Please wait a minute...
Journal of Arid Land  2023, Vol. 15 Issue (6): 740-755    DOI: 10.1007/s40333-023-0015-6     CSTR: 32276.14.s40333-023-0015-6
Research article     
Improved drought tolerance in Festuca ovina L. using plant growth promoting bacteria
Fateme RIGI, Morteza SABERI(), Mahdieh EBRAHIMI
Department of Range and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol 9861335856, Iran
Download: HTML     PDF(1088KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Numerous ecological factors influence a plant's ability to live and grow, in which dryness is a substantial constraint on plant growth in arid and semi-arid areas. In response to a specific environmental stress, plants can use the most effective bacteria to support and facilitate their growth and development. Today, plant growth promoting rhizobacteria (PGPR) is widely used to reduce drought stress on plant growth. In this study, the effects of drought on Festuca ovina L. germination, growth, and nutrient absorption were investigated using PGPR in a factorial test with a completely random design under four water regimes. Soil water content was kept at 100% FC (field capacity), 70% FC (FC), 50% FC, and 30% FC. The treatments were inoculated with Azotobacter vinelandii, Pantoea agglomerans+Pseudomonas putida, and a mixture of bio-fertilizers. Results showed that the effects of drought stress were significantly reduced (P<0.05) when A. vinelandii and P. agglomerans+P. putida were used separately, however, the combined treatment of bio-fertilizers had a greater influence on seed germination than the single application. P. agglomerans+P. putida under 30% FC condition resulted in higher increases in stem, root length, and plant dry biomass. The highest uptake of nutrients was observed for the combined treatment of bio-fertilizers under 30% FC condition. Therefore, the use of A. vinelandii and P. agglomerans+P. putida, applied separately or combined, increased tolerance to drought stress in F. ovina by increased germination indices, dry weight, stem length, and root length. Because of the beneficial effects of PGPR on the growth characteristics of plants under drought conditions and the reduction of negative effects of drought stress, inoculating F. ovina seeds with Azotobacter and Pseudomonas is recommended to improve their growth and development characteristics under drought conditions. PGPR, as an affordable and environmentally friendly method, can improve the production of forage in water-stress rangelands.



Key wordsbio-fertilizers      element uptake      drought stress      rangeland      water scarcity     
Received: 02 December 2022      Published: 30 June 2023
Corresponding Authors: * Morteza SABERI (E-mail: Mortezasaberi@uoz.ac.ir)
Cite this article:

Fateme RIGI, Morteza SABERI, Mahdieh EBRAHIMI. Improved drought tolerance in Festuca ovina L. using plant growth promoting bacteria. Journal of Arid Land, 2023, 15(6): 740-755.

URL:

http://jal.xjegi.com/10.1007/s40333-023-0015-6     OR     http://jal.xjegi.com/Y2023/V15/I6/740

