Loading...

Current Issue

30 April 2022, Volume 14 Issue 4 Previous Issue    Next Issue
For Selected: View Abstracts Toggle Thumbnails
Research article
Impact of rainfed and irrigated agriculture systems on soil carbon stock under different climate scenarios in the semi-arid region of Brazil
André L CARVALHO, Renato A ARAÚJO-NETO, Guilherme B LYRA, Carlos E P CERRI, Stoécio M F MAIA
Journal of Arid Land. 2022, 14 (4): 359-373.    DOI: 10.1007/s40333-022-0092-y      CSTR: 32276.14.s40333-022-0092-y
Abstract ( 129 )   HTML ( 957 )     PDF (916KB) ( 333 )  

Understanding the dynamics of soil organic carbon (SOC) is of fundamental importance in land use and management, whether in the current researches or in future scenarios of agriculture systems considering climate change. In order to evaluate SOC stock of the three districts (Delmiro Gouveia, Pariconha, and Inhapi districts) in the semi-arid region of Brazil in rainfed and irrigated agriculture systems under different climate scenarios using the Century model, we obtained RCP4.5 and RCP8.5 climate scenarios derived from the Eta Regional Climate Model (Eta-HadGEM2-ES and Eta-MIROC5) from the National Institute for Space Research, and then input the data of bulk density, pH, soil texture, maximum temperature, minimum temperature, and rainfall into the soil and climate files of the Century model. The results of this study showed that the Eta-HadGEM2-ES model was effective in estimating air temperature in the future period. In rainfed agriculture system, SOC stock under the baseline scenario was lower than that under RCP4.5 and RCP8.5 climate scenarios, while in irrigated agriculture system, SOC stock in the almost all climate scenarios (RCP4.5 and RCP8.5) and models (Eta-HadGEM2-ES and Eta-MIROC5) will increase by 2100. The results of this study will help producers in the semi-arid region of Brazil adopt specific agriculture systems aimed at mitigating greenhouse gas emissions.

Effects of mixed-based biochar on water infiltration and evaporation in aeolian sand soil
ZOU Yiping, ZHANG Shuyue, SHI Ziyue, ZHOU Huixin, ZHENG Haowei, HU Jiahui, MEI Jing, BAI Lu, JIA Jianli
Journal of Arid Land. 2022, 14 (4): 374-389.    DOI: 10.1007/s40333-022-0060-6      CSTR: 32276.14.s40333-022-0060-6
Abstract ( 391 )   HTML ( 946 )     PDF (854KB) ( 402 )  

Aeolian sandy soil in mining areas exhibits intense evaporation and poor water retention capacity. This study was designed to find a suitable biochar application method to improve soil water infiltration and minimize soil water evaporation for aeolian sand soil. Using the indoor soil column method, we studied the effects of three application patterns (A (0-20 cm was a mixed sample of mixed-based biochar and soil), B (0-10 cm was a mixed sample of mixed-based biochar and soil and 10-20 cm was soil), and C (0-10 cm was soil and 10-20 cm was a mixed sample of mixed-based biochar and soil)), four application amounts (0% (control, CK), 1%, 2%, and 4% of mixed-based biochar in dry soil), and two particle sizes (0.05-0.25 mm (S1) and <0.05 mm (S2)) of mixed-based biochar on water infiltration and evaporation of aeolian sandy soil. We separately used five infiltration models (the Philip, Kostiakov, Horton, USDA-NRCS (United States Department of Agriculture-Natural Resources Conservation Service), and Kostiakov-Lewis models) to fit cumulative infiltration and time. Compared with CK, the application of mixed-based biochar significantly reduced cumulative soil water infiltration. Under application patterns A, B, and C, the higher the application amount and the finer the particle size were, the lower the migration speed of the wetting front. With the same application amount, cumulative soil water infiltration under application pattern A was the lowest. Taking infiltration for 10 min as an example, the reductions of cumulative soil water infiltration under the treatments of A2%(S2), A4%(S1), A4%(S2), A1%(S1), C2%(S1), and B1%(S1) were higher than 30%, which met the requirements of loess soil hydraulic parameters suitable for plant growth. The five infiltration models well fitted the effects of the treatments of application pattern C and S1 particle size (R2>0.980), but the R2 values of the Horton model exceeded 0.990 for all treatments (except for the treatment B2%(S2)). Compared with CK, all other treatments reduced cumulative soil water infiltration, except for B4%(S2). With the same application amount, cumulative soil water evaporation difference between application patterns A and B was small. Treatments of application pattern C and S1 particle size caused a larger reduction in cumulative soil water evaporation. The reductions in cumulative soil water evaporation under the treatments of C4%(S1), C4%(S2), C2%(S1), and C2%(S2) were over 15.00%. Therefore, applying 2% of mixed-based biochar with S1 particle size to the underlying layer (10-20 cm) could improve soil water infiltration while minimizing soil water evaporation. Moreover, application pattern was the main factor affecting soil water infiltration and evaporation. Further, there were interactions among the three influencing factors in the infiltration process (application amount×particle size with the most important interaction), while there were no interactions among them in the evaporation process. The results of this study could contribute to the rational application of mixed-based biochar in aeolian sandy soil and the resource utilization of urban and agricultural wastes in mining areas.

