Please wait a minute...
Journal of Arid Land  2023, Vol. 15 Issue (1): 77-90    DOI: 10.1007/s40333-022-0082-0
Research article     
Effects of water stress on growth phenology photosynthesis and leaf water potential in Stipagrostis ciliata (Desf.) De Winter in North Africa
Laboratory of Ecosystems and Biodiversity in Arid Land of Tunisia (LEBIOMAT), Faculty of Sciences, University of Sfax, Sfax 3000, Tunisia
Download: HTML     PDF(887KB)
Export: BibTeX | EndNote (RIS)      


Stipagrostis ciliata (Desf.) De Winter is a pastoral C4 grass grown in arid regions. This research work focused on assessing the growth of S. ciliata accessions derived from two different climate regions (a wet arid region in the Bou Hedma National Park in the central and southern part of Tunisia (coded as WA), and a dry arid region from the Matmata Mountain in the south of Tunisia (coded as DA)) under water stress conditions. Specifically, the study aimed to investigate the phenological and physiological responses of potted S. ciliata seedlings under different water treatments: T1 (200 mm/a), T2 (150 mm/a), T3 (100 mm/a) and T4 (50 mm/a). Growth phenology, net photosynthesis (Pn), stomatal conductance (gs), midday leaf water potential (Ψmd), predawn leaf water potential (Ψpd), soil water content (SWC) and soil water potential (Ψs) were observed during the water stress cycle (from December 2016 to November 2017). The obtained results showed that the highest growth potential of the two accessions (WA and DA) was recorded under treatment T1. The two accessions responded differently and significantly to water stress. Photosynthetic parameters, such as Pn and gs, decreased sharply under treatments T2, T3 and T4 compared to treatment T1. The higher water stress increased the R/S ratio (the ratio of root dry biomass to shoot dry biomass), with values of 1.29 and 2.74 under treatment T4 for accessions WA and DA, respectively. Principal component analysis (PCA) was applied, and the separation of S. ciliata accessions on the first two axes of PCA (PC1 and PC2) suggested that accession DA was detected in the negative extremity of PC1 and PC2 under treatments T1 and T2. This accession was characterized by a high number of spikes. For treatments T3 and T4, both accessions were detected in the negative extremity of PC1 and PC2. They were characterized by a high root dry biomass. Therefore, S. ciliata accessions responded to water stress by displaying significant changes in their behaviours. Accession WA from the Bou Hedma National Park (wet arid region) showed higher drought tolerance than accession DA from the Matmata Mountain (dry arid region). S. ciliata exhibits a significant adaptation capacity for water limitation and may be an important species for ecosystem restoration.

Key wordsStipagrostis ciliata      drought stress      water deficit      gas exchange      arid regions      Tunisia     
Received: 02 June 2022      Published: 31 January 2023
Corresponding Authors: *Mohamed CHAIEB (E-mail:
Cite this article:

Lobna MNIF FAKHFAKH, Mohamed CHAIEB. Effects of water stress on growth phenology photosynthesis and leaf water potential in Stipagrostis ciliata (Desf.) De Winter in North Africa. Journal of Arid Land, 2023, 15(1): 77-90.