Soil texture EC (dS/m) pH TN (%) TP (mg/kg) SOM (%) K (mg/kg)
Loamy 0.21 5.30 0.20 18.34 1.94 630
Table 1 Soil characteristics used for plant cultivation
GP (%) GR (numbers/d) Treatment
87.29±4.15a 20.20±0.60a 100% FC
80.39±4.15b 18.22±0.60b 70% FC
75.12±3.25c 15.15±0.50c 50% FC
60.12±3.65d 12.21±0.50d 30% FC
95.63±5.00b 24.22±0.70b A
95.33±5.00b 24.09±0.70b S
100.00±5.12a 26.59±0.71a AS
89.00±4.00c 18.92±0.50c N'
95.77±4.90a 23.13±0.70b A+100% FC
96.88±4.90a 24.53±0.72a A+70% FC
96.97±4.90a 24.60±0.72a A+50% FC
83.13±3.44b 18.21±0.60c A+30% FC
95.12±5.00a 22.00±0.72b S+100% FC
96.13±5.00a 24.20±0.72a S+70% FC
97.65±5.23a 24.07±0.70a S+50% FC
81.32±4.17b 17.71±0.50c S+30% FC
96.00±6.50b 24.67±0.80b AS+100% FC
97.40±5.00b 24.86±0.80ab AS+70% FC
97.89±5.00b 24.89±0.80ab AS+50% FC
99.62±3.40a 25.16±0.80a AS+30% FC
85.10±4.80a 19.10±0.50a N'+100% FC
79.10±4.50b 17.11±0.40b N'+70% FC
74.12±4.50b 14.06±0.40c N'+50% FC
62.10±4.50c 13.12±0.40c N'+30% FC
Table 2 Drought and bio-fertilizers effects on GR and GP of Festuca ovina
Aerial dry weight (mg) Root dry weight (mg) Stem length (cm) Root length (cm) Treatment
1.90±0.00a 0.92±0.00a 11.33±0.40a 9.09±0.30a 100% FC
1.80±0.00b 0.82±0.00b 9.80±0.40b 7.11±0.30b 70% FC
1.65±0.00c 0.65±0.06c 7.40±0.40c 5.18±0.20c 50% FC
0.92±0.00d 0.50±0.00d 5.27±0.20d 4.23±0.10d 30% FC
2.67±0.02b 0.67±0.02b 13.29±0.51b 11.33±0.30b A
2.75±0.02ab 0.75±0.02ab 13.87±0.51b 11.62±0.30b S
3.24±0.02a 1.55±0.02a 15.34±0.60a 13.10±0.30a AS
1.23±0.01b 1.42±0.02b 11.14±0.40c 9.21±0.30c N'
2.25±0.02c 0.73±0.01c 13.40±0.60c 11.13±0.41c A+100% FC
2.60±0.02b 0.89±0.01b 14.85±0.60b 12.44±0.41b A+70% FC
2.89±0.02a 0.96±0.01a 15.60±0.60a 13.32±0.41a A+50% FC
0.92±0.00d 0.64±0.01d 10.57±0.40d 8.22±0.30d A+30% FC
2.30±0.03b 0.84±0.00b 13.92±0.60b 11.24±0.45b S+100% FC
2.69±0.03a 1.23±0.02a 14.11±0.60a 12.62±0.45a S+70% FC
2.83±0.03a 1.32±0.02a 14.73±0.60a 12.96±0.55a S+50% FC
2.96±0.03a 1.41±0.02a 14.80±0.60a 12.67±0.55a S+30% FC
3.56±0.03d 2.46±0.03d 15.96±0.60d 13.24±0.55d AS+100% FC
3.77±0.03c 2.65±0.03c 16.92±0.62c 14.35±0.60c AS+70% FC
4.50±0.03b 3.20±0.03b 17.86±0.62b 15.76±0.60b AS+50% FC
4.96±0.03a 3.86±0.03a 19.88±0.70a 17.43±0.60a AS+30% FC
1.65±0.03a 0.89±0.01a 11.43±0.40a 9.66±0.45a N'+100% FC
0.93±0.03b 0.76±0.01b 9.31±0.40b 7.42±0.45b N'+70% FC
0.76±0.00c 0.56±0.01c 8.10±0.40c 6.76±0.35c N'+50% FC
0.61±0.00c 0.43±0.01c 7.14±0.40d 6.12±0.35c N'+30% FC
Table 3 Morphological traits of Festuca ovina under drought stress and bio-fertilizers
Fig. 1 Impact of drought stress (a), bio-fertilizers (b), and interaction effect between bio-fertilizers and drought stress (c) on absorption of nitrogen (N) and phosphorous (P). Bars are standard errors. A, A. vinelandii; S, P. agglomerans+P. putida; AS, A. vinelandii+P. agglomerans+P. putida; N', no inoculation; FC, field capacity. Different lowercase letters within different treatments in Figure 1a and b indicate significant differences at P<0.05 level for N or P. Different lowercase letters within the same bacterial and different FC treatments in Figure 1c indicate significant differences at P<0.05 level for N or P.
