Influence of non-stationarity and auto-correlation of climatic records on spatio-temporal trend and seasonality analysis in a region with prevailing arid and semi-arid climate, Iran
Mahsa MIRDASHTVAN*(), Mohsen MOHSENI SARAVI
Department of Range and Watershed Management, Faculty of Natural Resources, College of Agriculture and Natural Resources, University of Tehran, Karaj 3158777871, Iran
Trend and stationarity analysis of climatic variables are essential for understanding climate variability and provide useful information about the vulnerability and future changes, especially in arid and semi-arid regions. In this study, various climatic zones of Iran were investigated to assess the relationship between the trend and the stationarity of the climatic variables. The Mann-Kendall test was considered to identify the trend, while the trend free pre-whitening approach was applied for eliminating serial correlation from the time-series. Meanwhile, time series stationarity was tested by Dickey-Fuller and Kwiatkowski-Phillips-Schmidt-Shin tests. The results indicated an increasing trend for mean air temperature series at most of the stations over various climatic zones, however, after eliminating the serial correlation factor, this increasing trend changes to an insignificant decreasing trend at a 95% confidence level. The seasonal mean air temperature trend suggested a significant increase in the majority of the stations. The mean air temperature increased more in northwest towards central parts of Iran that mostly located in arid and semi-arid climatic zones. Precipitation trend reveals an insignificant downward trend in most of the series over various climatic zones; furthermore, most of the stations follow a decreasing trend for seasonal precipitation. Furthermore, spatial patterns of trend and seasonality of precipitation and mean air temperature showed that the northwest parts of Iran and margin areas of the Caspian Sea are more vulnerable to the changing climate with respect to the precipitation shortfalls and warming. Stationarity analysis indicated that the stationarity of climatic series influences on their trend; so that, the series which have significant trends are not static. The findings of this investigation can help planners and policy-makers in various fields related to climatic issues, implementing better management and planning strategies to adapt to climate change and variability over Iran.
Mahsa MIRDASHTVAN, Mohsen MOHSENI SARAVI. Influence of non-stationarity and auto-correlation of climatic records on spatio-temporal trend and seasonality analysis in a region with prevailing arid and semi-arid climate, Iran. Journal of Arid Land, 2020, 12(6): 964-983.
Fig. 1Location of the synoptic stations in different climatic zones of Iran
Climatic zone
Drought coefficient
Number of stations selected
Very humid type 1
>55.0
4
Very humid type 2
35.0-54.9
1
Humid