Scenario simulation of water retention services under land use/cover and climate changes: a case study of the Loess Plateau, China
SUN Dingzhao, LIANG Youjia, PENG Shouzhang
Journal of Arid Land. 2022, 14 (4): 390-410.    DOI: 10.1007/s40333-022-0054-4      CSTR: 32276.14.s40333-022-0054-4
Abstract ( 189 )   HTML ( 17 )     PDF (3611KB) ( 344 )  

Comprehensive assessments of ecosystem services in environments under the influences of human activities and climate change are critical for sustainable regional ecosystem management. Therefore, integrated interdisciplinary modelling has become a major focus of ecosystem service assessment. In this study, we established a model that integrates land use/cover change (LUCC), climate change, and water retention services to evaluate the spatial and temporal variations of water retention services in the Loess Plateau of China in the historical period (2000-2015) and in the future (2020-2050). An improved Markov-Cellular Automata (Markov-CA) model was used to simulate land use/land cover patterns, and ArcGIS 10.2 software was used to simulate and assess water retention services from 2000 to 2050 under six combined scenarios, including three land use/land cover scenarios (historical scenario (HS), ecological protection scenario (EPS), and urban expansion scenario (UES)) and two climate change scenarios (RCP4.5 and RCP8.5, where RCP is the representative concentration pathway). LUCCs in the historical period (2000-2015) and in the future (2020-2050) are dominated by transformations among agricultural land, urban land and grassland. Urban land under UES increased significantly by 0.63×103 km2/a, which was higher than the increase of urban land under HS and EPS. In the Loess Plateau, water yield decreased by 17.20×106 mm and water retention increased by 0.09×106 mm in the historical period (2000-2015), especially in the Interior drainage zone and its surrounding areas. In the future (2020-2050), the pixel means of water yield is higher under RCP4.5 scenario (96.63 mm) than under RCP8.5 scenario (95.46 mm), and the pixel means of water retention is higher under RCP4.5 scenario (1.95 mm) than under RCP8.5 scenario (1.38 mm). RCP4.5-EPS shows the highest total water retention capacity on the plateau scale among the six combined scenarios, with the value of 1.27×106 mm. Ecological restoration projects in the Loess Plateau have enhanced soil and water retention. However, more attention needs to be paid not only to the simultaneous increase in water retention services and evapotranspiration but also to the type and layout of restored vegetation. Furthermore, urbanization needs to be controlled to prevent uncontrollable LUCCs and climate change. Our findings provide reference data for the regional water and land resources management and the sustainable development of socio-ecological systems in the Loess Plateau under LUCC and climate change scenarios.