Fig. 2 Impact of drought stress (a), bio-fertilizers (b), and interaction effect between bio-fertilizers and drought stress (c) on absorption of potassium (K) and manganese (Mn). Bars are standard errors. A, A. vinelandii; S, P. agglomerans+P. putida; AS, A. vinelandii+P. agglomerans+P. putida; N', no inoculation; FC, field capacity. Different lowercase letters within different treatments in Figure 2a and b indicate significant differences at P<0.05 level for K or Mn. Different lowercase letters within the same bacterial and different FC treatments in Figure 2c indicate significant differences at P<0.05 level for K or Mn.
Fig. 3 Impact of drought stress (a), bio-fertilizers (b), interaction effect between bio-fertilizers and drought stress (c) on absorption of iron (Fe) and zinc (Zn). Bars are standard errors. A, A. vinelandii; S, P. agglomerans+P. putida; AS, A. vinelandii+P. agglomerans+P. putida; N', no inoculation; FC, field capacity. Different lowercase letters within different treatments in Figure 3a and b indicate significant differences at P<0.05 level for Fe or Zn. Different lowercase letters within the same bacterial and different FC treatments in Figure 3c indicate significant differences at P<0.05 level for Fe or Zn.
Fig 4 Mechanism of plant growth-promoting bacteria under drought stress
[1]   Abbassi F, Koocheki A. 2008. Effects of water deficit and salinity on germination properties of Aeluropus spp. Desert, 12: 179-184.
[2]   Andersen M N, Asch F, Wu Y, et al. 2002. Soluble invertase expression is an early target of drought stress during the critical, abortion-sensitive phase of young ovary development in maize. Plant Physiology, 130(2): 591-604.
doi: 10.1104/pp.005637 pmid: 12376627
[3]   Anjum S, Bazai Z A, Rizwan S, et al. 2019. Elemental characterization of medicinal plants and soils from Hazarganji Chiltan National Park and nearby unprotected areas of Balochistan. Journal of Oleo Science, 68(5): 443-461.
doi: 10.5650/jos.ess19004
[4]   Armand N, Amiri H, Ismaeili A. 2015. Effect of methanol on germination characteristics of bean (Phaseolus vulgaris L. cv. sadry) under drought stress condition. Iranian Journal Pulses Research‎, 6(1): 42-53.
[5]   Arun K D, Sabarinathan K G, Gomathy M, et al. 2020. Mitigation of drought stress in rice crop with plant growth-promoting abiotic stress-tolerant rice phyllosphere bacteria. Journal of Basic Microbiology, 60(9): 768-786.
[6]   Awari V R, Mate S N. 2015. Effect of drought stress on early seedling growth of chickpea (Cicer arietinum L.) genotypes. International Journal of Life Sciences Research, 2: 356-361.
[7]   Barnawal D, Bharti N, Pandey S S, et al. 2017. Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiologia Plantarum, 161(4): 502-514.
doi: 10.1111/ppl.2017.161.issue-4
[8]   Batool T, Ali S, Seleiman M F, et al. 2020. Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Scientific Reports, 10(1): 16975, doi: 10.1038/s41598-020-73489-z.
doi: 10.1038/s41598-020-73489-z pmid: 33046721
[9]   Bechtold U. 2018. Plant life in extreme environments: How do you improve drought tolerance? Frontiers in Plant Science,‎ 9: 543, doi: 10.3389/fpls.2018.00543.
doi: 10.3389/fpls.2018.00543
[10]   Bhatia P, Sharma P, Khosla B. 2014. Characterization for plant growth promoting rhizobacteria (PGPR) towards rice (Oryza sativa) seedling germination and growth. Annals of Biology, 30(4): 567-573.
[11]   Bianco C, Defez R. 2011. Soil bacteria support and protect plants against abiotic stresses. In: Shanker A. Abiotic Stress in Plants-Mechanisms and Adaptations. Rijeka: Intech, 143-170.
[12]   Boyer J S. 1970. Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiology, 46(2): 233-235.
doi: 10.1104/pp.46.2.233 pmid: 16657441
[13]   Budania K, Yadav J. 2014. Effects of PGPR blended biochar and different levels of phosphorus on yield and nutrient uptake by chickpea. Annals of Agri Bio Research, 19(3): 408-412.
