Aug 18.1 14.6 17.5 28.2 27.2 26.5 18.1 14.6 17.3 28.2 26.4 26.6 18.1 14.5 17.3 28.2 26.0 26.5
Sep 19.1 14.8 17.9 30.7 28.9 29.3 19.1 14.7 17.8 30.7 28.3 29.3 19.1 14.6 17.7 30.7 27.9 29.3
Oct 20.2 15.3 18.8 33.4 30.7 32.6 20.2 15.2 18.7 33.4 30.0 32.6 20.2 15.1 18.6 33.4 29.6 32.6
Nov 21.0 16.6 20.2 34.8 31.3 34.2 21.0 16.3 20.0 34.8 30.6 34.3 21.0 16.3 20.0 34.8 30.3 34.3
Dec 21.2 17.4 20.6 34.6 30.8 33.2 21.2 17.1 20.4 34.6 30.0 33.2 21.2 17.0 20.3 34.6 29.6 33.1
Table 3 Maximum and minimum air temperature in different month from 1960 to 2005 using the Eta-HadGEM2-ES and Eta-MIROC5 models in Delmiro Gouveia, Pariconha, and Inhapi districts
Climate scenario Eta-HadGEM2-ES model
Delmiro Gouveia District Pariconha District Inhapi District
T2006 T2100 Difference T2006 T2100 Difference T2006 T2100 Difference
RCP4.5 26.5 28.3 1.8 26.5 28.3 1.8 26.6 28.3 1.7
RCP8.5 26.5 31.2 4.8 26.5 31.2 4.7 26.5 31.2 4.7
Climate scenario Eta-MIROC5 model
Delmiro Gouveia District Pariconha District Inhapi District
T2006 T2100 Difference T2006 T2100 Difference T2006 T2100 Difference
RCP4.5 26.0 27.5 1.5 26.0 27.5 1.5 26.0 27.5 1.5
RCP8.5 25.7 29.0 3.2 25.8 29.1 3.3 25.8 29.1 3.3
Table 4 Mean air temperature in 2006 and 2100 and air temperature difference between the two years under RCP4.5 and RCP8.5 climate scenarios using the Eta-HadGEM2-ES and Eta-MIROC5 models in Delmiro Gouveia, Pariconha, and Inhapi districts
Fig. 1 Observed mean monthly rainfall, simulated mean monthly rainfall, and simulated mean monthly rainfall after correction using Eta-HadGEM2-ES (a, b, and c) and Eta-MIROC5 (d, e, and f) models in Delmiro Gouveia, Pariconha, and Inhapi districts
Fig. 2 Simulated annual rainfall under RCP4.5 and RCP8.5 climate scenarios using Eta-HadGEM2-ES (a, b, and c) and Eta-MIROC5 (d, e, and f) models during 2006-2100 in Delmiro Gouveia, Pariconha, and Inhapi districts. Mean rainfall is the average of simulated annual rainfall under baseline scenario.
Fig. 3 SOC stock in rainfed agriculture system under RCP4.5 and RCP 8.5 climate scenarios using the Eta-HadGEM2-ES (a, c, e, g, and i) and Eta-MIROC5 (b, d, f, h, and j) models in Delmiro Gouveia, Pariconha, and Inhapi districts
Fig. 4 SOC stock in irrigated agriculture system under RCP4.5 and RCP 8.5 climate scenarios using the Eta-HadGEM2-ES (a, c, e, g, and i) and Eta-MIROC5 (b, d, f, h, and j) models in Delmiro Gouveia, Pariconha, and Inhapi districts
[1]   Aguilera E, Lassaletta L, Gattinger A, et al. 2013. Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: A meta-analysis. Agriculture, Ecosystems and Environment, 168: 25-36.
doi: 10.1016/j.agee.2013.02.003
[2]   Althoff T D, Menezes R S C, Carvalho A L, et al. 2016. Climate change impacts on the sustainability of the firewood harvest and vegetation and soil carbon stocks in a tropical dry forest in Santa Teresinha Municipality, Northeast Brazil. Forest Ecology and Management, 360: 367-375.