28.0-34.9
1
Semi-humid
24.0-27.9
0
Mediterranean
20.0-23.9
6
Semi-arid
10.0-19.9
27
Arid
5.0-9.9
16
Extremely arid
<4.9
18
Table 1 De-Marton drought coefficient range
Fig. 2Procedures and steps of the study
Station
Longitude
Latitude
Altitude (m)
Climatic class
Arak
49°46′E
34°06′N
1708.0
Semi-arid
Ardebil
48°17′E
38°15′N
1332.0
Mediterranean
Oroomiyyeh
45°03′E
37°40′N
1328.0
Semi-arid
Esfahan
51°40′E
32°37′N
1550.4
Extremely arid
Aqajari
49°40′E
30°46′E
27.0
Arid
Omidiyyeh
49°39′E
30°46′N
34.9
Arid
Ahwaz
48°40′E
31°20′N
22.5
Arid
Iranshahr
60°42′E
27°12′N
591.1
Extremely arid
Ilam
46°26′E
33°38′N
1337.0
Mediterranean
Abadan
48°15′E
30°22′N
6.6
Semi-arid
Abadeh
52°40′E
31°11′N
2030.0
Arid
Abali
51°53′E
35°45′N
2465.2
Semi-arid
Babolsar
52°39′E
36°43′N
-21.0
Humid
Bojnourd
57°16′E
37°28′N
1112.0
Semi-arid
Bam
58°21′E
29°06′N
1066.9
Extremely arid
Bandar Anzali
49°27′E
37°29′N
-23.6
Very humid
Bandar Abbas
56°22′E
27°13′N
9.8
Extremely arid
Bandar Lengeh
54°50′E
26°32′N
22.7
Extremely arid
Boushehr (Coastal)
50°49′E
28°54′N
8.4
Arid
Birjand
59°12′E
32°52′N
1491.0
Arid
Moqan
47°55′E
39°39′N
31.9
Semi-arid
Tabriz
46°17′E
38°05′N
1361.0
Semi-arid
Torbat Heidariyyeh
59°13′E
35°16′N
1450.8
Semi-arid
Tehran
51°19′E
35°41′N
1190.8
Arid
Jask
57°46′E
25°38′N
5.2
Extremely arid
Boumousa Island
54°50′E
25°50′N
6.6
Extremely arid
siri Island
54°29′E
25°53′N
4.4
Extremely arid
kish Island
53°59′E
26°30′N
30.0
Extremely arid
Jolfa
45°40′E
38°45′N
736.2
Mediterranean
Chabahar
60°37′E
25°17′N
8.0
Extremely arid
Khorramabad
48°17′E
33°26′N
1147.8
Semi-arid
Khoy
44°58′E
38°33′N
1103.0
Semi-arid
Dezfoul
48°23′E
32°24′N
143.0
Arid
Doushan Tappeh
51°20′E
33°42′N
1209.2
Semi-arid
Dogonbadan
50°49′E
30°20′N
726.0
Semi-arid
Ramsar
50°40′E
36°54′N
-20.0
Very humid
Rasht
49-37′E
37-19′N
-8.6
Very humid
Zabol
61°29′E
31°02′N
489.2
Extremely arid
Zahedan
60°53′E
29°28′N
1370.0
Extremely arid
Zanjan
48°29′E
36°41′N
1663.0
Semi-arid
Sabzevar
57°39′E
36°12′N
972.0
Arid
Sarakhs
61°10′E
36°32′N
235.0
Arid
Saqqez
46°16′E
36°15′N
1522.8
Mediterranean
Semnan
53°25′E
35°35′N
1127.0
Arid
Sanandaj
47°00′E
35°20′N
1373.4
Mediterranean
To be continued
Continued
Station
Longitude
Latitude
Altitude (m)
Climatic class
Sahand
46°07′E
37°56′N
1641.0
Semi-arid
Sirjan
55°41′E
29°28′N
1739.4
Extremely arid
Shahroud
54°57′E
36°25′N
1349.1
Arid
Esfahan (East)
51°52′E
32°40′N
1543.0
Extremely arid
Shahrekord
50°21′E
32°17′N
2048.9
Very humid
shiraz
52°36′E
29°32′N
1484.0
Semi-arid
Tabas
56°55′E
33°36′N
711.0
Extremely arid
Ferdows
58°10′E
34°01′N
1293.0
Arid
Fasa
53°41′E
28°58′N
1288.3
Semi-arid
Qazvin
50°03′E
36°15′N
1279.2
Semi-arid
Qom
50°51′E
34°42′N
877.4
Arid
Qouchan
58°30′E
37°04′N
1287.0
Semi-arid
Kashan
51°27′E
33°59′N
982.3
Extremely arid
Kerman
56°58′E
30°15′N
1753.8
Arid
Karaj
50°54′E
35°55′N
1312.5
Semi-arid
Kermanshah
47°09′E
34°21′N
1318.6
Semi-arid
Konarak
60°22′E
25°26′N
12.0
Extremely arid
Gorgan