URL:     OR

Fig. 1 Relative humidity and mean monthly temperature during the experimental period (from December 2016 to November 2017) in a shelter greenhouse in the experimental field in the central and eastern part of Tunisia
Acession Treatment Leaf
Shoot dry
biomass (g/plant)
Root dry
biomass (g/plant)
R/S ratio
WA T1 28.33±1.53a 21.33±1.53a 15.00±1.00a 303.33±16.26a 60.66±7.06a 0.20±0.03a
T2 23.00±1.00b 15.66±2.08b 10.00±1.00b 248.00±3.00b 66.00±3.66a 0.27±0.02a
T3 14.33±1.53c 7.00±1.00c 5.00±1.00c 125.00±3.00c 95.00±3.00b 0.76±0.02b
T4 8.17±0.76d 4.00±1.00c 4.00±1.00c 85.00±4.36d 109.00±2.65c 1.29±0.07c
DA T1 21.00±1.00a 32.00±2.00a 13.00±1.00a 182.67±7.37a 19.67±2.08a 0.11±0.01a
T2 16.00±1.00b 24.67±1.53b 7.00±1.00b 128.00±3.00b 25.00±2.00a 0.20±0.02a
T3 8.00±1.00c 7.67±1.53c 4.00±1.00c 72.67±8.74c 66.67±3.79b 0.92±0.08b
T4 4.00±1.00d 3.00±1.00d 2.00±1.00c 46.00±4.58d 125.67±4.04c 2.74±0.18c
Acession *** *** * * *** *
Acession WA×Treatment *** *** *** *** *** ***
Acession DA×Treatment *** *** *** *** *** ***
Table 1 Effects of accessions and water treatments on the growth phenology and biomass of Stipagrostis ciliata (Desf.) De Winter
Variable Leaf Spike Tiller Shoot dry biomass Root dry biomass R/S ratio Total biomass Ψmd Ψpd Pn gs SWC Ψs
Leaf 1.000
Spike 0.732** 1.000
Tiller 0.923** 0.809** 1.000
Shoot dry biomass 0.968** 0.605* 0.904** 1.000
Root dry biomass -0.616 -0.916 -0.647 -0.469 1.000
R/S ratio -0.804 -0.759 -0.745 -0.708 0.829** 1.000
Total biomass 0.802** 0.249 0.714** 0.908** -0.055 -0.407 1.000
Ψmd -0.694 -0.713 -0.729 -0.621 0.697* 0.668* -0.371 1.000
Ψpd -0.716 -0.749 -0.760 -0.652 0.709** 0.648* -0.400 0.966** 1.000
Pn 0.948** 0.622* 0.919** 0.975** -0.488 -0.675 0.871** -0.655 -0.677 1.000
gs 0.959** 0.753** 0.908** 0.931** -0.670 -0.779 0.734** -0.705 -0.742 0.923** 1.000
SWC 0.922** 0.907** 0.922** 0.848** -0.841 -0.848 0.559* -0.797 -0.818 0.857** 0.943** 1.000
Ψs -0.858 -0.811 -0.819 -0.764 0.812** 0.841** -0.477 0.835** 0.826** -0.771 -0.902 -0.940 1.000
Table 2 Pearson's correlation coefficients among morphological and physiological characteristics of S. ciliata accessions
Acsession Treatment Ψmd (MPa) Ψpd (MPa) Pn (µmol/(m2•s)) gs (mmol/(m2•s)) Ψs (MPa)
WA T1 -0.99±0.10a -0.65±0.18a 62.40±2.62a 244.00±8.64a 0.63±0.02a
T2 -2.28±0.75ab -1.45±0.50ab 40.97±1.76b 216.33±29.10a 1.02±0.12b
T3 -2.20±0.85ab -1.66±0.77ab 18.07±2.00c 130.33±5.69b 1.39±0.11b
T4 -3.57±0.40b -2.63±0.15b 11.60±2.62d 66.00±5.29c 1.14±0.14c
DA T1 -0.74±0.06a -0.51±0.10a 33.17±0.76a 192.67±5.00a 1.00±0.09a
T2 -2.28±0.75b -1.45±0.51ab 23.00±2.00b 161.33±3.00b 1.34±0.20a
T3 -2.20±0.85ab -1.76±0.76b 14.22±0.77c 114.67±5.00c 1.41±0.45b
T4 -3.48±0.28b -2.33±0.15b 7.17±1.04d 73.33±7.64d 1.53±0.36b
Acession ns ns ** ** ns
Acession WA×Treatment ** ** *** *** ns
Acession DA×Treatment ** ** *** *** ns
Table 3 Effects of accessions and water treatments on the physiological parameters and Ψs of S. ciliata
Fig. 2 Soil water content (SWC) of two S. ciliata accessions under different water treatments. The water treatments (water stress levels) of plants were designed as follows: 200 mm/a for T1, 150 mm/a for T2, 100 mm/a for T3 and 50 mm/a for T4. S. ciliata accession from a wet arid region (Bou Hedma National Park) was coded as WA, and S. ciliata accession from a dry arid region (Matmata Mountain) was coded as DA. Columns with the same lowercase letters are not significantly different between WA and DA, as determined by the Tukey's test (P<0.05).
Fig. 3 Predraw leaf water potential (Ψpd) in S. ciliata accessions WA (a) and DA (b) under different water treatments (T1, T2, T3 and T4)
Fig. 4 Biplot of principal component analysis (PCA) showing the separation of phenological and physiological parameters of both S. ciliata accessions (WA and DA) under dfferent water treatments. RD-B, root dry biomass; SD-B, shoot dry biomass; TD-B, total dry biomass; Ψmd, midday leaf water potential; Ψpd, predawn leaf water potential; Ψs, soil water potential; Pn, net photosynthesis; gs, stomatal conductance; SWC, soil water content. Red mark, active variable; blue mark, explicative variable; black mark, accession-treatment.