Study of the intensity and driving factors of land use/cover change in the Yarlung Zangbo River, Nyang Qu River, and Lhasa River region, Qinghai-Tibet Plateau of China
LUO Jing, XIN Liangjie, LIU Fenggui, CHEN Qiong, ZHOU Qiang, ZHANG Yili
Journal of Arid Land. 2022, 14 (4): 411-425.    DOI: 10.1007/s40333-022-0093-x      CSTR: 32276.14.s40333-022-0093-x
Abstract ( 390 )   HTML ( 6 )     PDF (1559KB) ( 444 )  

Land use/land cover (LULC) is an important part of exploring the interaction between natural environment and human activities and achieving regional sustainable development. Based on the data of LULC types (cropland, forest land, grassland, built-up land, and unused land) from 1990 to 2015, we analysed the intensity and driving factors of land use/cover change (LUCC) in the Yarlung Zangbo River, Nyang Qu River, and Lhasa River (YNL) region, Qinghai-Tibet Plateau of China, using intensity analysis method, cross-linking table method, and spatial econometric model. The results showed that LUCC in the YNL region was nonstationary from 1990 to 2015, showing a change pattern with "fast-slow-fast" and "U-shaped". Built-up land showed a steady increase pattern, while cropland showed a steady decrease pattern. The gain of built-up land mainly came from the loss of cropland. The transition pattern of LUCC in the YNL region was relatively single and stable during 1990-2015. The transition pattern from cropland and forest land to built-up land was a systematic change process of tendency and the transition pattern from grassland and unused land to cropland was a systematic change process of avoidance. The transition process of LUCC was the result of the combined effect of natural environment and social economic development in the YNL region. This study reveals the impact of ecological environment problems caused by human activities on the land resource system and provides scientific support for the study of ecological environment change and sustainable development of the Qinghai-Tibet Plateau.

Application of the InVEST model for assessing water yield and its response to precipitation and land use in the Weihe River Basin, China
WU Changxue, QIU Dexun, GAO Peng, MU Xingmin, ZHAO Guangju
Journal of Arid Land. 2022, 14 (4): 426-440.    DOI: 10.1007/s40333-022-0013-0      CSTR: 32276.14.s40333-022-0013-0
Abstract ( 194 )   HTML ( 12 )     PDF (2044KB) ( 491 )  

With realizing the importance of ecosystem services to society, the efforts to evaluate the ecosystem services have increased. As the largest tributary of the Yellow River, the Weihe River has been endowed with many ecological service functions. Among which, water yield can be a measure of local availability of water and an index for evaluating the conservation function of the region. This study aimed to explore the temporal and spatial variation of water yield and its influencing factors in the Weihe River Basin (WRB), and provide basis for formulating reasonable water resources utilization schemes. Based on the InVEST (integrated valuation of ecosystem services and tradeoffs) model, this study simulated the water yield in the WRB from 1985 to 2019, and discussed the impacts of climatic factors and land use change on water yield by spatial autocorrelation analysis and scenario analysis methods. The results showed that there was a slight increasing trend in water yield in the WRB over the study period with the increasing rate of 4.84 mm/10a and an average depth of 83.14 mm. The main water-producing areas were concentrated along the mainstream of the Weihe River and in the southern basin. Changes in water yield were comprehensively affected by climate and underlying surface factors. Precipitation was the main factor affecting water yield, which was consistent with water yield in time. And there existed significant spatial agglomeration between water yield and precipitation. Land use had little impact on the amount of water yield, but had an impact on its spatial distribution. Water yield was higher in areas with wide distribution of construction land and grassland. Water yield of different land use types were different. Unused land showed the largest water yield capacity, whereas grassland and farmland contributed most to the total water yield. The increasing water yield in the basin indicates an enhanced water supply service function of the ecosystem. These results are of great significance to the water resources management of the WRB.