54°24′E
36°54′N
0.0
Mediterranean
Maku
44°26′E
39°20′N
1411.3
Semi-arid
Maraqeh
46°16′E
37°24′N
1477.7
Semi-arid
Masjed Soleiman
49°17′E
31°56′N
320.5
Semi-arid
Mashhad
59°38′E
36°16′N
999.2
Semi-arid
Mahabad
45°43′E
36°45′N
1351.8
Semi-arid
Minab
57°05′E
27°06′N
29.6
Arid
Nowshahr
51°30′E
36°39′N
-20.9
Very humid
Hamedan
48°32′E
34°52′N
1741.5
Semi-arid
Hamedan (Nowjeh)
48°43′E
35°12′N
1679.7
Semi-arid
Yazd
54°17′E
31°54′N
1237.2
Extremely arid
Table S1 Characteristics of the selected synoptic stations over Iran
Station
Mean air temperature
Precipitation
Station
Mean air temperature
Precipitation
Arak
0.835
0.394
Zabol
0.845
0.281
Ardebil
0.812
0.149
Zahedan
0.840
0.216
Oroomiyyeh
0.843
0.283
Zanjan
0.840
0.282
Esfahan
0.846
0.307
Sabzevar
0.842
0.337
Aqajari
0.852
0.335
Sarakhs
0.831
0.380
Omidiyyeh
0.844
0.332
Saqqez
0.838
0.333
Ahwaz
0.853
0.295
Semnan
0.845
0.222
Iranshahr
0.846
0.117
Sanandaj
0.847
0.388
Ilam
0.852
0.427
Sahand
0.832
0.231
Abadan
0.851
0.288
Sirjan
0.850
0.220
Abadeh
0.847
0.280
Shahroud
0.840
0.312
Abali
0.844
0.389
Esfahan (East)
0.850
0.280
Babolsar
0.844
0.359
Shahrekord
0.843
0.398
Bojnourd
0.837
0.304
Shiraz
0.852
0.337
Bam
0.838
0.189
Tabas
0.847
0.297
Bandar Anzali
0.841
0.353
Ferdows
0.842
0.380
Bandar Abbas
0.845
0.150
Fasa
0.854
0.283
Bandar Lengeh
0.846
0.177
Qazvin
0.841
0.357
Boushehr (Coastal)
0.847
0.395
Qom
0.847
0.346
Birjand
0.841
0.444
Qouchan
0.834
0.422
Moqan
0.843
0.047
Kashan
0.845
0.228
Tabriz
0.842
0.284
Kerman
0.846
0.238
Torbat Heidariyyeh
0.842
0.383
Karaj
0.839
0.330
Tehran
0.842
0.362
Kermanshah
0.848
0.415
Jask
0.832
0.123
Konarak
0.824
0.129
Boumousa Island
0.852
0.164
Gorgan
0.842
0.149
Siri Island
0.842
0.195
Maku
0.833
0.290
kish Island
0.849
0.228
Maraqeh
0.843
0.323
Jolfa
0.836
0.275
Masjed Soleiman
0.851
0.294
Chabahar
0.817
0.085
Mashhad
0.836
0.378
Khorramabad
0.849
0.423
Mahabad
0.840
0.366
Khoy
0.832
0.279
Minab
0.843
0.194
Dezfoul
0.849
0.281
Nowshahr
0.844
0.324
Doushan Tappeh
0.840
0.378
Hamedan
0.838
0.383
Dogonbadan
0.854
0.348
Hamedan (Nowjeh)
0.837
0.357
Ramsar
0.844
0.296
Yazd
0.845
0.241
Rasht
0.834
0.316
Table 2 Serial correlation coefficient of mean air temperature and precipitation time series
Fig. 3Slopes of annual mean air temperature trend over Iran from 1985 to 2014
Fig. 4Slopes of seasonal mean air temperature °C trend over Iran from 1985 to 2014
Fig. 5Slopes of annual precipitation trend over Iran from 1985 to 2014
Fig. 6Slopes of seasonal precipitation trend (mm) over Iran from 1985 to 2014
Station
DF
KPSS
Tau
P-value
Hypothesis
Eta
P-value
Hypothesis
Abadan
-19.022
0.0001>
Ha
0.037
0.776
H0
Abadeh
-18.483
0.0001>
Ha
0.022
0.970
H0
Abali
-18.835
0.0001>
Ha
0.018
0.991
H0
Boumousa Island
-19.379
0.0001>
Ha
0.069
0.358
H0
Ahwaz
-19.404
0.0001>
Ha
0.022
0.969
H0
Arak
-18.579
0.0001>
Ha
0.022
0.969
H0
Ardebil
-18.735
0.0001>
Ha
0.069
0.355
H0
Babolsar
-19.427
0.0001>
Ha
0.013
0.999
