Please wait a minute...
Journal of Arid Land  2023, Vol. 15 Issue (2): 205-217    DOI: 10.1007/s40333-023-0092-6
Research article     
Rhizobacteria facilitate physiological and biochemical drought tolerance of Halimodendron halodendron (Pall.) Voss
Mohammad Hossein TAGHIZADEH1, Mohammad FARZAM1,*(), Jafar NABATI2
1Department of Range and Watershed Management, Ferdowsi University of Mashhad, Mashhad 9178169371, Iran
2Legume Department, Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
Download: HTML     PDF(441KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Growth-promoting bacteria (GPB) have shown promising effects on serving plants against environmental constraints such as drought. Nevertheless, simultaneous effects of different GPB have less been considered for arid land plants and under field conditions. We investigated the effects of single and combined application of GPB, including free-living nitrogen-fixing bacteria (NFB), phosphate solubilizing bacteria (PSB), potassium solubilizing bacteria (KSB), a combination of NFB, PSB, and KSB (NPK), and control, at three drought stress treatments. In order to better understand the interactions between drought and GPB, we measured the morphological, biochemical, and physiological plant traits. The target plant was salt tree (Halimodendron Halodendron (Pall.) Voss), a legume shrub native to arid lands of Central and West Asia. All biofertilizer treatments enhanced the growth, physiology, and biochemistry of salt tree seedlings, and there were significant differences among the treatments. KSB and PSB treatments increased photosynthetic pigments, but KSB treatment was more efficient in transpiration rate and stomatal regulation and increased the soluble carbohydrates. PSB treatment had the highest effect on root traits, such as taproot length, root volume, cumulative root length, and the ratio of root to shoot. NFB treatment enhanced root diameter and induced biomass translocation between root systems. However, only the application of mixed biofertilizer (i.e., NPK treatment) was the most significant treatment to improve all plant morphological and physiological characteristics of salt tree under drought stress. Therefore, our results provided improvement of some specific plant traits simultaneous with application of three biofertilizers to increase growth and establishment of salt tree seedlings in the degraded arid lands.



Key wordsgrowth-promoting bacteria      physiological traits      drought stress      biofertilizer      root traits      Halimodendron Halodendron (Pall.) Voss     
Received: 13 June 2022      Published: 28 February 2023
Corresponding Authors: *Mohammad FARZAM (E-mail: mjankju@um.ac.ir)
Cite this article:

Mohammad Hossein TAGHIZADEH, Mohammad FARZAM, Jafar NABATI. Rhizobacteria facilitate physiological and biochemical drought tolerance of Halimodendron halodendron (Pall.) Voss. Journal of Arid Land, 2023, 15(2): 205-217.

URL:

http://jal.xjegi.com/10.1007/s40333-023-0092-6     OR     http://jal.xjegi.com/Y2023/V15/I2/205

Biofertilizer treatment Drought level Biomass and morphological trait
