Please wait a minute...
Journal of Arid Land  2024, Vol. 16 Issue (3): 355-372    DOI: 10.1007/s40333-024-0095-y     CSTR: 32276.14.s40333-024-0095-y
Research article     
Linkage between precipitation isotopes and water vapor sources in the monsoon margin: Evidence from arid areas of Northwest China
CHEN Fenli1,2, ZHANG Qiuyan1,2, WANG Shengjie1,2,*(), CHEN Jufan1,2, GAO Minyan1,2, Mohd Aadil BHAT3
1College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730000, China
2Key Laboratory of Resource Environment and Sustainable Development of Oasis of Gansu Province, Northwest Normal University, Lanzhou 730000, China
3School of Ocean and Earth Science, Tongji University, Shanghai 200092, China
Download: HTML     PDF(6564KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The isotope composition in precipitation has been widely considered as a tracer of monsoon activity. Compared with the coastal region, the monsoon margin usually has limited precipitation with large fluctuation and is usually sensitive to climate change. The water resource management in the monsoon margin should be better planned by understanding the composition of precipitation isotope and its influencing factors. In this study, the precipitation samples were collected at five sampling sites (Baiyin City, Kongtong District, Maqu County, Wudu District, and Yinchuan City) of the monsoon margin in the northwest of China in 2022 to analyze the characteristics of stable hydrogen (δD) and oxygen (δ18O) isotopes. We analyzed the impact of meteorological factors (temperature, precipitation, and relative humidity) on the composition of precipitation isotope at daily level by regression analysis, utilized the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT)-based backward trajectory model to simulate the air mass trajectory of precipitation events, and adopted the potential source contribution function (PSCF) and concentration weighted trajectory (CWT) to analyze the water vapor sources. The results showed that compared with the global meteoric water line (GMWL), the slope of the local meteoric water line (LMWL; δD=7.34δ18O-1.16) was lower, indicating the existence of strong regional evaporation in the study area. Temperature significantly contributed to δ18O value, while relative humidity had a significant negative effect on δ18O value. Through the backward trajectory analysis, we found eight primary locations that were responsible for the water vapor sources of precipitation in the study area, of which moisture from the Indian Ocean to South China Sea (ITSC) and the western continental (CW) had the greatest influence on precipitation in the study area. The hydrogen and oxygen isotopes in precipitation are significantly influenced by the sources and transportation paths of air mass. In addition, the results of PSCF and CWT analysis showed that the water vapor source areas were primarily distributed in the south and northwest direction of the study area.



Key wordswater vapor      monsoon margin      stable water isotope      transport trajectory      air mass      d-excess      δ18O      δD     
Received: 20 September 2023      Published: 31 March 2024
Corresponding Authors: *WANG Shengjie (E-mail: wangshengjie@nwnu.edu.cn)
Cite this article:

CHEN Fenli, ZHANG Qiuyan, WANG Shengjie, CHEN Jufan, GAO Minyan, Mohd Aadil BHAT. Linkage between precipitation isotopes and water vapor sources in the monsoon margin: Evidence from arid areas of Northwest China. Journal of Arid Land, 2024, 16(3): 355-372.