[1]   Adaawen S. 2021. Understanding climate change and drought perceptions, impact and responses in the Rural Savannah, West Africa. Atmosphere, 12(5): 594, doi: 10.3390/atmos12050594.
doi: 10.3390/atmos12050594
[2]   Anjum S A, Xie X Y, Wang L C, et al. 2011. Morphological, physiological and biochemical responses of plants drought stress. African Journal of Agriculture Research, 6(9): 2026-2032.
[3]   Aronson J, Goodwin N, Orlando L, et al. 2020. A world of possibilities: Six restoration strategies to support the United Nation's Decade on Ecosystem Restoration. Restoration Ecology, 28(4): 730-736.
doi: 10.1111/rec.13170
[4]   Batool T, Ali S, Seleiman M F, et al. 2020. Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Scientific Reports, 10: 16975, doi: 10.1038/s41598-020-73489-z.
doi: 10.1038/s41598-020-73489-z pmid: 33046721
[5]   Ben Mariem H, Chaieb M. 2017. Climate change impacts on the distribution of Stipa tenacissima L. ecosystems in North African arid zones. Applied Ecology and Environmental Research, 15(3): 67-82.
[6]   Brocca L, Moramarco T, Melone F, et al. 2017. A new method for rainfall estimation through soil moisture observations. Geophysical Research Letters, 40(5): 853-858.
doi: 10.1002/grl.50173
[7]   Chaieb M, Henchi B, Boukhris M. 1996. Impact of clipping on root systems of 3 grasses species in Tunisia. Journal of Range Management, 49(4): 336-339.
doi: 10.2307/4002593
[8]   Christin P A, Colin P O. 2014. The evolutionary ecology of C4 plants. New Phytologist, 204(4): 765-781.
doi: 10.1111/nph.13033
[9]   Daur I. 2012. Plant flora in the rangeland of western Saudi Arabia. Acta Physiologiae Plantarum, 44: 223-269.
[10]   Derbel D, Cortina J, Chaieb M. 2009. Acacia saligna plantation impact on soil surface properties and vascular plant species composition in central Tunisia. Arid Land Research and Management, 23(1): 28-46.
doi: 10.1080/15324980802599209
[11]   Ding Z, Ali E F, Elmahdy A M, et al. 2021. Modeling the combined impacts of deficit irrigation, rising temperature and compost application on wheat yield and water productivity. Agricultural Water Management, 244: 106626, doi: 10.1016/j.agwat.2020.106626.
doi: 10.1016/j.agwat.2020.106626
[12]   Du N, Guo W H, Zhang X R, et al. 2010. Morphological and physiological responses of Vitex negundo L. var. heterophylla (Franch.) Rehd. to drought stress. Acta Physiologiae Plantarum, 32: 839-848.
doi: 10.1007/s11738-010-0468-z
[13]   Fahad S, Ali A B, Usman N, et al. 2017. Crop production under drought and heat stress: plant responses and management options. Frontiers of Plant Science, 8: 1147, doi: 10.3389/fpls.2017.01147.
doi: 10.3389/fpls.2017.01147
[14]   Farman A, Bano A, Fazal A. 2017. Recent methods of drought stress tolerance in plants. Plant Growth Regulation, 82(1): 363-375.
doi: 10.1007/s10725-017-0267-2
[15]   Farooq M, Kobayashi N, Ito O, et al. 2010. Broader leaves result in better performance of indica rice under drought stress. Journal of Plant Physiology, 167(13): 1066-1075.
doi: 10.1016/j.jplph.2010.03.003 pmid: 20392520
[16]   Fernandez R J, Reynolds J F. 2000. Potential growth and drought tolerance of eight desert grasses: lack of a trade-off? Oecologia, 123: 90-98.
doi: 10.1007/s004420050993 pmid: 28308749
[17]   Frontier S. 1973. Etude statistique de la dispersion du zooplancton. Journal of Experimental Marine Biology and Ecology, 12(3): 229-262.
doi: 10.1016/0022-0981(73)90056-7
[18]   Gazanchian A, Hajheidari M, Sima N A K, et al. 2007. Proteome response of Elymus elongatum to severe water stress and recovery. Journal of Experimental Botany, 58(2): 291-300.