NPK KSB PSB NFB Control
41.36±2.10a 22.44±1.79g 23.83±1.83f 31.56±1.33c 19.72±1.21h LD Total plant height (cm)
34.72±1.04b 17.12±0.86i 17.67±1.04i 26.83±0.63e 14.11±0.87j MD
29.61±0.87d 13.33±1.49j 11.61±1.35k 21.67±1.33g 7.61±1.38l HD
2.140±0.159a 1.250±0.111c 0.870±0.140de 0.924±0.175d 0.670±0.028defgh LD Stem dry weight (g/Plant)
1.560±0.152b 0.589±0.112efghi 0.644±0.026defgh 0.798±0.007defg 0.505±0.137ghi MD
0.825±0.088def 0.540±0.127fghi 0.416±0.061hi 0.582±0.045efghi 0.312±0.085i HD
2.180±0.212a 1.580±0.091b 1.450±0.110 b 0.995±0.101cd 0.837±0.117de LD Leaf dry weight (g/Plant)
1.190±0.112c 0.572±0.060fg 0.654±0.063ef 0.576±0.060fg 0.383±0.081g MD
0.630±0.046ef 0.474±0.110fg 0.458±0.098fg 0.460±0.084fg 0.364±0.020g HD
131.0±15.0a 119.7±23.0a 90.3±9.2b 74.8±5.6bc 57.1±14.4cd LD Leaf area
(cm2/Plant)
80.4±14.8bc 46.7±5.7de 56.4±8.4cd 46.2±7.5de 27.4±6.1e MD
35.4±5.4de 33.7±6.9de 33.5±6.5de 34.8±5.8de 24.6±1.4e HD
44.5±3.4ab 43.7±2.6ab 45.4±2.0a 33.0±0.7def 37.9±2.0cde LD Taproot length (cm)
45.6±3.4a 30.9±3.2f 32.5±0.3ef 37.5±4.2cde 30.2±0.6f MD
37.9±7.0cd 36.6±4.8cde 46.0±7.0a 39.6±5.2bc 37.0±4.7cde HD
2.180±0.225a 2.160±0.364a 1.210±0.101bc 0.749±0.130def 0.678±0.101ef LD Root dry weight (g/plant)
1.580±0.198b 0.730±0.021def 0.900±0.017cde 1.110±0.151cd 0.689±0.019ef MD
0.680±0.051ef 0.364±0.016f 0.907±0.142cde 0.912±0.253cde 0.964±0.055cde HD
6.33±0.67a 5.18±0.82ab 3.67±0.88cd 3.00±0.01def 2.00±0.01fgh LD Root volume (cm3/plant)
4.33±0.33bc 1.33±0.33gh 3.63±0.67cd 3.67±0.33cd 2.00±0.00fgh MD
2.33±0.33efg 1.00±0.01h 3.33±0.33cde 2.42±0.42efg 2.00±0.58fgh HD
95.3±10.7b 56.4±17.9c 142.0±12.8a 41.4±8.3cde 52.5±18.6cd LD Cumulative root length (m)
58.5±13.2c 95.0±14.2b 30.1±5.5cde 32.5±4.6cde 42.6±11.7cde MD
26.0±4.4cde 26.1±6.9cde 47.3±18.6cde 16.9±0.7e 21.2±4.7de HD
0.504±0.120cdef 0.956±0.081ab 0.402±0.149def 0.776±0.087bcd 0.797±0.086abc LD Mean root diameter (mm)
0.730±0.244bcde 0.376±0.102ef 0.856±0.216abc 0.783±0.133abcd 0.331±0.060f MD
0.696±0.083bcdef 0.700±0.157bcdef 0.669±0.085bcdef 1.170±0.112a 1.046±0.125ab HD
0.504±0.046def 0.781±0.163bcde 0.461±0.096ef 0.387±0.055f 0.527±0.066cdef LD Ratio of root to shoot
0.582±0.083cdef 0.658±0.105cdef 0.888±0.232bc 0.814±0.129bcde 0.700±0.055bcdef MD
0.469±0.017ef 0.362±0.030f 1.506±0.264a 0.849±0.146bcd 1.036±0.155b HD
Table 1 Effect of different biofertilizer treatments and drought levels on biomass and morphological traits of salt tree
Biofertilizer treatment Drought level Photosynthetic trait
NPK KSB PSB NFB Control
58.1±3.1a 26.3±3.2bc 27.5±3.1bc 27.9±3.6bc 18.3±1.5cd LD Photosynthetic rate
(μmol/(m2•s))
35.5±5.1b 21.6±4.2cd 25.8±2.9bc 27.6±5.0bc 13.7±3.6d MD
27.1±4.0bc 20.8±4.6cd 21.3±3.7cd 19.7±6.1cd 10.7±2.3d HD
0.433±0.101g 0.590±0.208efg 0.397±0.154g 0.373±0.121g 0.197±0.012g LD Transpiration rate
(mmol/(m2•s))
1.180±0.285cd 1.050±0.102cdef 0.640±0.139defg 1.120±0.220cde 0.525±0.102fg MD
0.542±0.312fg 0.993±0.384cdef 1.900±0.617b 2.590±0.406a 1.310±0.772c HD
0.087±0.026cde 0.173±0.085cde 0.097±0.048cde 0.113±0.053cde 0.053±0.003e LD Stomatal conductance
(mmol/(m2•s))