URL:

http://jal.xjegi.com/10.1007/s40333-024-0095-y     OR     http://jal.xjegi.com/Y2024/V16/I3/355

Fig. 1 Location of sampling sites at the margin area of the East Asian monsoon
Sampling site Latitude Longitude Altitude (m) Temperature (°C) Precipitation (mm) Relative humidity (%)
Baiyin City 36°55′N 104°18′E 1719 9.03 210.40 56.00
Kongtong District 35°55′N 106°67′E 1364 9.70 486.40 51.00
Maqu County 34°00′N 102°08′E 3471 2.30 612.30 63.00
Wudu District 33°00′N 104°92′E 1116 15.30 470.40 61.00
Yinchuan City 38°48′N 106°22′E 1010 10.10 193.80 52.00
Table 1 Climate characteristics of the five sampling sites from 1991 to 2020
Sampling site δD (‰) δ18O (‰) d-excess (‰)
Max Min Mean SD Max Min Mean SD Max Min Mean SD
Baiyin City 34.53 -120.02 -17.65 32.84 4.69 -16.02 -2.22 4.49 16.01 -14.37 0.11 8.25
Kongtong District 28.81 -118.99 -40.87 31.95 3.12 -16.37 -6.40 4.18 21.17 -8.88 6.22 6.92
Maqu County -3.90 -120.68 -71.06 17.36 -2.21 -15.02 -9.38 3.14 18.45 -27.28 3.94 13.85
Wudu District 47.18 -84.22 -28.13 29.81 7.42 -11.37 -3.79 4.05 20.67 -25.25 2.16 9.81
Yinchuan City 35.22 -145.35 -31.25 38.75 5.96 -19.34 -4.76 5.23 22.07 -20.11 7.21 9.97
Total 47.18 -145.35 -37.79 34.94 7.42 -19.34 -5.31 4.79 19.67 -19.18 3.93 11.27
Table 2 Statistic values of stable hydrogen (δD), oxygen (δ18O), and deuterium excess (d-excess) for each sampling site during June-September 2022
Fig. 2 Relationship between hydrogen (δD) value and oxygen (δ18O) value of precipitation in the study area in 2022. (a), relationship between δD value and δ18O value of precipitation during summer half year and winter half year of 2022; (b), relationship between δD value and δ18O value of precipitation at each sampling site in 2022; (c), relationship between δD value and δ18O value of precipitation in the whole study area in 2022. LMWL, local meteoric water line; GMWL, global meteoric water line.
Fig. 3 Air mass trajectory (a, c, e, g, and i) and its clustering result (b, d, f, h, and j) at each sampling site in 2022. Different color lines in the right panel indicate that air mass comes from different directions; of which yellow line represents air mass comes from the northwest continent, grey line represents air mass comes from the northwest continent in the direction of Russia, red line represents air mass comes from the western continent, blue line represents air mass comes from the Black Sea, green line represents air mass comes from the Mediterranean, pink line represents air mass comes from the Atlantic Ocean, purple line represents air mass comes from the southwest continent, orange line represents air mass comes from the southeast continent, and white line represents air mass comes from the proximity continent. Note that the base map used for computerizing this map is from the Meteoinfo website (http://www.meteothink.org/index.html#).
Water vapor source n Length (km) ν (m/s) Tem
(°C)
RH (%) Pre (mm) δD (‰) δ18O (‰) d-excess (‰)
Mean SD Mean SD Mean SD
CNW 33 7133 2.08 15.00 63.58 185.00 -23.24 31.65 -3.39 4.57 3.85 11.01
CW 76 6011 2.10 13.20 62.37 330.80 -39.83 37.70 -5.53 5.05 4.40 12.20
CP 13 3140 2.02 10.40 79.60 45.00 -46.30 28.14 -6.11 3.66 2.57 12.70
CSW 10 3152 2.19 9.70 76.50 31.80 -62.38 33.84 -8.22 5.62 3.38 13.86
CSE 9 3611 1.58 13.90 84.90 97.60 -36.88 22.38 -6.17 2.62 12.49 5.02
ITSC 79 5078 10.72 15.90 78.20 772.30 -58.28 24.81 -7.96 3.58 5.41 10.64
OA 10 16,815 2.30 8.60 70.79 37.90 -56.98 42.70 -7.54 5.62 3.32 12.14
PR 6 13,121 1.88 14.40 63.10 44.70 -9.55 23.41 -1.44 3.40 1.97 11.69
Table 3 Climatic, δD, and δ18O characteristics of each kind of water vapor source for the monsoon margin in 2022
Fig. 4 Water vapor sources of precipitation in the monsoon margin in 2022. (a), continental moisture from northwest (CNW); (b), continental moisture from west (CW); (c), continental moisture from proximity region (CP); (d), continental moisture from southwest (CSW); (e), continental moisture from southeast (CSE); (f), moisture from the Indian Ocean to South China Sea (ITSC); (g), moisture from the Atlantic Ocean (OA); (h), moisture from polar region (PR). The denser the line, the more water vapor from this direction. Note that the base map used for computerizing this map is from the Meteoinfo website (http://www.meteothink.org/index.html#).