doi: 10.1016/j.foreco.2015.10.001
[3]   Althoff T D, Menezes R S C, Pinto A S, et al. 2018. Adaptation of the century model to simulate C and N dynamics of Caatinga dry forest before and after deforestation. Agriculture, Ecosystems and Environment, 254: 26-34.
doi: 10.1016/j.agee.2017.11.016
[4]   Álvaro-Fuentes J, López M V, Arrúe J L, et al. 2009. Tillage and cropping effects on soil organic carbon in Mediterranean semiarid agroecosystems: Testing the Century model. Agriculture, Ecosystems and Environment, 134: 211-217.
doi: 10.1016/j.agee.2009.07.001
[5]   Álvaro-Fuentes J, Paustian K. 2011. Potential soil carbon sequestration in a semiarid Mediterranean agroecosystem under climate change: Quantifying management and climate effects. Plant and Soil, 338: 261-272.
doi: 10.1007/s11104-010-0304-7
[6]   Araújo Neto R A. 2019. Use of the Century model in soil carbon dynamics in the semiarid region of Alagoas:future climate scenarios in irrigated and rainfed environments. PhD Dissertation. Rio Largo: Federal University of Alagoas, 1-113. (in Portuguese)
[7]   Araújo Neto R A, Maia S M F, Althoff T D, et al. 2021. Simulation of soil carbon changes due to conventional systems in the semi-arid region of Brazil: adaptation and validation of the century model. Carbon Management, 12(4): 399-410.
doi: 10.1080/17583004.2021.1962978
[8]   Bordin I, Neves C S V J, Medina C C, et al. 2008. Dry matter, carbon and nitrogen of soybean and maize roots in no-tillage and conventional tillage. Brazilian Agricultural Research, 43(12): 1785-1792. (in Portuguese)
[9]   Bortolon E S O, Mielniczuk J, Tornquist C G, et al. 2011. Validation of the Century model to estimate the impact of agriculture on soil organic carbon in Southern Brazil. Geoderma, 167-168: 156-166.
doi: 10.1016/j.geoderma.2011.08.008
[10]   Bortolon E S O, Mielniczuk J, Tornquist C G, et al. 2012. Potential to use the century model and GIS to assess the impact of agriculture on regional soil organic carbon stocks. Brazilian Journal of Soil Science, 36(3): 831-850. (in Portuguese)
[11]   Brandani C B, Abbruzzini T F, Williams S, et al. 2015. Simulation of management and soil interactions impacting SOC dynamics in sugarcane using the CENTURY model. Global Change Biology Bioenergy, 7(4): 646-657.
doi: 10.1111/gcbb.12175
[12]   Carvalho A L, Menezes R S C, Nóbrega R S, et al. 2015. Impact of climate changes on potential sugarcane yield in Pernambuco, northeastern region of Brazil. Renewable Energy, 78: 26-34.
doi: 10.1016/j.renene.2014.12.023
[13]   Carvalho A L, Santos D V, Marengo J A, et al. 2020. Impacts of extreme climate events on Brazilian agricultural production. Sustainability in Debate, 11(3): 197-210.
doi: 10.18472/SustDeb.v11n3.2020.33814
[14]   Castro C N. 2011. Transposition of the São Francisco River: project opportunity analysis. [2021-10-25]. https://www.ipea.gov.br/portal/index.php?option=com_content&view=article&id=9749 . (in Portuguese)
[15]   Castro C N. 2018. On irrigated agriculture in the semiarid region: a historical and current analysis of different policy options. [2021-10-25]. . (in Portuguese)
[16]   Cavalcanti E P, Silva V P R, Souza F A S. 2006. Computer program for the estimation of air temperature for the Northeast region of Brazil. Brazilian Journal of Agricultural and Environmental Engineering, 10(1): 140-147. (in Portuguese)
[17]   Cerri C E P, Paustian K, Bernoux M, et al. 2004. Modeling changes in soil organic matter in Amazon forest to pasture conversion with the Century model. Global Change Biology, 10(5): 815-832.
doi: 10.1111/j.1365-2486.2004.00759.x
[18]   Chou S C, Lyra A, Mourão C, et al. 2014. Assessment of climate change over South America under RCP 4.5 and 8.5 downscaling scenarios. American Journal of Climate Change, 3(5): 512-527.