0.228±0.053bc 0.299±0.040b 0.110±0.028cde 0.270±0.069b 0.110±0.055cde MD
0.063±0.049d 0.207±0.098bcd 0.283±0.141b 0.680±0.152a 0.212±0.167bcd HD
2919±416ef 2534±862f 3029±1055def 5382±909abc 3273±382def LD Stomatal resistance
(m/s)
6052±358ab 4682±241bcd 4337±696cde 3150±821def 3722±162cdef MD
6585±832a 3344±178def 3686±487def 4183±725cdef 2737±48ef HD
296±40b 355±16ab 322±4ab 303±19b 292±24bc LD Substomatal CO2 concentration (mg/m3)
356±17ab 353±21ab 395±34a 352±17ab 348±20ab MD
218±38c 306±23b 325±37ab 360±9ab 356±25ab HD
291±8cde 257±41e 413±7a 380±28ab 409±16a LD Adaxial stomatal density (number/cm2)
280±26de 329±27bcd 352±29abc 352±5abc 282±33de MD
297±4cde 275±25de 270±32de 356±10abc 352±26abc HD
253±29cdef 261±15cdef 288±19cde 290±0bcde 350±16b LD Abaxial stomatal density (number/cm2)
222±27f 252±26cdef 299±29bcd 236±19ef 432±19a MD
241±27def 248±28def 275±22cdef 292±10bcde 310±20bc HD
Table 2 Effect of different biofertilizer treatments and drought levels on photosynthetic traits of salt tree
Fig. 1 Effects of different drought levels and biofertilizer treatments on leaf chlorophyll fluorescence of salt tree. (a), minimum chlorophyll fluorescence; (b), maximum chlorophyll fluorescence; (c), quantum efficiency of photosystem II. Control, without the application of biofertilizer; NFB, free-living nitrogen-fixing bacteria; PSB, phosphate solubilizing bacteria; KSB, potassium solubilizing bacteria; NPK, the combination of NFB, PSB, and KSB; LD, low drought; MD, moderate drought; HD, high drought. Different lowercase letters indicate significantly difference among drought levels and biofertilizer treatments (P≤0.05). Bars are stand errors.
Fig. 2 Effect of different drought levels and biofertilizer treatments on the concentration of photosynthetic pigments of salt tree. (a), chlorophyll a; (b), chlorophyll b; (c), carotenoids; (d), total pigments. Different lowercase letters indicate significantly difference among drought levels and biofertilizer treatments (P≤0.05). Bars are stand errors.
Biofertilizer treatment Drought level Biochemical trait
NPK KSB PSB NFB Control
1.08±0.03cd 1.85±0.09a 1.53±0.05b 1.13±0.08cd 1.48±0.06b LD Soluble carbohydrates (mg/g)
1.20±0.09cd 1.33±0.21bc 1.07±0.03cd 1.29±0.09bc 1.48±0.19b MD
0.95±0.04d 1.97±0.13a 1.09±0.09cd 1.17 ±0.13cd 1.02±0.03d HD
0.009±0.004d 0.201±0.187cd 0.347±0.158cd 0.419±0.129cd 0.010±0.004d LD Proline (mg/g)
0.656±0.009de 0.615±0.274c 1.710±0.384ab 1.280±0.251b 0.210±0.155cd MD
1.820±0.171a 0.096±0.055d 0.096±0.051d 0.217±0.162cd 0.483±0.092cd HD
4.72±0.22a 3.43±0.58bc 2.03±0.36e 2.42±0.23de 3.60±0.14bc LD Phenol (mg/g)
3.29±0.44bc 3.30±0.32bc 3.06±0.24cd 3.54±0.22bc 4.00±0.42ab MD
2.95±0.12cd 3.28±0.42bc 3.69±0.18bc 3.50±0.29bc 3.53±0.43bc HD
0.209±0.035bcde 0.181±0.027defg 0.140±0.014fg 0.155±0.006efg 0.162±0.030efg LD DPPH (mg/g)
0.183±0.043defg 0.268±0.052ab 0.168±0.035efg 0.259±0.052abc 0.215±0.066bcde MD
0.283±0.044a 0.201±0.020cdef 0.179±0.039defg 0.132±0.012g 0.237±0.048abcd HD
4.39±1.28cd 3.43±1.02d 4.64±0.75cd 5.92±0.20bc 3.18±0.19d LD Osmotic potential (MPa)
5.01±0.48bcd 3.64±0.30d 3.73±0.02d 4.68±0.50cd 4.75±0.46bcd MD