[14]   Chen Y, Shen X, Peng H, et al. 2015. Comparative genomic analysis and phenazine production of Pseudomonas chlororaphis a plant growth-promoting rhizobacterium. Genomics Data, 4: 33-42.
doi: 10.1016/j.gdata.2015.01.006
[15]   Cui X C. 2021. Research progress on relationship between rhizosphere microorganisms and soil plants. Modern Agriculture Research, 27(5): 34-35, 49.
[16]   Delshadi S. 2015. Effects of plant growth promoting rhizobacteria on seed germination and growth of Bromus tomentellus, Onobrychis sativa and Avena sativa in drought stress. MSc Thesis. Zabol: University of Zabol. (in Persian)
[17]   Delshadi S, Ebrahimi M, Shirmohammadi E I. 2017. Influence of plant-growth-promoting bacteria on germination, growth and nutrients' uptake of Onobrychis sativa L. under drought stress. Journal of Plant Interactions, 12(1): 200-208.
doi: 10.1080/17429145.2017.1316527
[18]   Devincentis A J. 2020. Scales of sustainable agricultural water management. PhD Dissertation. California: University of California.
[19]   Diallo D, Marico A. 2013. Field capacity (FC) and permanent wilty point (PWP) of clay soils developed on quaternary alluvium in Niger River Loop (Mali). International Journal of Engineering Science, 3(1): 1085-1089.
[20]   Diatta A A, Fike J H, Battaglia M L, et al. 2020. Effects of biochar on soil fertility and crop productivity in arid regions: A review. Arabian Journal of Geosciences, 13: 595, doi: 10.1007/s12517-020-05586-2.
doi: 10.1007/s12517-020-05586-2
[21]   Emadi A, Jones R J, Brodsky R A. 2009. Cyclophosphamide and cancer: Golden anniversary. Nature Reviews Clinical Oncology, 6(11): 638-647.
doi: 10.1038/nrclinonc.2009.146 pmid: 19786984
[22]   Fabian A, Jager K, Barnabas B. 2008. Effects of drought and combined drought and heat stress on germination ability and seminal root growth of wheat (Triticum aestivum L.) seedlings. Acta Biologica Szegediensis, 52(1): 157-159.
[23]   García de Salamone I E, Hynes R K, Nelson L M, et al. 2001. Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Canadian Journal of Microbiology, 47(5): 404-411.
pmid: 11400730
[24]   Gepstein S, Glick B R. 2013. Strategies to ameliorate abiotic stress-induced plant senescence. Plant Molecular Biology, 82: 623-633.
doi: 10.1007/s11103-013-0038-z pmid: 23595200
[25]   Ghorbani A, Sharifi J, Kavianpoor H, et al. 2013. Investigation on ecological characteristics of Festuca ovina L. in south-eastern rangelands of Sabalan. Iranian Journal of Range and Desert Research, 20(2): 379-396.
[26]   Goswami D, Thakker J N, Dhandhukia P C. 2016. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food and Agriculture, 2(1): 1127500, doi: 10.1080/23311932.2015.1127500.
doi: 10.1080/23311932.2015.1127500
[27]   Gou Q, Ma G, Qu J, et al. 2023. Diversity of soil bacteria and fungi communities in artificial forests of the sandy-hilly region of Northwest China. Journal of Arid Land, 15(1): 109-126.
doi: 10.1007/s40333-023-0003-x
[28]   Jafarian Z, Ghaderi S, Gholami P. 2012. Investigation effect of drought stress on germination of Dactylic glomerata L. in two regions of Karaj and Bijar. Journal of Water and Soil Science, 7(2): 117-126.
[29]   Jaleel C A, Manivannan P, Sankar B, et al. 2007. Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids and Surfaces B: Biointerfaces, 60(1): 7-11.
pmid: 17681765
[30]   Jalili F, Khavazi K, Pazira E, et al. 2009. Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. Journal of Plant Physiology, 166(6): 667-674.
[31]   Karimi A, Ghobadi M E, Ghobadi M, et al. 2020. Study the effect of not-irrigation at different growth stages of corn on content and amount of grain's elements. Environmental Stresses in Crop Sciences, 13(3): 749-761.