Fig. 5 Results of potential source contribution function (PSCF; a, c, e, g, and i) and concentration weighted trajectory (CWT; b, d, f, h, and j) for the potential water vapor source area analysis of the selected five sampling sites in the monsoon margin in 2022. Note that the base map used for computerizing this map is from the Meteoinfo website (http://www.meteothink.org/index.html#).
Fig. 6 Rose diagrams showing the relationship of deuterium excess (d-excess) value with wind speed (ν) and direction at each sampling site. (a), Baiyin City; (b), Kongtong District; (c), Maqu County; (d), Wudu District; (e), Yinchuan City.
[1]   Baker A J, Sodemann H, Baldini J U L, et al. 2015. Seasonality of westerly moisture transport in the East Asian summer monsoon and its implications for interpreting precipitation δ18O. Journal of Geophysical Research: Atmospheres, 120(12): 5850-5862.
doi: 10.1002/jgrd.v120.12
[2]   Bian H, Ying Z, Li T, et al. 2017. Interannual variability in the onset of the South China Sea summer monsoon from 1997 to 2014. Atmospheric and Oceanic Science Letters, 10(1): 73-81.
doi: 10.1080/16742834.2017.1237853
[3]   Bhat M A, Zhong J, Dar T, et al. 2022. Spatial distribution of stable isotopes in surface water on the upper Indus River basin (UIRB): Implications for moisture source and paleoelevation reconstruction. Applied Geochemistry, 136: 105137, doi: 10.1016/j.apgeochem.2021.105137.
[4]   Breitenbach S F M, Adkins J F, Meyer H, et al. 2010. Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India. Earth and Planetary Science Letters, 292(1-2): 212-220.
doi: 10.1016/j.epsl.2010.01.038
[5]   Cai Z Y, Tian L D, Bowen G J. 2018. Spatial-seasonal patterns reveal large-scale atmospheric controls on Asian Monsoon precipitation water isotope ratios. Earth and Planetary Science Letters, 503: 158-169.
doi: 10.1016/j.epsl.2018.09.028
[6]   Chen F L, Zhang M J, Argiriou A A, et al. 2020. Deuterium excess in precipitation reveals water vapor source in the monsoon margin sites in Northwest China. Water, 12(12): 3315, doi: 10.3390/w12123315.
[7]   Chen J H, Li Y, Xiong B, et al. 2023. Comparison of moisture sources of summer precipitation in 1998 and 2020 in the middle and lower reaches of Yangtze River basin. International Journal of Climatology, 43(8): 3493-3505.
doi: 10.1002/joc.v43.8
[8]   Claus K, Rolf F R, Fernando R B, et al. 2021. Vapour source and spatiotemporal variation of precipitation isotopes in Southwest Spain. Hydrological Processes, 35(12): e14445, doi: 10.1002/hyp.14445.
[9]   Cloux S, Garaboa-Paz D, Insua-Costa D, et al. 2021. Extreme precipitation events in the Mediterranean area: contrasting two different models for moisture source identification. Hydrology and Earth System Sciences, 25(12): 6465-6477.
doi: 10.5194/hess-25-6465-2021
[10]   Craig H. 1961. Isotopic variations in meteoric waters. Science, 133: 1702-1703.
pmid: 17814749
[11]   Crawford J, Hughes C E, Parkes S D. 2013. Is the isotopic composition of event based precipitation driven by moisture source or synoptic scale weather in the Sydney Basin, Australia? Journal of Hydrology, 507: 213-226.
doi: 10.1016/j.jhydrol.2013.10.031
[12]   Dansgaard W. 1964. Stable isotopes in precipitation. Tellus, 16(4): 436-468.
[13]   Espinoza J C, Arias P A, Moron V, et al. 2021. Recent changes in the atmospheric circulation patterns during the dry-to-wet transition season in south tropical South America (1979-2020): impacts on precipitation and fire season. Journal of Climate, 34(22): 9025-9042.
[14]   Fang L J, Gao R Z, Wang X X, et al. 2022. Isotopes-based characterization of precipitation compositions and atmospheric water vapor sources over typical Eurasian steppes in south Mongolian Plateau. Journal of Hydrology, 615: 128724, doi: 10.1016/j.jhydrol.2022.128724.