doi: 10.4236/ajcc.2014.35043
[19]   Cidin A C M. 2016. Carbon stock in Brazilian soils and potential contribution to the mitigation of greenhouse gas emissions. MSc Thesis. Araras: Federal University of São Carlos. (in Portuguese)
[20]   Costa C A L. 2021. Semiarid Region of Paraíba: A Territorial Review. Areia: Federal University of Paraíba, 1-45. (in Portuguese)
[21]   Barreto O W. 1997. Manual of Soil Analysis Methods. Rio de Janeiro: Brazilian Agricultural Research Corporation. (in Portuguese)
[22]   Barros H C B. 2012. Research and Development Bulletin (Climatology of the State of Alagoas). Recife: Brazilian Agricultural Research Corporation. (in Portuguese)
[23]   Ferreira J G. 2019. The transposition of the waters of the São Francisco River in the response to the drought in the Brazilian Northeast: Chronology of the transformation of the idea into a work. Latin American Journal of International Relations, 1(2): 53-72. (in Portuguese)
[24]   Ghannoum O, Von Caemmerer S, Ziska L H, et al. 2000. The growth response of C4 plants to rising atmospheric CO2 partial pressure: a reassessment. Plant, Cell and Environment, 23: 931-942.
doi: 10.1046/j.1365-3040.2000.00609.x
[25]   Gois G, Souza J L, Silva P R T, et al. 2005. Characterization of desertification in the state of Alagoas using climatic variables. Brazilian Journal of Meteorology, 20(3): 301-314. (in Portuguese)
[26]   Guareschi R F, Pereira M G. 2013. Carbon, light organic matter and oxidizable fractions of organic carbon under alley systems. Brazilian Forest Research, 33(74): 109-114. (in Portuguese)
[27]   Hargreaves G H. 1974. Estimation of potential and crop evapotranspiration. Transactions of the ASAE, 17(4): 701-704.
doi: 10.13031/2013.36941
[28]   Hempel S, Frieler K, Warszawski L, et al. 2013. A trend-preserving bias correction-the ISI-MIP approach. Earth System Dynamics, 4(1): 219-236.
doi: 10.5194/esd-4-219-2013
[29]   IPCC. 2014. Mitigation of Climate Change. Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Edenhofer O, Pichs-Madruga R, Sokona Y, et al. Cambridge and New York: Cambridge University Press, 151.
[30]   Keesstra S D, Bouma J, Wallinga J, et al. 2016. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil, 2(2): 111-128.
doi: 10.5194/soil-2-111-2016
[31]   Keesstra S D, Mol G, De Leeuw J, et al. 2018. Soil-related Sustainable Development Goals: Four concepts to make land degradation neutrality and restoration work. Land, 7(4): 133, doi: 10.3390/land7040133.
doi: 10.3390/land7040133
[32]   Leakey A D B. 2009. Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proceedings of the Royal Society B: Biological Sciences, 276(1666): 2333-2343.
[33]   Leite L F C, Mendonça E S. 2003. Century model of soil organic matter dynamics: Equations and assumptions. Rural Science, 33(4): 679-686. (in Portuguese)
[34]   Lima L G, Miranda A R, Lima E F S, et al. 2019. Pesticides in the semiarid region of Alagoas: chemical-dependent agriculture and its contradictions. Diversitas Journal, 4(3): 829-847. (in Portuguese)
doi: 10.17648/diversitas-journal-v4i3.874
[35]   Linacre E T. 1977. A simple formula for estimating evapotranspiration rates in various climates, using temperature data alone. Agricultural Meteorology, 18(6): 409-424.
doi: 10.1016/0002-1571(77)90007-3
[36]   Machado P L O A. 2005. Soil carbon and the mitigation of global climate change. New Chemistry, 28(2): 329-334. (in Portuguese)
[37]   Marengo J A. 2014. Brazil's future climate. Journal of University of São Paulo, 103(1): 25-32. (in Portuguese)
[38]   Marengo J A, Cunha A P M A, Alves L M. 2016. The 2012-2015 drought in the semiarid region of Northeast Brazil in the historical context. [2021-05-16]. http://climanalise.cptec.inpe.br/-rclimanl/revista/pdf/30anos/marengoetal.pdf. (in Portuguese)
[39]   Meinshausen M, Smith S J, Calvin K, et al. 2011. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1-2): 213-241.