[32]   Kızılkaya R. 2008. Yield response and nitrogen concentrations of spring wheat (Triticum aestivum) inoculated with Azotobacter chroococcum strains. Journal of Ecological Engineering, 33(2): 150-156.
[33]   Li P, Zhang Y, Wu X, et al. 2018. Drought stress impact on leaf proteome variations of faba bean (Vicia faba L.) in the Qinghai Tibet Plateau of China. 3 Biotech, 8: 110, doi: 10.1007/s13205-018-1088-3.
doi: 10.1007/s13205-018-1088-3
[34]   Liu M, Li M, Liu K, et al. 2015. Effects of drought stress on seed germination and seedling growth of different maize varieties. Journal of Agricultural Science, 7(5): 231-240.
[35]   Lu X, Liu S F, Yue L, et al. 2018. EPSC involved in the encoding of exopolysaccharides produced by Bacillus amyloliquefaciens FZB 42 act to boost the drought tolerance of Arabidopsis thaliana. International Journal of Molecular Sciences, 19(12): 3795, doi: 10.3390/ijms19123795.
doi: 10.3390/ijms19123795
[36]   Mafakheri A, Siosemardeh A F, Bahramnejad B, et al. 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science, 4(8): 580-585.
[37]   Maguire J D. 1962. Speed of germination-Aid in selection and evaluation for seedling emergence and vigor. Journal of Crop Science, 2(2): 176-177.
[38]   Moghbeli Z, Ebrahimi M, Shirmohammdi E. 2021. Effects of different livestock grazing intensities on plant cover, soil properties, and above and below ground C and N pools in arid ecosystems (Jiroft rangeland, Iran). Environmental Resources Research, 9(1): 13-30.
[39]   Nadeem S M, Zahir Z A, Naveed M, et al. 2010. Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Science Society of America Journal, 74(2): 533-542.
doi: 10.2136/sssaj2008.0240
[40]   Nadeem S M, Ahmad M, Zahir Z A, et al. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32(2): 429-448.
doi: 10.1016/j.biotechadv.2013.12.005 pmid: 24380797
[41]   Narula N, Kumar V, Singh B, et al. 2005. Impact of bio-fertilizers on grain yield in spring wheat under varying fertility conditions and wheat-cotton rotation. Archives of Agronomy and Soil Science, 51(1): 79-89.
doi: 10.1080/03650340400029382
[42]   Nedjimi B. 2022. Analytical determination of some mineral and trace elements in medicinal castor plant (Ricinus communis L.) by instrumental neutron activation analysis. Journal of Trace Elements and Minerals, 2: 100024, doi: 10.1016/j.jtemin.2022.100024.
doi: 10.1016/j.jtemin.2022.100024
[43]   Nemeskéri E, Molnár K, Helyes L. 2018a. Relationships of spectral traits with yield and nutritional quality of snap beans (Phaseolus vulgaris L.) in dry seasons. Archives of Agronomy and Soil Science, 64(9): 1222-1239.
doi: 10.1080/03650340.2017.1420903
[44]   Nemeskéri E, Molnár K, Pék Z, et al. 2018b. Effect of water supply on the water use-related physiological traits and yield of snap beans in dry seasons. Irrigation Science, 36: 143-158.
doi: 10.1007/s00271-018-0571-2
[45]   Nemeskéri E, Helyes L. 2019. Physiological responses of selected vegetable crop species to water stress. Agronomy, 9(8): 447, doi: 10.3390/agronomy9080447.
doi: 10.3390/agronomy9080447
[46]   Nemeskéri E, Neményi A, Bőcs A, et al. 2019. Physiological factors and their relationship with the productivity of processing tomato under different water supplies. Water, 11: 586, doi: 10.3390/w11030586.
doi: 10.3390/w11030586
[47]   Ngumbi E, Kloepper J. 2016. Bacterial-mediated drought tolerance: Current and future prospects. Applied Soil Ecology, 105: 109-125.
doi: 10.1016/j.apsoil.2016.04.009
[48]   Niu X, Song L, Xiao Y, et al. 2018. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front Frontiers in Microbiology, 8: 2580, doi: 10.3389/fmicb.2017.02580.