8.05±0.62a 5.78±0.46bc 6.56±0.94ab 4.91±0.39bcd 4.31±0.96cd HD
Table 3 Effect of different drought levels and biofertilizer treatments on biochemical traits of salt tree
Taproot length Root dry weight Root volume Cumulative root length Mean root diameter Ratio of root to shoot Soluble carbohy-drates Proline Phenol DPPH Osmotic potential
Taproot length 1.000
Root dry weight 0.546** 1.000
Root volume 0.476** 0.867** 1.000
Cumulative root length 0.306* 0.399** 0.341* 1.000
Mean root diameter 0.168 0.097 0.028 -0.612** 1.000
Ratio of root to shoot 0.131 0.088 0.146 -0.271 0.320* 1.000
Soluble carbohydrates 0.027 0.038 -0.124 0.187 -0.088 -0.214 1.000
Proline -0.173 -0.145 -0.062 -0.220 0.045 -0.052 -0.414** 1.000
Phenol 0.216 0.335* 0.288 -0.090 -0.021 0.199 -0.050 -0.183 1.000
DPPH 0.051 -0.101 -0.172 -0.130 -0.142 -0.074 -0.252 0.282 0.201 1.000
Osmotic potential 0.008 -0.339* -0.215 -0.324* 0.006 -0.001 -0.294* 0.208 -0.127 0.148 1.000
Table 4 Correlation coefficients between root traits and biochemical traits of salt tree
[1]   Abe N, Murata T, Hirota A. 1998. Novel DPPH radical scavengers, bisorbicillinol and demethyltrichodimerol, from a fungus. Bioscience, Biotechnology, and Biochemistry, 62(4): 661-666.
doi: 10.1271/bbb.62.661 pmid: 27392553
[2]   ALKahtani M D, Attia K A, Hafez Y M, et al. 2020. Chlorophyll fluorescence parameters and antioxidant defense system can display salt tolerance of salt acclimated sweet pepper plants treated with chitosan and plant growth promoting rhizobacteria. Agronomy, 10(8): 1180.
doi: 10.3390/agronomy10081180
[3]   Arkhipova T, Martynenko E, Sharipova G, et al. 2020. Effects of plant growth promoting rhizobacteria on the content of abscisic acid and salt resistance of wheat plants. Plants, 9(11): 1429.
doi: 10.3390/plants9111429
[4]   Asif M, Yilmaz O, Ozturk L. 2017. Potassium deficiency impedes elevated carbon dioxide-induced biomass enhancement in well watered or drought-stressed bread wheat. Journal of Plant Nutrition and Soil Science, 180(4): 474-481.
doi: 10.1002/jpln.201600616
[5]   Attarzadeh M, Balouchi H, Rajaie M, et al. 2019. Improvement of Echinacea purpurea performance by integration of phosphorus with soil microorganisms under different irrigation regimes. Agricultural Water Management, 221: 238-247.
doi: 10.1016/j.agwat.2019.04.022
[6]   Awad W, Byrne P F, Reid S D, et al. 2018. Great plains winter wheat varies for root length and diameter under drought stress. Agronomy Journal, 110(1): 226-235.
doi: 10.2134/agronj2017.07.0377
[7]   Ayangbenro A S, Babalola O O. 2021. Reclamation of arid and semi-arid soils: The role of plant growth-promoting archaea and bacteria. Current Plant Biology, 25(1): 100173.
doi: 10.1016/j.cpb.2020.100173
[8]   Bates L S, Waldren R P, Teare I. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207.
doi: 10.1007/BF00018060
[9]   Chavoshi S, Nourmohamadi G, Madani H, et al. 2018. The effects of biofertilizers on physiological traits and biomass accumulation of red beans (Phaseolus vulgaris cv. Goli) under water stress. Iranian Journal of Plant Physiology, 8(4): 2555-2562.