doi: 10.1007/s10584-011-0156-z
[40]   Ministry of National Integration. 2017a. Technical and scientific criteria for delimiting the Brazilian semiarid region and procedures for reviewing its scope. [2021-12-01]. https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/19287874/do1-2017-09-13-resolucao-n-107-de-27-de-julho-de-2017-19287788. (in Portuguese)
[41]   Ministry of National Integration. 2017b. Deliberative Council of the Northeast Development Superintendence. [2021-12-01]. https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/739568/do1-2017-12-05-resolucao-n-115-de-23-de-novembro-de-2017-739564. (in Portuguese)
[42]   Monteiro J M G, Angelotti F, Santos M M O. 2017. Adaptation and mitigation to climate change: contribution of soil ecosystem services. Newsletter of the Brazilian Soil Science Society, 43(2): 31-36. (in Portuguese)
[43]   Moriasi D N, Arnold J G, Van Liew M W, et al. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers, 50(3): 885-900.
[44]   Moura M S B, Galvíncio J D, Brito L T L, et al. 2007. Climate and rainwater in the semiarid. In: Brito L T L, Moura M S B, Gama G F B. Rainwater Potential in the Brazilian Semiarid Region. Petrolina: Brazilian Agricultural Research Corporation, 37-59. (in Portuguese)
[45]   National Water Agency. 2017. Atlas Irrigation: Water Use in Irrigated Agriculture. Brasília: National Water Agency, 85. (in Portuguese)
[46]   Novara A, Sarno M, Pereira P, et al. 2018. Straw uses trade-off only after soil organic carbon steady-state. Italian Journal of Agronomy, 13(3): 216-220.
[47]   Novara A, Pulido M, Rodrigo-Comino J, et al. 2019. Long-term organic farming on a citrus plantation results in soil organic carbon recovery. Cuadernos de Investigación Geográfica, 45(1): 271-286.
doi: 10.18172/cig.3794
[48]   Parton W J, Scurlock J M O, Ojima D S, et al. 1993. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 7(4): 785-809.
doi: 10.1029/93GB02042
[49]   Pivetta M. 2019. Land Use and Climate Change. [2020-09-01]. https://revistapesquisa.fapesp.br/o-uso-do-solo-e-as-mudancas-climaticas. (in Portuguese)
[50]   Rossato L, Alvalá R C S, Marengo J A, et al. 2017. Impact of soil moisture on crop yields over Brazilian semiarid. Frontiers in Environmental Science, 5: 73, doi: 10.3389/fenvs.2017.00073.
doi: 10.3389/fenvs.2017.00073
[51]   Sales R P, Portugal A F, Moreira J A A, et al. 2016. Physical quality of a Latosol under no-tillage and conventional tillage in the semi-arid region. Revista Ciência Agronômica, 47(3): 429-438. (in Portuguese)
doi: 10.5935/1806-6690.20160052
[52]   Silva-Olaya A M, Cerri C E P, Williams S, et al. 2017. Modelling SOC response to land use change and management practices in sugarcane cultivation in South-Central Brazil. Plant and Soil, 410(1-2): 483-498.
doi: 10.1007/s11104-016-3030-y
[53]   Smith P, Smith J U, Powlson D S, et al. 1997. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma, 81(1-2): 153-225.
doi: 10.1016/S0016-7061(97)00087-6
[54]   Smith P, Adams J, Beerling D J, et al. 2019. Impacts of land-based greenhouse gas removal options on ecosystem services and the United Nations Sustainable Development Goals. Annual Review of Environment and Resources, 44(4): 12-54.