pmid: 17210992
[19]   Ghannoum O. 2009. C4 photosynthesis and water stress. Annals of Botany, 103(4): 635-644.
doi: 10.1093/aob/mcn093 pmid: 18552367
[20]   Guo W, Li B, Zhang X, el al. 2007. Architectural plasticity and growth responses of Hippophae rhamnoides and Caragana intermedia seedlings to simulated water stress. Journal of Arid Environments, 69(3): 385-399.
doi: 10.1016/j.jaridenv.2006.10.003
[21]   Hamdani M, Krichen K, Chaieb M. 2019. Predicting leaf trait variability as a functional descriptor of the effect of climate change in three perennial grasses. Diversity, 11(12): 233, doi: 10.3390/d11120233.
doi: 10.3390/d11120233
[22]   Henschel J R, Burke A, Seely M. 2005. Temporal and spatial variability of grass productivity in the central Namib desert. African Studies Monographs, 30: 43-56.
[23]   Hillel D. 1982. Introduction to Soil Physics. San Diego: Academic Press, 392.
[24]   IPCC. 2014. Climate Change 2014:Impacts, Adaptation, and Vulnerability. Part A:Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
[25]   Jones H G. 2007. Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. Journal of Experimental Botany, 58(2): 119-130.
doi: 10.1093/jxb/erl118 pmid: 16980592
[26]   Kadioglu A, Terzi R. 2007. A dehydration avoidance mechanism: leaf rolling. Botanical Review, 73: 290-302.
doi: 10.1663/0006-8101(2007)73[290:ADAMLR]2.0.CO;2
[27]   Kellogg E A. 2013. C4 photosynthesis. Current Biology, 23(14): R594-R599.
doi: 10.1016/j.cub.2013.04.066
[28]   Kharrat-Souissi A, Baumel A, Torre F, et al. 2012. Genetic differentiation of the dominant perennial grass Cenchrus ciliaris L. contributes to response to water deficit in arid lands. Rangeland Journal, 34(1): 55-62.
doi: 10.1071/RJ11034
[29]   Kharrat-Souissi A, Siljak-Yakovlev S, Brown S C, et al. 2013. Cytogeography of Cenchrus ciliaris (Poaceae) in Tunisia. Folia Geobotanica, 48(1): 95-113.
doi: 10.1007/s12224-012-9137-x
[30]   Kharrat-Souissi A, Siljak-Yakovlev S, Brown S C, et al. 2014. The polyploid nature of Cenchrus ciliaris L. (Poaceae) has been overlooked: new insights for the conservation and invasion biology of this species-a review. Rangeland Journal, 36(1): 11-23.
doi: 10.1071/RJ13043
[31]   Liu S, Liu J, Cao J, et al. 2006. Stomatal distribution and character analysis of leaf epidermis of jujube under drought stress. Journal of Anhui Agricultural University, 34: 1315-1318. (in Chinese)
[32]   Ma Y, Maria C D, Helena F. 2020. Drought and salinity stress responses and microbe-induced tolerance in plants. Frontiers of Plant Science, 13: 1-18.
[33]   Maestre F T, Blas M B, Miguel B, et al. 2021. Biogeography of global drylands. New Phytologist, 231(2): 540-558.
doi: 10.1111/nph.17395 pmid: 33864276
[34]   Mnif Fakhfakh L, Anjum N A, Chaieb M. 2018. Assessment of temperature and water limitation effects on the germination of Stipagrostis ciliata seeds collected from Bou Hedma, Central South Tunisia. Journal of Arid Land, 10(2): 304-315.
doi: 10.1007/s40333-018-0050-x
[35]   Mnif Fakhfakh L, Jeddi K, Anjum N A, et al. 2020. Plant traits and phenotypic variability effect on the phytomass production of Stipagrostis ciliata (Desf.) De Winter. Saudi Journal of Biological Sciences, 27(6): 1553-1561.
doi: 10.1016/j.sjbs.2020.03.010 pmid: 32489293
[36]   Niu F, Nathan A P, Steven R A, et al. 2021. Germination and early establishment of dryland grasses and shrubs on intact and wind-eroded soils under greenhouse conditions. Plant and Soil, 465: 245-260.
doi: 10.1007/s11104-021-05005-9
[37]   Ouled Belgacem A, Neffati M, Papanastasis V P, et al. 2006. Effects of seed age and seeding depth on growth of Stipa lagascae R. & Sch. Seedlings. Journal of Arid Environments, 65(4): 682-687.