[10]   Chiappero J, del Rosario Cappellari L, Alderete L G S, et al. 2019. Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Industrial Crops and Products, 139(1): 111553.
doi: 10.1016/j.indcrop.2019.111553
[11]   Dey G, Banerjee P, Sharma R K, et al. 2021. Management of phosphorus in salinity-stressed agriculture for sustainable crop production by salt-tolerant phosphate-solubilizing bacteria—A review. Agronomy, 11(8): 1552.
doi: 10.3390/agronomy11081552
[12]   Dubois M, Gilles K A, Hamilton J K, et al. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3): 350-356.
doi: 10.1021/ac60111a017
[13]   Ebrahimi M, Khajehpour M, Naderi A, et al. 2014. Physiological responses of sunflower to water stress under different levels of zinc fertilizer. International Journal of Plant Production, 8(4): 483-504.
[14]   Ejaz S, Fahad S, Anjum M A, et al. 2020. Role of osmolytes in the mechanisms of antioxidant defense of plants. Sustainable Agriculture Reviews, 39(1): 95-117.
[15]   Glanz-Idan N, Wolf S. 2020. Upregulation of photosynthesis in mineral nutrition-deficient tomato plants by reduced source-to-sink ratio. Plant Signaling and Behavior, 15(5): 1712543.
doi: 10.1080/15592324.2020.1712543
[16]   Hassanein A, Ibrahim E, Abou Ali R, et al. 2021. Differential metabolic responses associated with drought tolerance in egyptian rice. Journal of Applied Biology & Biotechnology, 9(4): 37-46.
[17]   Jha Y. 2017. Potassium mobilizing bacteria: enhance potassium intake in paddy to regulates membrane permeability and accumulate carbohydrates under salinity stress. Brazilian Journal of Biological Sciences, 4(8): 333-344.
doi: 10.21472/bjbs.040812
[18]   Ju C, Zhang W, Liu Y, et al. 2018. Genetic analysis of seedling root traits reveals the association of root trait with other agronomic traits in maize. BMC Plant Biology, 18(1): 171.
doi: 10.1186/s12870-018-1383-5 pmid: 30111287
[19]   Kashtoh H, Baek K H. 2021. Structural and functional insights into the role of guard cell ion channels in abiotic stress-induced stomatal closure. Plants, 10(12): 2774.
doi: 10.3390/plants10122774
[20]   Khan I, Awan S A, Ikram R, et al. 2021. Effects of 24-epibrassinolide on plant growth, antioxidants defense system, and endogenous hormones in two wheat varieties under drought stress. Physiologia Plantarum, 172(2): 696-706.
doi: 10.1111/ppl.13237
[21]   Khan N, Bano A, Babar M. 2019a. The stimulatory effects of plant growth promoting rhizobacteria and plant growth regulators on wheat physiology grown in sandy soil. Archives of Microbiology, 201(6): 769-785.
doi: 10.1007/s00203-019-01644-w
[22]   Khan N, Bano A, Babar M A. 2019b. Metabolic and physiological changes induced by plant growth regulators and plant growth promoting rhizobacteria and their impact on drought tolerance in Cicer arietinum L. PLoS ONE, 14(3): e0213040.
doi: 10.1371/journal.pone.0213040
[23]   Khanghahi M Y, Pirdashti H, Rahimian H, et al. 2019. Leaf photosynthetic characteristics and photosystem II photochemistry of rice (Oryza sativa L.) under potassium-solubilizing bacteria inoculation. Photosynthetica, 57(2): 500-511.
doi: 10.32615/ps.2019.065
[24]   Kim Y, Chung Y S, Lee E, et al. 2020. Root response to drought stress in rice (Oryza sativa L.). International Journal of Molecular Sciences, 21(4): 1513.
doi: 10.3390/ijms21041513
[25]   Kumar A, Singh S, Gaurav A K, et al. 2020. Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Frontiers in Microbiology, 11(7): 1216.
doi: 10.3389/fmicb.2020.01216
[26]   Kumar P, Rouphael Y, Cardarelli M, et al. 2017. Vegetable grafting as a tool to improve drought resistance and water use efficiency. Frontiers in Plant Science, 8(1): 1130.
doi: 10.3389/fpls.2017.01130
[27]   Li T, Ma J, Zou Y, et al. 2020. Quantitative trait loci for seeding root traits and the relationships between root and agronomic traits in common wheat. Genome, 63(1): 27-36.
doi: 10.1139/gen-2019-0116 pmid: 31580743
[28]   Liu E, Mei X, Yan C, et al. 2016. Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes. Agricultural Water Management, 167: 75-85.
doi: 10.1016/j.agwat.2015.12.026
[29]   Lombardini L, Rossi L. 2019. Ecophysiology of plants in dry environments, in Dryland Ecohydrology. Springer, Netherlands 71-100.