[15]   Geppert M, Hartmann K, Kirchner I, et al. 2022. Precipitation over Southern Africa: moisture sources and isotopic composition. Journal of Geophysical Research: Atmospheres, 127(21): e2022JD037005, doi: 10.1029/2022JD037005.
[16]   Gimeno L, Stohl A, Trigo R M, et al. 2012. Oceanic and terrestrial sources of continental precipitation. Reviews of Geophysics, 50: RG4003, doi: 10.1029/2012RG000389.
[17]   Gou J F, Qu S M, Guan H D, et al. 2022. Relationship between precipitation isotopic compositions and synoptic atmospheric circulation patterns in the lower reach of the Yangtze River. Journal of Hydrology, 605: 127289, doi: 10.1016/j.jhydrol.2021.127289.
[18]   Hsu Y K, Holsen M T, Hopke P K. 2003. Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmospheric Environment, 37(4): 545-562.
doi: 10.1016/S1352-2310(02)00886-5
[19]   Jiao Y M, Liu C J, Gao X, et al. 2019. Impacts of moisture sources on the isotopic inverse altitude effect and amount of precipitation in the Hani Rice Terraces region of the Ailao Mountains. Science of the Total Environment, 687: 470-478.
doi: 10.1016/j.scitotenv.2019.05.426
[20]   Kong Y L, Wang K, Pan S, et al. 2023. Effect of moisture sources on the isotopic composition of precipitation in Northwest China. Water, 15(8): 1584, doi: 10.3390/w15081584.
[21]   Kurita N. 2013. Water isotopic variability in response to mesoscale convective system over the tropical ocean. Journal of Geophysical Research: Atmospheres, 118(18): 10376-10390.
[22]   Lee J E, Fung I, DePaolo D J, et al. 2007. Analysis of the global distribution of water isotopes using the NCAR atmospheric general circulation model. Journal of Geophysical Research: Atmospheres, 112(D16): 306, doi: 10.1029/2006JD007657.
[23]   Lekshmy P R, Midhun M, Ramesh R. 2022. Role of moisture transport from Western Pacific region on water vapor isotopes over the Bay of Bengal. Atmospheric Research, 265: 105895, doi: 10.1016/j.atmosres.2021.105895.
[24]   Li J J, Feng Z D, Tang L Y. 1988. Late quaternary monsoon patterns on the Loess Plateau of China. Earth Surface Processes and Landforms, 13(2): 125-135.
doi: 10.1002/esp.v13:2
[25]   Li X Y, Kawamura R, Sugimoto A, et al. 2022. Isotopic composition and moisture sources of precipitation in midlatitude regions characterized by extratropical cyclones' route. Journal of Hydrology, 612: 128047, doi: 10.1016/j.jhydrol.2022.128047.
[26]   Lone A M, Achyuthan H, Chakraborty S, et al. 2020. Controls on the isotopic composition of daily precipitation characterized by dual moisture transport pathways at the monsoonal margin region of North-Western India. Journal of Hydrology, 588: 125106, doi: 10.1016/j.jhydrol.2020.125106.
[27]   Ma L, Sun Y B, Jin Z D, et al. 2022. Magnesium isotopic evidence for staged enhancement of the East Asian Summer Monsoon precipitation since the Miocene. Geochimica et Cosmochimica Acta, 324: 140-155.
doi: 10.1016/j.gca.2022.03.005
[28]   Malik F, Butt S, Mujahid N. 2022. Variation in isotopic composition of precipitation with identification of vapor source using deuterium excess as tool. Journal of Radioanalytical and Nuclear Chemistry, 331: 683-690.
doi: 10.1007/s10967-021-08136-6
[29]   Moore M, Kuang Z, Blossey P N. 2014. A moisture budget perspective of the amount effect. Geophysical Research Letters, 41(4): 1329-1335.
doi: 10.1002/grl.v41.4
[30]   Natali S, Doveri M, Giannecchini R, et al. 2022. Is the deuterium excess in precipitation a reliable tracer of moisture sources and water resources fate in the western Mediterranean? New insights from Apuan Alps (Italy). Journal of Hydrology, 614: 128497, doi: 10.1016/j.jhydrol.2022.128497.