doi: 10.3389/fmicb.2017.02580
[49]   Nosrati R, Owlia P, Saderi H, et al. 2014. Phosphate solubilization characteristics of efficient nitrogen fixing soil Azotobacter strains. Iranian Journal of Microbiology, 6(4): 285-295.
pmid: 25802714
[50]   Omara A E D, Elbagory M. 2018. Enhancement of plant growth and yield of wheat (Triticum aestivum L.) under drought conditions using plant-growth-promoting bacteria. Annual Research & Review in Biology, 28: 44181, doi: 10.9734/ARRB/2018/44181.
doi: 10.9734/ARRB/2018/44181
[51]   Pang D, Wang G, Liu Y, et al. 2019. The impacts of vegetation types and soil properties on soil microbial activity and metabolic diversity in subtropical forests. Forests, 10(6): 497, doi: 10.3390/f10060497.
doi: 10.3390/f10060497
[52]   Rana A, Kabi S R, Verma S, et al. 2015. Prospecting plant growth promoting bacteria and cyanobacteria as options for enrichment of macro- and micronutrients in grains in rice-wheat cropping sequence. Cogent Food & Agriculture, 1(1): 1037379, doi: 10.1080/23311932.2015.1037379.
doi: 10.1080/23311932.2015.1037379
[53]   Rayan J R, Stefan G, Rashid A. 2001. Soil and Plant Analysis Laboratory Manual (2nd ed.). Syria: ICARDA, 28.
[54]   Rodrı́guez H, Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion (review paper). Biotechnology Advances, 17(4-5): 319-339.
doi: 10.1016/s0734-9750(99)00014-2 pmid: 14538133
[55]   Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, et al. 2012. Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Applied Soil Ecology, 61: 264-272.
doi: 10.1016/j.apsoil.2012.01.006
[56]   Sabeti M, Tahmasebi P, Ghehsareh Ardestani E, et al. 2019. Effect of plant growth promoting rhizobacteria (PGPR) on the seed germination, seedling growth and photosynthetic pigments of Astragalus caragana under drought stress. Journal of Rangeland Science, 9: 364-377.
[57]   Saikia J, Sarma R K, Dhandia R, et al. 2018. Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Scientific Reports, 8(1): 3560, doi: 10.1038/s41598-018-21921-w.
doi: 10.1038/s41598-018-21921-w pmid: 29476114
[58]   Sandhya V, Ali S K Z, Reddy G, et al. 2009. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biology and Fertility of Soils, 46: 17-26.
doi: 10.1007/s00374-009-0401-z
[59]   Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, et al. 2016. Plant growth-promoting bacterial endophytes. Microbiological Research, 183: 92-99.
doi: 10.1016/j.micres.2015.11.008 pmid: 26805622
[60]   Sarabi V, Arjmand-Ghajur E. 2021. Exogenous plant growth regulators/plant growth promoting bacteria roles in mitigating water-deficit stress on chicory (Cichorium pumilum Jacq.) at a physiological level. Agricultural Water Management, 245: 106439, doi: 10.1016/j.agwat.2020.106439.
doi: 10.1016/j.agwat.2020.106439
[61]   Sarcheshmehpour M, Savaghebi G, Siadat H, et al. 2013. Effect of plant growth promoting rhizobacteria on improvement of nutrition and growth of pistachio seedling under drought stress. Iranian Journal of Soil Research, 2: 107-119.
[62]   Sarikhani M, Amini R. 2020. Bio-fertilizer in sustainable agriculture: Review on the researches of bio-fertilizers in Iran. Journal of Agricultural Science and Sustainable Production, 30(1): 329-365.