[30]   Lozano Y M, Aguilar-Trigueros C A, Flaig I C, et al. 2020. Root trait responses to drought are more heterogeneous than leaf trait responses. Functional Ecology, 34(11): 2224-2235.
doi: 10.1111/1365-2435.13656
[31]   Lynch J P. 2018. Rightsizing root phenotypes for drought resistance. Journal of Experimental Botany, 69(13): 3279-3292.
doi: 10.1093/jxb/ery048 pmid: 29471525
[32]   Maxwell K, Johnson G N. 2000. Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345): 659-668.
doi: 10.1093/jxb/51.345.659 pmid: 10938857
[33]   Mirzaei M, Ladan Moghadam A, Hakimi L, et al. 2020. Plant growth promoting rhizobacteria (PGPR) improve plant growth, antioxidant capacity, and essential oil properties of lemongrass (Cymbopogon citratus) under water stress. Iranian Journal of Plant Physiology, 10(10): 3155-3166.
[34]   Mohammadi M H S, Etemadi N, Arab M M, et al. 2017. Molecular and physiological responses of Iranian Perennial ryegrass as affected by Trinexapac ethyl, Paclobutrazol and Abscisic acid under drought stress. Plant Physiology and Biochemistry, 111(1): 129-143.
doi: 10.1016/j.plaphy.2016.11.014
[35]   Moretti L G, Crusciol C A, Kuramae E E, et al. 2020. Effects of growth-promoting bacteria on soybean root activity, plant development, and yield. Agronomy Journal, 112(1): 418-428.
doi: 10.1002/agj2.20010
[36]   Rodríguez-Gamir J, Xue J M, Clearwater M J, et al. 2019. Aquaporin regulation in roots controls plant hydraulic conductance, stomatal conductance, and leaf water potential in Pinus radiata under water stress. Plant, Cell & Environment, 42(2): 717-729.
[37]   Ryan M G, Hubbard R M, Pongracic S, et al. 1996. Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status. Tree Physiology, 16(3): 333-343.
pmid: 14871734
[38]   Sati D, Pande V, Pandey S. et al. 2021. Recent advances in PGPR and molecular mechanisms involved in drought stress tolerance. Journal of Soil Science and Plant Nutrition, 1(1):1-9
[39]   Singleton V L, Rossi J A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3): 144-158.
[40]   Şükran D, GÜNEŞ T, Sivaci R. 1998. Spectrophotometric determination of chlorophyll-A, B and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany, 22(1): 13-18.
[41]   Ullah N, Ditta A, Imtiaz M, et al. 2021. Appraisal for organic amendments and plant growth-promoting rhizobacteria to enhance crop productivity under drought stress: A review. Journal of Agronomy and Crop Science, 207(5): 783-802.
doi: 10.1111/jac.12502
[42]   Ullah S, Khan M Y, Asghar H N, et al. 2017. Differential response of single and co-inoculation of Rhizobium leguminosarum and Mesorhizobium ciceri for inducing water deficit stress tolerance in wheat. Annals of Microbiology, 67: 739-749.
doi: 10.1007/s13213-017-1302-2
[43]   Vanhees D J, Schneider H M, Sidhu J S, et al. 2022. Soil penetration by maize roots is negatively related to ethylene-induced thickening. Plant, Cell and Environment, 45(3): 789-804.
doi: 10.1111/pce.14175
[44]   Wang Z, Li G, Sun H, et al. 2018. Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biology Open, 7(11): bio035279.