Spatial variability between glacier mass balance and environmental factors in the High Mountain Asia
ZHANG Zhen, GU Zhengnan, Hu Kehong, XU Yangyang, ZHAO Jinbiao
Journal of Arid Land. 2022, 14 (4): 441-454.    DOI: 10.1007/s40333-022-0014-z      CSTR: 32276.14.s40333-022-0014-z
Abstract ( 136 )   HTML ( 9 )     PDF (757KB) ( 215 )  

High Mountain Asia (HMA) region contains the world's highest peaks and the largest concentration of glaciers except for the polar regions, making it sensitive to global climate change. In the context of global warming, most glaciers in the HMA show various degrees of negative mass balance, while some show positive or near-neutral balance. Many studies have reported that spatial heterogeneity in glacier mass balance is strongly related to a combination of climate parameters. However, this spatial heterogeneity may vary according to the dynamic patterns of climate change at regional or continental scale. The reasons for this may be related to non-climatic factors. To understand the mechanisms by which spatial heterogeneity forms, it is necessary to establish the relationships between glacier mass balance and environmental factors related to topography and morphology. In this study, climate, topography, morphology, and other environmental factors are investigated. Geodetector and linear regression analysis were used to explore the driving factors of spatial variability of glacier mass balance in the HMA by using elevation change data during 2000-2016. The results show that the coverage of supraglacial debris is an essential factor affecting the spatial heterogeneity of glacier mass balance, followed by climatic factors and topographic factors, especially the median elevation and slope in the HMA. There are some differences among mountain regions and the explanatory power of climatic factors on the spatial differentiation of glacier mass balance in each mountain region is weak, indicating that climatic background of each mountain region is similar. Therefore, under similar climatic backgrounds, the median elevation and slope are most correlated with glacier mass balance. The interaction of various factors is enhanced, but no unified interaction factor plays a primary role. Topographic and morphological factors also control the spatial heterogeneity of glacier mass balance by influencing its sensitivity to climate change. In conclusion, geodetector method provides an objective framework for revealing the factors controlling glacier mass balance.

Glacier mass balance and its impacts on streamflow in a typical inland river basin in the Tianshan Mountains, northwestern China
PENG Jiajia, LI Zhongqin, XU Liping, MA Yuqing, LI Hongliang, ZHAO Weibo, FAN Shuang
Journal of Arid Land. 2022, 14 (4): 455-472.    DOI: 10.1007/s40333-022-0012-1      CSTR: 32276.14.s40333-022-0012-1
Abstract ( 126 )   HTML ( 6 )     PDF (2779KB) ( 672 )  

Glaciers are known as natural ''solid reservoirs'', and they play a dual role between the composition of water resources and the river runoff regulation in arid and semi-arid areas of China. In this study, we used in situ observation data from Urumqi Glacier No. 1, Xinjiang Uygur Autonomous Region, in combination with meteorological data from stations and a digital elevation model, to develop a distributed degree-day model for glaciers in the Urumqi River Basin to simulate glacier mass balance processes and quantify their effect on streamflow during 1980-2020. The results indicate that the mass loss and the equilibrium line altitude (ELA) of glaciers in the last 41 years had an increasing trend, with the average mass balance and ELA being -0.85 (±0.32) m w.e./a (meter water-equivalent per year) and 4188 m a.s.l., respectively. The glacier mass loss has increased significantly during 1999-2020, mostly due to the increase in temperature and the extension of ablation season. During 1980-2011, the average annual glacier meltwater runoff in the Urumqi River Basin was 0.48×108 m3, accounting for 18.56% of the total streamflow. We found that the annual streamflow in different catchments in the Urumqi River Basin had a strong response to the changes in glacier mass balance, especially from July to August, and the glacier meltwater runoff increased significantly. In summary, it is quite possible that the results of this research can provide a reference for the study of glacier water resources in glacier-recharged basins in arid and semi-arid areas.