H0
Bam
-19.064
0.0001>
Ha
0.066
0.384
H0
Bandar Abbas
-19.451
0.0001>
Ha
0.073
0.325
H0
Bandar Lengeh
-19.388
0.0001>
Ha
0.098
0.172
H0
Bandar Anzali
-19.069
0.0001>
Ha
0.012
1.000
H0
Birjand
-19.094
0.0001>
Ha
0.014
0.998
H0
Bojnourd
-18.978
0.0001>
Ha
0.044
0.657
H0
Boushehr (Coastal)
-18.789
0.0001>
Ha
0.073
0.325
H0
Chabahar
-17.327
0.0001>
Ha
0.058
0.476
H0
Dezfoul
-19.041
0.0001>
Ha
0.081
0.264
H0
Doushan Tappeh
-18.705
0.0001>
Ha
0.036
0.791
H0
Dogonbadan
-18.544
0.0001>
Ha
0.026
0.935
H0
Esfahan (East)
-18.715
0.0001>
Ha
0.020
0.979
H0
Esfahan
-18.764
0.0001>
Ha
0.013
0.999
H0
Fasa
-18.661
0.0001>
Ha
0.028
0.900
H0
Ferdows
-19.457
0.0001>
Ha
0.010
1.000
H0
Qouchan
-18.911
0.0001>
Ha
0.016
0.995
H0
Gorgan
-18.954
0.0001>
Ha
0.04
0.731
H0
Hamedan
-18.628
0.0001>
Ha
0.015
0.997
H0
Hamedan (Nowjeh)
-18.768
0.0001>
Ha
0.030
0.878
H0
Ilam
-18.881
0.0001>
Ha
0.047
0.620
H0
Iranshahr
-18.985
0.0001>
Ha
0.082
0.254
H0
Jask
-19.070
0.0001>
Ha
0.050
0.567
H0
Jolfa
-18.651
0.0001>
Ha
0.063
0.410
H0
Karaj
-18.889
0.0001>
Ha
0.021
0.973
H0
Kashan
-19.426
0.0001>
Ha
0.018
0.990
H0
Kerman
-19.157
0.0001>
Ha
0.039
0.745
H0
Kermanshah
-18.574
0.0001>
Ha
0.013
0.999
H0
Khorramabad
-19.341
0.0001>
Ha
0.021
0.974
H0
Khoy
-18.412
0.0001>
Ha
0.043
0.686
H0
Station
DF
KPSS
Tau
P-value
Hypothesis
Eta
P-value
Hypothesis
Kish Island
-19.298
0.0001>
Ha
0.080
0.270
H0
Konarak
-18.964
0.0001>
Ha
0.047
0.611
H0
Mahabad
-19.249
0.0001>
Ha
0.027
0.914
H0
Maku
-18.985
0.0001>
Ha
0.073
0.326
H0
Maraqeh
-19.104
0.0001>
Ha
0.031
0.860
H0
Mashhad
-19.948
0.0001>
Ha
0.013
0.999
H0
Masjed Soleiman
-19.406
0.0001>
Ha
0.019
0.987
H0
Minab
-19.460
0.0001>
Ha
0.050
0.575
H0
Nowshahr
-19.122
0.0001>
Ha
0.010
1.000
H0
Aqajari
-18.919
0.0001>
Ha
0.041
0.706
H0
Omidiyyeh
-18.648
0.0001>
Ha
0.042
0.700
H0
Oroomiyyeh
-18.620
0.0001>
Ha
0.058
0.470
H0
Moqan
-18.018
0.0001>
Ha
0.040
0.729
H0
Qazvin
-18.018
0.0001>
Ha
0.015
0.997
H0
Qom
-18.838
0.0001>
Ha
0.060
0.448
H0
Ramsar
-18.329
0.0001>
Ha
0.018
0.991
H0
Rasht
-18.842
0.0001>
Ha
0.016
0.996
H0
Sabzevar
-19.386
0.0001>
Ha
0.012
1.000
H0
Sahand
-17.720
0.0001>
Ha
0.136
0.069
H0
Sanandaj
-18.914
0.0001>
Ha
0.018
0.991
H0
Saqqez
-19.602
0.0001>
Ha
0.029
0.894
H0
Sarakhs
-19.714
0.0001>
Ha
0.023
0.957
H0
Semnan
-19.254
0.0001>
Ha
0.028
0.906
H0
Shahrekord
-18.823
0.0001>
Ha
0.013
0.999
H0
Shahroud
-19.415
0.0001>
Ha
0.030
0.879
H0
Shiraz
-18.677
0.0001>
Ha
0.029
0.898
H0
Siri Island
-19.515
0.0001>
Ha
0.093
0.190
H0
Sirjan
-19.157
0.0001>
Ha
0.067
0.373
H0
Tabas
-19.332
0.0001>
Ha
0.014
0.998
H0
Tabriz
-18.502
0.0001>
Ha
0.019
0.984
H0
Tehran
-18.997
0.0001>
Ha
0.026
0.929
H0
Torbat Heidariyyeh
-19.854
0.0001>
Ha
0.042
0.699
H0
Yazd
-18.902
0.0001>
Ha
0.011
1.000
H0
Zabol
-19.591
0.0001>
Ha
0.063
0.418
H0
Zahedan
-19.251
0.0001>
Ha
0.057
0.486
H0
Zanjan
-18.679
0.0001>
Ha
0.027
0.920
H0
Table 2 Stationarity results of precipitation series at 95% confidence level