[55]   Sobocká J, Balkovič J, Lapin M. 2007. A Century 5 model using for estimation of soil organic matter behaviour at predicted climate change. Soil and Water Research, 2(1): 25-34.
doi: 10.17221/2099-SWR
[56]   Tavares V C, Arruda I R P, Silva D G. 2019. Desertification, climate change and droughts in the Brazilian semiarid region: a literature review. Geosul, 34(70): 385-405. (in Portuguese)
doi: 10.5007/2177-5230.2019v34n70p385
[57]   Visser S, Keesstra S, Maas G, et al. 2019. Soil as a basis to create enabling conditions for transitions towards sustainable land management as a key to achieve the SDGs by 2030. Sustainability, 11(23): 6792, doi: 10.3390/su11236792.
doi: 10.3390/su11236792
[1] WANG Kun, WANG Xiaoxia, FEI Hongyan, WAN Chuanyu, HAN Fengpeng. Changes in diversity, composition and assembly processes of soil microbial communities during Robinia pseudoacacia L. restoration on the Loess Plateau, China[J]. Journal of Arid Land, 2022, 14(5): 561-575.
[2] Halimeh PIRI, Amir NASERIN, Ammar A ALBALASMEH. Interactive effects of deficit irrigation and vermicompost on yield, quality, and irrigation water use efficiency of greenhouse cucumber[J]. Journal of Arid Land, 2022, 14(11): 1274-1292.
[3] WU Jun, DENG Guoning, ZHOU Dongmei, ZHU Xiaoyan, MA Jing, CEN Guozhang, JIN Yinli, ZHANG Jun. Effects of climate change and land-use changes on spatiotemporal distributions of blue water and green water in Ningxia, Northwest China[J]. Journal of Arid Land, 2021, 13(7): 674-687.
[4] LANG Man, LI Ping, WEI Wei. Gross nitrogen transformations and N2O emission sources in sandy loam and silt loam soils[J]. Journal of Arid Land, 2021, 13(5): 487-499.
[5] JIA Wuhui, YIN Lihe, ZHANG Maosheng, ZHANG Xinxin, ZHANG Jun, TANG Xiaoping, DONG Jiaqiu. Quantification of groundwater recharge and evapotranspiration along a semi-arid wetland transect using diurnal water table fluctuations[J]. Journal of Arid Land, 2021, 13(5): 455-469.
[6] Mahsa MIRDASHTVAN, Mohsen MOHSENI SARAVI. Influence of non-stationarity and auto-correlation of climatic records on spatio-temporal trend and seasonality analysis in a region with prevailing arid and semi-arid climate, Iran[J]. Journal of Arid Land, 2020, 12(6): 964-983.
[7] FENG Jian, ZHAO Lingdi, ZHANG Yibo, SUN Lingxiao, YU Xiang, YU Yang. Can climate change influence agricultural GTFP in arid and semi-arid regions of Northwest China?[J]. Journal of Arid Land, 2020, 12(5): 837-853.
[8] LYU Changhe, XU Zhiyuan. Crop production changes and the impact of Grain for Green program in the Loess Plateau of China[J]. Journal of Arid Land, 2020, 12(1): 18-28.
[9] BELALA Fahima, HIRCHE Azziz, D MULLER Serge, TOURKI Mahmoud, SALAMANI Mostefa, GRANDI Mohamed, AIT HAMOUDA Tahar, BOUGHANI Madjid. Rainfall patterns of Algerian steppes and the impacts on natural vegetation in the 20th century[J]. Journal of Arid Land, 2018, 10(4): 561-573.
[10] Ling NAN, Zhibao DONG, Weiqiang XIAO, Chao LI, Nan XIAO, Shaopeng SONG, Fengjun XIAO, Lingtong DU. A field investigation of wind erosion in the farming-pastoral ecotone of northern China using a portable wind tunnel: a case study in Yanchi County[J]. Journal of Arid Land, 2018, 10(1): 27-38.
[11] Di KANG, Jian DENG, Xiaowei QIN, Fei HAO, Shujuan GUO, Xinhui HAN, Gaihe YANG. Effect of competition on spatial patterns of oak forests on the Chinese Loess Plateau[J]. Journal of Arid Land, 2017, 9(1): 122-131.
[12] NING Like, XIA Jun, ZHAN Chesheng, ZHANG Yongyong. Runoff of arid and semi-arid regions simulated and projected by CLM-DTVGM and its multi-scale fluctuations as revealed by EEMD analysis[J]. Journal of Arid Land, 2016, 8(4): 506-520.