[38]   Raza A, Razzaq A, Mehmood S S, et al. 2019. Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants, 8(2): 34, doi: 10.3390/plants8020034.
doi: 10.3390/plants8020034
[39]   Ritchie G A, Hinckley T M. 1975. The pressure chamber as an instrument for ecological research. Advances in Ecological Research, 9: 165-254.
[40]   Roy A, Núñez Delgado A, Sultana S, et al. 2021. Additions of optimum water, spent mushroom compost and wood biochar to improve the growth performance of Althaea rosea in drought-prone coal-mined spoils. Journal of Environmental Management, 295: 113076, doi: 10.1016/j.jenvman.2021.113076.
doi: 10.1016/j.jenvman.2021.113076
[41]   Sage R F. 2004. The evolution of C4 photosynthesis. New Phytologist, 161(2): 341-370.
doi: 10.1111/j.1469-8137.2004.00974.x
[42]   Santos F D, Stigter T Y, Faysse N, et al. 2014. Impacts and adaptation to climate change in the Mediterranean coastal areas : the CIRCLE-MED initiative. Regional Environmental Change, 14(Suppl. 1): 1-3.
[43]   Sayed O H. 2003. Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica, 41: 321-330.
doi: 10.1023/B:PHOT.0000015454.36367.e2
[44]   Scholander P F, Bradstreet E D, Hemmingsen E A, et al. 1965. Sap pressure in vascular plants. Science, 148(3668): 339-346.
pmid: 17832103
[45]   Seleiman M F, Refay Y, Al-Suhaibani N, et al. 2019. Integrative effects of rice-straw biochar and silicon on oil and seed quality, yield and physiological traits of Helianthus annuus L. grown under water deficit stress. Agronomy, 9(10): 637, doi: 10.3390/agronomy9100637.
doi: 10.3390/agronomy9100637
[46]   Shao H, Chu L Y, Jaleel C A, et al. 2008. Water deficit stress induced anatomical changes in higher plants. Comptes Rendus Biologies, 331(3): 215-225.
doi: 10.1016/j.crvi.2008.01.002
[47]   Thioulouse J, Chessel D, Dolédec S, et al. 1997. ADE-4:multivariate analyses and graphical display for environmental data. Statistics and Computing, 7(1): 75-83.
[48]   Turner N C. 1988. Measurement of plant water status by the pressure chamber technique. Irrigation Sciences, 9(4): 289-308.
[49]   van Rooyen N, Bredenkamp G J, Theron G K. 1991. Kalahari vegetation: veld condition trends and ecological status of species. Koedoe-African Protected Area Conservation and Science, 34(1): 61-72.
[50]   Wellstein C, Poschlod P, Gohlke A, et al. 2017. Effects of extreme drought on specific leaf area of grassland species: A meta-analysis of experimental studies in temperate and sub-Mediterranean systems. Global Change Biology, 23(6): 2473-2481.
doi: 10.1111/gcb.13662 pmid: 28208238
[51]   West A G, Hultine K R, Sperry J S, et al. 2008. Transpiration and hydraulic strategies in a piñon-juniper woodland. Ecological Applications, 18(4): 911-927.
doi: 10.1890/06-2094.1
[52]   Xiong L, Wang R G, Mao G, et al. 2006. Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiology, 142: 1065-1074.
doi: 10.1104/pp.106.084632 pmid: 16963523
[53]   Xu B C, Gichuki P, Shan L, et al. 2006. Aboveground biomass production and soil water dynamics of four leguminous forages in semiarid region, northwest China. South African Journal of Botany, 72(4): 507-516.
doi: 10.1016/j.sajb.2006.01.005
[54]   Yu M, Gao Q, Epstein H E, et al. 2009. Quantification of leaf gas exchange characteristics of dominant C3/C4 plants at the Kalahari transect. South African Journal of Botany, 75(3): 518-525.
doi: 10.1016/j.sajb.2009.04.006
[55]   Zhao W, Lui L, Shen Q, et al. 2020. Effects of water stress on photosynthesis, yield, and water use efficiency in winter wheat. Water, 12(8): 2127, doi: 10.3390/w12082127.
doi: 10.3390/w12082127
[1] GAO Yalin, QI Guangping, MA Yanlin, YIN Minhua, WANG Jinghai, WANG Chen, TIAN Rongrong, XIAO Feng, LU Qiang, WANG Jianjun. Regulation effects of water and nitrogen on yield, water, and nitrogen use efficiency of wolfberry[J]. Journal of Arid Land, 2024, 16(1): 29-45.