Station
DF
KPSS
Tau
P-value
Hypothesis
Eta
P-value
Hypothesis
Abadan
-6.728
0.0001>
Ha
0.013
0.999
H0
Abadeh
-5.697
0.0001>
Ha
0.022
0.968
H0
Abali
-8.147
0.0001>
Ha
0.016
0.995
H0
Boumousa Island
-6.882
0.0001>
Ha
0.013
0.999
H0
Ahwaz
-6.487
0.0001>
Ha
0.013
0.999
H0
Arak
-10.190
0.0001>
Ha
0.011
1.000
H0
Ardebil
-10.704
0.0001>
Ha
0.013
0.999
H0
Babolsar
-7.903
0.0001>
Ha
0.012
1.000
H0
Bam
-8.180
0.0001>
Ha
0.014
0.999
H0
Bandar Abbas
-7.134
0.0001>
Ha
0.013
0.999
H0
Bandar Lengeh
-7.256
0.0001>
Ha
0.017
0.992
H0
Bandar Anzali
-8.273
0.0001>
Ha
0.012
1.000
H0
Birjand
-8.070
0.0001>
Ha
0.013
0.999
H0
Bojnourd
-8.572
0.0001>
Ha
0.013
0.999
H0
Boushehr (Coastal)
-7.164
0.0001>
Ha
0.012
1.000
H0
Chabahar
-8.708
0.0001>
Ha
0.012
1.000
H0
Dezfoul
-6.949
0.0001>
Ha
0.119
0.101
H0
Doushan Tappeh
-7.880
0.0001>
Ha
0.041
0.714
H0
Dogonbadan
-8.050
0.0001>
Ha
0.017
0.993
H0
Esfahan (East)
-6.944
0.0001>
Ha
0.013
0.999
H0
Esfahan
-7.621
0.0001>
Ha
0.013
0.999
H0
Fasa
-9.051
0.0001>
Ha
0.011
1.000
H0
Ferdows
-8.107
0.0001>
Ha
0.014
0.998
H0
Qouchan
-8.804
0.0001>
Ha
0.012
1.000
H0
Gorgan
-8.063
0.0001>
Ha
0.013
0.999
H0
Hamedan
-8.232
0.0001>
Ha
0.011
1.000
H0
Station
DF
KPSS
Tau
P-value
Tau
P-value
Tau
P-value
Hamedan (Nowjeh)
-8.160
0.0001>
Ha
0.020
0.979
H0
Ilam
-7.377
0.0001>
Ha
0.016
0.995
H0
Iranshahr
-7.172
0.0001>
Ha
0.015
0.997
H0
Jask
-8.120
0.0001>
Ha
0.013
0.999
H0
Jolfa
-8.371
0.0001>
Ha
0.012
1.000
H0
Karaj
-8.333
0.0001>
Ha
0.015
0.998
H0
Kashan
-7.470
0.0001>
Ha
0.013
0.999
H0
Kerman
-7.510
0.0001>
Ha
0.013
0.999
H0
Kermanshah
-7.201
0.0001>
Ha
0.012
1.000
H0
Khorramabad
-6.840
0.0001>
Ha
0.013
0.999
H0
Khoy
-8.877
0.0001>
Ha
0.012
1.000
H0
Kish Island
-7.112
0.0001>
Ha
0.013
0.999
Ha
Konarak
-8.865
0.0001>
Ha
0.266
0.003
H0
Mahabad
-8.185
0.0001>
Ha
0.013
0.999
H0
Maku
-8.773
0.0001>
Ha
0.012
1.000
H0
Maraqeh
-7.876
0.0001>
Ha
0.012
0.999
H0
Mashhad
-8.785
0.0001>
Ha
0.012
1.000
H0
Masjed Soleiman
-7.454
0.0001>
Ha
0.013
0.999
H0
Minab
-7.545
0.0001>
Ha
0.014
0.998
H0
Nowshahr
-7.948
0.0001>
Ha
0.014
0.999
H0
Aqajari
-6.793
0.0001>
Ha
0.014
0.999
H0
Omidiyyeh
-6.810
0.0001>
Ha
0.099
0.166
H0
Oroomiyyeh
-7.718
0.0001>
Ha
0.013
0.999
H0
Moqan
-7.923
0.0001>
Ha
0.013
0.999
H0
Qazvin
-7.992
0.0001>
Ha
0.012
0.999
H0
Qom
-7.28
0.0001>
Ha
0.016
0.995
H0
Ramsar
-7.945
0.0001>
Ha
0.012
1.000
H0
Rasht
-9.003
0.0001>
Ha
0.012
1.000
H0
Sabzevar
-7.932
0.0001>
Ha
0.012
1.000
H0
Sahand
-8.888
0.0001>
Ha
0.044
0.660
H0
Sanandaj
-7.320
0.0001>
Ha
0.012
1.000
H0
Saqqez
-8.494
0.0001>
Ha
0.017
0.992
H0
Sarakhs
-9.222
0.0001>
Ha
0.011
1.000
H0
Semnan
-7.537
0.0001>
Ha
0.012
0.999
H0
Shahrekord
-7.714
0.0001>
Ha
0.011
1.000
H0
Shahroud
-8.102
0.0001>
Ha
0.013
0.999
H0
Shiraz
-8.998
0.0001>
Ha
0.011
1.000
H0
Siri Island
-12.748
0.0001>
Ha
0.039
0.735
H0
Sirjan
-7.032
0.0001>
Ha
0.014
0.998
H0
Tabas
-7.302
0.0001>
Ha
0.013
0.999
H0
Tabriz
-7.897
0.0001>
Ha
0.012