[63]   Sehgal A, Sita K, Siddique K H, et al. 2018. Drought or/and heat-stress effects on seed filling in food crops: Impacts on functional biochemistry, seed yields, and nutritional quality. Frontiers in Plant Science, 9: 1705, doi: 10.3389/fpls.2018.01705.
doi: 10.3389/fpls.2018.01705 pmid: 30542357
[64]   Seleiman M F, Al-Suhaibani N, Ali N, et al. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2): 259, doi: 10.3390/plants10020259.
doi: 10.3390/plants10020259
[65]   Sheteiwy M S, Abd Elgawad H, Xiong Y C, et al. 2021. Inoculation with Bacillus amyloliquefaciens and mycorrhiza confers tolerance to drought stress and improve seed yield and quality of soybean plant. Physiologia Plantarum, 172(4): 2153-2169.
doi: 10.1111/ppl.v172.4
[66]   Sofi A, Ebrahimi M, Shirmohammadi E. 2021. Influence of humic acid on germination, morphological characteristics and photosynthesis pigments of Trifolium alexandrium L. under salinity stress. Ecopersia, 9(4): 287-297.
[67]   Turan M, Gulluce M, Agar G, et al. 2012. Evaluation of PGPR strains on wheat yield and quality parameters. In: International Conference of Agricultural Engineering-CIGR-AgEng 2012: Agriculture and Engineering for a Healthier Life. Valencia: CIGR-EurAgEng, 2352.
[68]   Wang W, Vinocur B, Altman A. 2003. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218: 1-14.
doi: 10.1007/s00425-003-1105-5 pmid: 14513379
[69]   Wilkinson M J, Stace C A. 1991. A new taxonomic treatment of the Festuca ovina L. aggregate (Poaceae) in the British Isles. Botanical Journal of the Linnean Society, 106(4): 347-397.
doi: 10.1111/boj.1991.106.issue-4
[70]   Yang A, Akhtar S S, Iqbal S, et al. 2016. Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. Functional Plant Biology, 43(7): 632-642.
doi: 10.1071/FP15265 pmid: 32480492
[71]   Zahir Z A, Arshad M, Frankenberger W T. 2004. Plant growth promoting rhizobacteria: Applications and perspectives in agriculture. Advances in Agronomy, 81: 97-168.
[72]   Zahir Z A, Ghani U, Naveed M, et al. 2009. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Archives of Microbiology, 191: 415-424.
doi: 10.1007/s00203-009-0466-y pmid: 19255743
[73]   Zamani Z, Amiri H, Ismaeili A. 2018. Effect of drought stress on germination characteristics of two populations of fenugreek (Trigonella foenum subsp. graceum L.). Nova Biologica Reperta, 5(2):191-198.
doi: 10.29252/nbr.5.2.191
[74]   Zarik L, Meddich A, Hijri M, et al. 2016. Use of Arbuscular mycorrhizal fungi to improve the drought tolerance of Cupressus atlantica G. Comptes Rendus Biologies, 339(5-6): 185-196.
doi: 10.1016/j.crvi.2016.04.009
[75]   Zawoznik M S, Ameneiros M, Benavides M P, et al. 2011. Response to saline stress and aquaporin expression in Azospirillum-inoculated barley seedlings. Applied Microbiology and Biotechnology, 90: 1389-1397.
doi: 10.1007/s00253-011-3162-1 pmid: 21365472
[76]   Zhao H, Zhou Y C, Ren Q F. 2020. Evolution of soil microbial community structure and functional diversity in Pinus massoniana plantations with age of stand. Acta Pedologica Sinica, 57(1): 227-238. (in Chinese)
[77]   Zhao W Z, Zheng Y, Zhang G F. 2018. Self-organization process of sand-fixing plantation in a desert-oasis ecotone, Northwestern China. Journal of Desert Research, 38(1): 1-7. (in Chinese)
doi: 10.7522/j.issn.1000-694X.2017.00091
[1] M'hammed BOUALLALA, Souad NEFFAR, Lyès BRADAI, Haroun CHENCHOUNI. Do aeolian deposits and sand encroachment intensity shape patterns of vegetation diversity and plant functional traits in desert pavements?[J]. Journal of Arid Land, 2023, 15(6): 667-694.
[2] Mohammad Hossein TAGHIZADEH, Mohammad FARZAM, Jafar NABATI. Rhizobacteria facilitate physiological and biochemical drought tolerance of Halimodendron halodendron (Pall.) Voss[J]. Journal of Arid Land, 2023, 15(2): 205-217.
[3] Lobna MNIF FAKHFAKH, Mohamed CHAIEB. Effects of water stress on growth phenology photosynthesis and leaf water potential in Stipagrostis ciliata (Desf.) De Winter in North Africa[J]. Journal of Arid Land, 2023, 15(1): 77-90.