[45]   Xie L, Lehvävirta S, Timonen S, et al. 2018. Species-specific synergistic effects of two plant growth—promoting microbes on green roof plant biomass and photosynthetic efficiency. PLoS ONE, 13(12): e0209432.
doi: 10.1371/journal.pone.0209432
[46]   Xu X, Du X, Wang F, et al. 2020. Effects of potassium levels on plant growth, accumulation and distribution of carbon, and nitrate metabolism in apple dwarf rootstock seedlings. Frontiers in Plant Science, 11: 904.
doi: 10.3389/fpls.2020.00904 pmid: 32655607
[47]   Yaghoubi Khanghahi M, Pirdashti H, Rahimian H, et al. 2019. The role of potassium solubilizing bacteria (KSB) inoculations on grain yield, dry matter remobilization and translocation in rice (Oryza sativa L.). Journal of Plant Nutrition, 42(10): 1165-1179.
doi: 10.1080/01904167.2019.1609511
[48]   Yasin N A, Zaheer M M, Khan W U, et al. 2018. The beneficial role of potassium in Cd-induced stress alleviation and growth improvement in Gladiolus grandiflora L. International Journal of phytoremediation, 20(3): 274-283.
doi: 10.1080/15226514.2017.1374337
[49]   Yasmin H, Nosheen A, Naz R, et al. 2017. L-tryptophan-assisted PGPR-mediated induction of drought tolerance in maize (Zea mays L.). Journal of Plant Interactions, 12(1): 567-578.
doi: 10.1080/17429145.2017.1402212
[50]   Yuan Y, Zu M, Sun L, et al. 2022. Isolation and Screening of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing PGPR from Paeonia lactiflora rhizosphere and enhancement of plant growth. Scientia Horticulturae, 297: 110956.
doi: 10.1016/j.scienta.2022.110956
[51]   Zhu Y F, Wu Y X, Hu Y, et al. 2019. Tolerance of two apple rootstocks to short-term salt stress: focus on chlorophyll degradation, photosynthesis, hormone and leaf ultrastructures. Acta Physiologiae Plantarum, 41: 87.
doi: 10.1007/s11738-019-2877-y
[1] Fateme RIGI, Morteza SABERI, Mahdieh EBRAHIMI. Improved drought tolerance in Festuca ovina L. using plant growth promoting bacteria[J]. Journal of Arid Land, 2023, 15(6): 740-755.
[2] Lobna MNIF FAKHFAKH, Mohamed CHAIEB. Effects of water stress on growth phenology photosynthesis and leaf water potential in Stipagrostis ciliata (Desf.) De Winter in North Africa[J]. Journal of Arid Land, 2023, 15(1): 77-90.
[3] WANG Chunyuan, YU Minghan, DING Guodong, GAO Guanglei, ZHANG Linlin, HE Yingying, LIU Wei. Size- and leaf age-dependent effects on the photosynthetic and physiological responses of Artemisia ordosica to drought stress[J]. Journal of Arid Land, 2021, 13(7): 744-758.
[4] HUANG Laiming, ZHAO Wen, SHAO Ming'an. Response of plant physiological parameters to soil water availability during prolonged drought is affected by soil texture[J]. Journal of Arid Land, 2021, 13(7): 688-698.
[5] MAMUT Jannathan, Dunyan TAN, C BASKIN Carol, M BASKIN Jerry. Effects of water stress and NaCl stress on different life cycle stages of the cold desert annual Lachnoloma lehmannii in China[J]. Journal of Arid Land, 2019, 11(5): 774-784.
[6] DZIKITI Sebinasi, Z JOVANOVIC Nebo, DH BUGAN Richard, RAMOELO Abel, P MAJOZI Nobuhle, NICKLESS Alecia, A CHO Moses, C LE MAITRE David, NTSHIDI Zanele, H PIENAAR Harrison. Comparison of two remote sensing models for estimating evapotranspiration: algorithm evaluation and application in seasonally arid ecosystems in South Africa[J]. Journal of Arid Land, 2019, 11(4): 495-512.
[7] HaiNa ZHANG, PeiXi SU, ShanJia LI, ZiJuan ZHOU, TingTing XIE. Response of root traits of Reaumuria soongorica and Salsola passerina to facilitation[J]. Journal of Arid Land, 2014, 6(5): 628-636.
[8] QiQiang GUO, WenHui ZHANG, HuiE LI. Comparison of photosynthesis and antioxidative protection in Sophora moorcroftiana and Caragana maximovicziana under water stress[J]. Journal of Arid Land, 2014, 6(5): 637-645.