0.999
H0
Tehran
-7.929
0.0001>
Ha
0.013
0.999
H0
Torbat Heidariyyeh
-8.057
0.0001>
Ha
0.013
0.999
H0
Yazd
-7.599
0.0001>
Ha
0.012
1.000
H0
Zabol
-7.558
0.0001>
Ha
0.016
0.995
H0
Zahedan
-8.005
0.0001>
Ha
0.015
0.997
H0
Zanjan
-8.153
0.0001>
Ha
0.012
0.999
H0
Table 4 Stationarity results of mean air temperature series at 95% confidence level
[1]
Abbaspour M, Sabetraftar A . 2005. Review of cycles and indices of drought and their effect on water resources, ecological, biological, agricultural, social and economical issues in Iran. International Journal of Environmental Studies, 62(6):709-724.
[2]
Ahmad I, Tang D, Wang T, et al. 2015. Precipitation trends over time using Mann-Kendall and Spearman’s rho tests in Swat River Basin, Pakistan. Advances in Meteorology, 2015(2):1-15.
[3]
Alijani B. 1995. Climate of Iran. Tehran: Piame Noor University, 21-35.
[4]
Amiri M, Eslamian S. 2010. Investigation of climate change in Iran. Journal of Environmental Sciences and Technology, 3:208-216.
[5]
Aziz O I A, Burn D H. 2006. Trends and variability in the hydrological regime of the Mackenzie River Basin. Journal of Hydrology, 319(1-4):282-294.
[6]
Blain G C. 2015. The influence of nonlinear trends on the power of the trend-free pre-whitening approach. Acta Scientiarum Agronomy, 37(1):21-28.
[7]
Brockwell P J, Davis R A. 1991. Time Series: Theory and Methods. New York: Springer Science and Business Media.
[8]
Burn D H, Elnur M A H. 2002. Detection of hydrologic trends and variability. Journal of Hydrology, 255(1-4):107-122.
doi: 10.1016/S0022-1694(01)00514-5
[9]
Burn D H, Cunderlik J M, Pietroniro A. 2004. Hydrological trends and variability in the Liard River basin. Hydrological Sciences Journal, 49(1):53-67.
doi: 10.1623/hysj.49.1.53.53994
[10]
Delju A, Ceylan A, Piguet E, et al. 2013. Observed climate variability and change in Urmia Lake Basin, Iran. Theoretical and Applied Climatology, 111:285-296.
[11]
Duan W, He B, Sahu N, et al. 2017. Spatiotemporal variability of Hokkaido's seasonal precipitation in recent decades and connection to water vapour flux. International Journal of Climatology, 37(9):3660-3673.
[12]
Duan W, Hanasaki N, Shiogama H, et al. 2019. Evaluation and future projection of Chinese precipitation extremes using large ensemble high-resolution climate simulations. Journal of Climate, 32(8):2169-2183.
[13]
El-Nesr M N, Abu-Zreig M M, Alazba A A. 2010. Temperature trends and distribution in the Arabian Peninsula. American Journal of Environmental Sciences, 6(2):191-203.
doi: 10.3844/ajessp.2010.191.203
[14]
Fathian F, Morid S, Kahya E. 2015. Identification of trends in hydrological and climatic variables in Urmia Lake basin, Iran. Theoretical and Applied Climatology, 119:443-464.
doi: 10.1007/s00704-014-1120-4
[15]
Feizi V, Mollashahi M, Farajzadeh M, et al. 2014. Spatial and temporal trend analysis of temperature and precipitation in Iran. Ecopersia, 2:727-742.