[4] HUANG Laiming, ZHAO Wen, SHAO Ming'an. Response of plant physiological parameters to soil water availability during prolonged drought is affected by soil texture[J]. Journal of Arid Land, 2021, 13(7): 688-698.
[5] WANG Chunyuan, YU Minghan, DING Guodong, GAO Guanglei, ZHANG Linlin, HE Yingying, LIU Wei. Size- and leaf age-dependent effects on the photosynthetic and physiological responses of Artemisia ordosica to drought stress[J]. Journal of Arid Land, 2021, 13(7): 744-758.
[6] Mohsen SHARAFATMANDRAD, Azam KHOSRAVI MASHIZI. Plant community dynamics in arid lands: the role of desert ants[J]. Journal of Arid Land, 2021, 13(3): 303-316.
[7] MAMUT Jannathan, Dunyan TAN, C BASKIN Carol, M BASKIN Jerry. Effects of water stress and NaCl stress on different life cycle stages of the cold desert annual Lachnoloma lehmannii in China[J]. Journal of Arid Land, 2019, 11(5): 774-784.
[8] DZIKITI Sebinasi, Z JOVANOVIC Nebo, DH BUGAN Richard, RAMOELO Abel, P MAJOZI Nobuhle, NICKLESS Alecia, A CHO Moses, C LE MAITRE David, NTSHIDI Zanele, H PIENAAR Harrison. Comparison of two remote sensing models for estimating evapotranspiration: algorithm evaluation and application in seasonally arid ecosystems in South Africa[J]. Journal of Arid Land, 2019, 11(4): 495-512.
[9] HADIAN Fatemeh, JAFARI Reza, BASHARI Hossein, TARTESH Mostafa, D CLARKE Kenneth. Estimation of spatial and temporal changes in net primary production based on Carnegie Ames Stanford Approach (CASA) model in semi-arid rangelands of SemiromCounty, Iran[J]. Journal of Arid Land, 2019, 11(4): 477-494.
[10] PORDEL Fatemeh, EBRAHIMI Ataollah, AZIZI Zahra. Canopy cover or remotely sensed vegetation index, explanatory variables of above-ground biomass in an arid rangeland, Iran[J]. Journal of Arid Land, 2018, 10(5): 767-780.
[11] BELALA Fahima, HIRCHE Azziz, D MULLER Serge, TOURKI Mahmoud, SALAMANI Mostefa, GRANDI Mohamed, AIT HAMOUDA Tahar, BOUGHANI Madjid. Rainfall patterns of Algerian steppes and the impacts on natural vegetation in the 20th century[J]. Journal of Arid Land, 2018, 10(4): 561-573.
[12] Ling NAN, Zhibao DONG, Weiqiang XIAO, Chao LI, Nan XIAO, Shaopeng SONG, Fengjun XIAO, Lingtong DU. A field investigation of wind erosion in the farming-pastoral ecotone of northern China using a portable wind tunnel: a case study in Yanchi County[J]. Journal of Arid Land, 2018, 10(1): 27-38.
[13] JABERALANSAR Zahra, TARKESH Mostafa, BASSIRI Mehdi, POURMANAFI Saeid. Modelling the impact of climate change on rangeland forage production using a generalized regression neural network: a case study in Isfahan Province, Central Iran[J]. Journal of Arid Land, 2017, 9(4): 489-503.
[14] BELAYNEH Anteneh, K TESSEMA Zewdu. Mechanisms of bush encroachment and its inter-connection with rangeland degradation in semi-arid African ecosystems: a review[J]. Journal of Arid Land, 2017, 9(2): 299-312.
[15] KARGAR-CHIGANI Hadi, Akbar JAVADI Seyed, ZAHEDI-AMIRI Ghavamodin, Jamaleddin KHAJEDDIN Seyed, JAFARI Mohamad. Vegetation composition differentiation and species-environment relationships in the northern part of Isfahan Province, Iran[J]. Journal of Arid Land, 2017, 9(2): 161-175.