[2] Fateme RIGI, Morteza SABERI, Mahdieh EBRAHIMI. Improved drought tolerance in Festuca ovina L. using plant growth promoting bacteria[J]. Journal of Arid Land, 2023, 15(6): 740-755.
[3] Sarra HECHMI, Samira MELKI, Mohamed-Naceur KHELIL, Rim GHRIB, Moncef GUEDDARI, Naceur JEDIDI. Potential risk of soil irrigation with treated wastewater over 40 years: a field experiment under semi-arid conditions in northeastern Tunisia[J]. Journal of Arid Land, 2023, 15(4): 407-423.
[4] Mohammad Hossein TAGHIZADEH, Mohammad FARZAM, Jafar NABATI. Rhizobacteria facilitate physiological and biochemical drought tolerance of Halimodendron halodendron (Pall.) Voss[J]. Journal of Arid Land, 2023, 15(2): 205-217.
[5] Olfa TERWAYET BAYOULI, ZHANG Wanchang, Houssem TERWAYET BAYOULI. Combining RUSLE model and the vegetation health index to unravel the relationship between soil erosion and droughts in southeastern Tunisia[J]. Journal of Arid Land, 2023, 15(11): 1269-1289.
[6] WANG Kun, WANG Xiaoxia, FEI Hongyan, WAN Chuanyu, HAN Fengpeng. Changes in diversity, composition and assembly processes of soil microbial communities during Robinia pseudoacacia L. restoration on the Loess Plateau, China[J]. Journal of Arid Land, 2022, 14(5): 561-575.
[7] Besma ZARAI, Christian WALTER, Didier MICHOT, Jean P MONTOROI, Mohamed HACHICHA. Integrating multiple electromagnetic data to map spatiotemporal variability of soil salinity in Kairouan region, Central Tunisia[J]. Journal of Arid Land, 2022, 14(2): 186-202.
[8] HUANG Laiming, ZHAO Wen, SHAO Ming'an. Response of plant physiological parameters to soil water availability during prolonged drought is affected by soil texture[J]. Journal of Arid Land, 2021, 13(7): 688-698.
[9] WANG Chunyuan, YU Minghan, DING Guodong, GAO Guanglei, ZHANG Linlin, HE Yingying, LIU Wei. Size- and leaf age-dependent effects on the photosynthetic and physiological responses of Artemisia ordosica to drought stress[J]. Journal of Arid Land, 2021, 13(7): 744-758.
[10] Mahsa MIRDASHTVAN, Mohsen MOHSENI SARAVI. Influence of non-stationarity and auto-correlation of climatic records on spatio-temporal trend and seasonality analysis in a region with prevailing arid and semi-arid climate, Iran[J]. Journal of Arid Land, 2020, 12(6): 964-983.
[11] FENG Jian, ZHAO Lingdi, ZHANG Yibo, SUN Lingxiao, YU Xiang, YU Yang. Can climate change influence agricultural GTFP in arid and semi-arid regions of Northwest China?[J]. Journal of Arid Land, 2020, 12(5): 837-853.
[12] LI Yangyang, CHEN Jiacun, AI Shaoshui, SHI Hui. Responses of leaf water potential and gas exchange to the precipitation manipulation in two shrubs on the Chinese Loess Plateau[J]. Journal of Arid Land, 2020, 12(2): 267-282.
[13] LYU Changhe, XU Zhiyuan. Crop production changes and the impact of Grain for Green program in the Loess Plateau of China[J]. Journal of Arid Land, 2020, 12(1): 18-28.
[14] MAMUT Jannathan, Dunyan TAN, C BASKIN Carol, M BASKIN Jerry. Effects of water stress and NaCl stress on different life cycle stages of the cold desert annual Lachnoloma lehmannii in China[J]. Journal of Arid Land, 2019, 11(5): 774-784.
[15] KHAJEDDIN SayedJamaleddin, MATINKHAH SayedHamid, JAFARI Zahra. A drought resistance index to select drought resistant plant species based on leaf water potential measurements[J]. Journal of Arid Land, 2019, 11(4): 623-635.