[16]
Field C B, Barros V R. 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
[17]
Gocic M, Trajkovic S. 2013. Analysis of changes in meteorological variables using Mann-Kendall and Sen's slope estimator statistical tests in Serbia. Global and Planetary Change, 100:172-182.
doi: 10.1016/j.gloplacha.2012.10.014
[18]
Golian S, Mazdiyasni O, AghaKouchak A. 2015. Trends in meteorological and agricultural droughts in Iran. Theoretical and Applied Climatology, 119:679-688.
doi: 10.1007/s00704-014-1139-6
[19]
Hamed K. 2009. Enhancing the effectiveness of prewhitening in trend analysis of hydrologic data. Journal of Hydrology, 368(1-4):143-155.
doi: 10.1016/j.jhydrol.2009.01.040
[20]
Hirsch R M, Alexander R B, Smith R A. 1991. Selection of methods for the detection and estimation of trends in water quality. Water Resources Research, 27(5):803-813.
doi: 10.1029/91WR00259
[21]
Hirsch R M, Slack J R, Smith R A. 1982. Techniques of trend analysis for monthly water quality data. Water Resources Research, 18(1):107-121.
doi: 10.1029/WR018i001p00107
[22]
Hosseinzadeh T P. 2014. Iranian rainfall series analysis by means of nonparametric tests. Theoretical and applied climatology, 116:597-607.
doi: 10.1007/s00704-013-0981-2
[23]
Houghton J T, Albritton D L, Meira F, et al. 2001. Technical summary of working group 1. Cambridge: Cambridge University Press.
[24]
Kahya E, Kalaycı S. 2004. Trend analysis of streamflow in Turkey. Journal of Hydrology, 289(1-4):128-144.
doi: 10.1016/j.jhydrol.2003.11.006
[25]
Kendall M. 1975. Multivariate analysis. Charles Griffin.
[26]
Kumar S, Merwade V, Kam J, et al. 2009. Streamflow trends in Indiana: effects of long term persistence, precipitation and subsurface drains. Journal of Hydrology, 374(1-2):171-183.
doi: 10.1016/j.jhydrol.2009.06.012
[27]
Kwiatkowski D, Phillips P C, Schmidt P, et al. 1992. Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54(1-3):159-178.
doi: 10.1016/0304-4076(92)90104-Y
[28]
Libanda B, Zheng M, Ngonga C. 2019. Spatial and temporal patterns of drought in Zambia. Journal of Arid Land, 11(2):180-191.
doi: 10.1007/s40333-019-0053-2
[29]
Mann H B. 1945. Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 13:245-259.
doi: 10.2307/1907187
[30]
Masih I, Uhlenbrook S, Maskey S, et al. 2011. Streamflow trends and climate linkages in the Zagros Mountains, Iran. Climatic Change, 104:317-338.
doi: 10.1007/s10584-009-9793-x
[31]
Modarres R, da Silva V. 2007. Rainfall trends in arid and semi-arid regions of Iran. Journal of Arid Environments, 70(2):344-355.
doi: 10.1016/j.jaridenv.2006.12.024
[32]
Parey S, Hoang T, Dacunha-Castelle D. 2019. Future high-temperature extremes and stationarity. Natural Hazards, 98:1115-1134.
[33]
Peel M C, Finlayson B L, McMahon T A. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, 4:439-473.
doi: 10.5194/hessd-4-439-2007
[34]
Raziei T, Arasteh P D, Saghafian B. 2005a. Annual rainfall trend in arid and semi-arid regions of central and eastern Iran. Water and Wastewater, 54:73-81.
[35]
Raziei T, Arasteh P D, Saghafian B. 2005b. Annual rainfall trend in arid and semi-arid regions of Iran. In: ICID 21st European regional conference, 15-19.
[36]
Sahoo D, Smith P. 2009. Hydroclimatic trend detection in a rapidly urbanizing semi-arid and coastal river basin. Journal of Hydrology, 367(3-4):217-227.
doi: 10.1016/j.jhydrol.2009.01.014
[37]
Samadi S, Carbone G J, Mahdavi M, et al. 2013. Statistical downscaling of river runoff in a semi-arid catchment. Water Resources Management, 27:117-136.
doi: 10.1007/s11269-012-0170-6
[38]
Shadmani M, Marofi S, Roknian M. 2012. Trend analysis in reference evapotranspiration using Mann-Kendall and Spearman's Rho tests in arid regions of Iran. Water Resources Management, 26:211-224.
doi: 10.1007/s11269-011-9913-z
[39]
Shao Q, Li M. 2011. A new trend analysis for seasonal time series with consideration of data dependence. Journal of Hydrology, 396(1-2):104-112.
doi: 10.1016/j.jhydrol.2010.10.040
[40]
Solomon S, Qing D, Manning M, et al. 2007. Climate change 2007: The Physical Science Basis. Working group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
[41]
Some'e B S, Ezani A, Tabari H. 2012. Spatiotemporal trends and change point of precipitation in Iran. Atmospheric Research, 113:1-12.
doi: 10.1016/j.atmosres.2012.04.016
[42]
Stocker T F, Qin D, Plattner G-K, et al. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 1535.
[43]
Sun F, Roderick M L, Farquhar G D. 2018. Rainfall statistics, stationarity, and climate change. Proceedings of the National Academy of Sciences, 115(10):2305-2310.
[44]
Tabari H, Marofi S. 2011. Changes of pan evaporation in the west of Iran. Water Resources Management, 25:97-111.
doi: 10.1007/s11269-010-9689-6
[45]
Tabari H, Marofi S, Aeini A, et al. 2011. Trend analysis of reference evapotranspiration in the western half of Iran. Agricultural and Forest Meteorology, 151(2):128-136.
doi: 10.1016/j.agrformet.2010.09.009
[46]
Toller M, Santos T, Kern R. 2019. SAZED: parameter-free domain-agnostic season length estimation in time series data. Data Mining and Knowledge Discovery, 33:1775-1798.
doi: 10.1007/s10618-019-00645-z
[47]
Um M-J, Heo J-H, Markus M, et al. 2018. Performance evaluation of four statistical tests for trend and non-stationarity and assessment of observed and projected annual maximum precipitation series in Major United States cities. Water Resources Management, 32:913-933.
doi: 10.1007/s11269-017-1846-8
[48]
Unal Y S, Deniz A, Toros H, et al. 2012. Temporal and spatial patterns of precipitation variability for annual, wet, and dry seasons in Turkey. International Journal of Climatology, 32(3):392-405.
doi: 10.1002/joc.2274
[49]
Wang W, van Gelder P, Vrijling J. 2005. Trend and stationarity analysis for streamflow processes of rivers in Western Europe in the 20th century. In: Proceedings: IWA International Conference on Water Economics, Statistics, and Finance Rethymno, Greece, 8-10.
[50]
Webb B W, Nobilis F. 2007. Long-term changes in river temperature and the influence of climatic and hydrological factors. Hydrological Sciences Journal, 52(1):74-85.
[51]
Wu Z, Huang N E, Long S R, et al. 2007. On the trend, detrending, and variability of nonlinear and nonstationary time series. Proceedings of the National Academy of Sciences, 104(38):14889-14894.
[52]
Xu Z, Takeuchi K, Ishidaira H. 2003. Monotonic trend and step changes in Japanese precipitation. Journal of Hydrology, 279(1-4):144-150.
doi: 10.1016/S0022-1694(03)00178-1
[53]
Yue S, Pilon P, Phinney B, et al. 2002. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological Processes, 16(9):1807-1829.
[54]
Yue S, Wang C Y. 2002. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resources Research, 38(6): 4-1-4-7, doi: 10.1029/2001WR000861.
[55]
Zhang Q, Liu C, Xu C Y, et al. 2006. Observed trends of annual maximum water level and streamflow during past 130 years in the Yangtze River basin, China. Journal of Hydrology, 324(1-4):255-265.
[56]
Zhao J, Huang Q, Chang J, et al. 2015. Analysis of temporal and spatial trends of hydro-climatic variables in the Wei River Basin. Environmental Research, 139:55-64.
doi: 10.1016/j.envres.2014.12.028
pmid: 25619963
[57]
Zhou J, Liang Z, Liu Y, et al. 2015. Six-decade temporal change and seasonal decomposition of climate variables in Lake Dianchi watershed (China): stable trend or abrupt shift? Theoretical and Applied Climatology, 119:181-191.
[58]
Zohrabi N, Bavani A M, Goodarzi E, et al. 2014. Attribution of temperature and precipitation changes to greenhouse gases in northwest Iran. Quaternary International, 345:130-137.
doi: 10.1016/j.quaint.2014.01.026