[31]   Numaguti A. 1999. Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. Journal of Geophysical Research: Atmospheres, 104(D2): 1957-1972.
doi: 10.1029/1998JD200026
[32]   Pant N, Semwal P, Khobragade S D, et al. 2021. Tracing the isotopic signatures of cryospheric water and establishing the altitude effect in Central Himalayas: A tool for cryospheric water partitioning. Journal of Hydrology, 595: 125983, doi: 10.1016/j.jhydrol.2021.125983.
[33]   Pérez-Alarcón A, Sorí R, Fernández-Alvarez J C, et al. 2023. Moisture source for the precipitation of tropical cyclones over the Pacific Ocean through a Lagrangian Approach. Journal of Climate, 36(4): 1059-1083.
doi: 10.1175/JCLI-D-22-0287.1
[34]   Rhoujjati N, Ait Brahim Y, Hanich L, et al. 2023. Precipitation isotopes to elucidate moisture sources in the Western Mediterranean: case of the Middle Atlas Mountains, Morocco. Environmental Earth Sciences, 82: 250, doi: 10.1007/S12665-023-10930-2.
[35]   Risi C, Bony S, Vimeux F. 2008. Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. Journal of Geophysical Research: Atmospheres, 113(D19): 306, doi: 10.1029/2008JD009943.
[36]   Rozanski K, Araguás-Araguás L, Gonfiantini R. 1993. Isotopic patterns in modern global precipitation. In: Swart P K, Lohmann K C, Mckenzie J, et al. Climate Change in Continental Isotopic Records, Volume 78. Geophysical Monograph Series. Hoboken: AGU (American Geophysical Union) Publications, 1-36.
[37]   Salamalikis V, Argiriou A A, Dotsika E. 2016. Periodicity analysis of δ18O in precipitation over Central Europe: Time-frequency considerations of the isotopic 'temperature' effect. Journal of Hydrology, 534: 150-163.
doi: 10.1016/j.jhydrol.2015.12.059
[38]   Shi Y D, Wang S J, Wang L W, et al. 2010. Isotopic evidence in modern precipitation for the westerly meridional movement in Central Asia. Atmospheric Research, 259: 105698, doi: 10.1016/j.atmosres.2021.105698.
[39]   Steen-Larsen H C, Sveinbjörnsdottir A E, Jonsson T, et al. 2015. Moisture sources and synoptic to seasonal variability of North Atlantic water vapor isotopic composition. Journal of Geophysical Research: Atmospheres, 120(12): 5757-5774.
doi: 10.1002/jgrd.v120.12
[40]   Stohl A, Forster C, Frank A, et al. 2005. Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmospheric Chemistry and Physics, 5(9): 2461-2474.
[41]   Sun C J, Zhou S J, Jing Z W. 2023. Variability of precipitation-stable isotopes and moisture sources of two typical landforms in the eastern Loess Plateau, China. Journal of Hydrology: Regional Studies, 46: 101349, doi: 10.1016/j.ejrh.2023.101349.
[42]   Tan M. 2014. Circulation effect: response of precipitation δ18O to the ENSO cycle in monsoon regions of China. Climate Dynamics, 42: 1067-1077.
doi: 10.1007/s00382-013-1732-x
[43]   Tang Y, Song X F, Zhang Y H, et al. 2017. Using stable isotopes to understand seasonal and interannual dynamics in moisture sources and atmospheric circulation in precipitation. Hydrological Processes, 31(26): 4682-4692.
doi: 10.1002/hyp.v31.26
[44]   Tao X, Pang H X, Zhan Z J, et al. 2023. Characteristics of water vapor isotopes and moisture sources for short-duration heavy rainfall events in Nanjing, eastern China. Journal of Hydrology, 622: 129731, doi: 10.1016/j.jhydrol.2023.129731.
[45]   Tharammal T, Bala G, Nusbaumer J M. 2023. Sources of water vapor and their effects on water isotopes in precipitation in the Indian monsoon region: a model-based assessment. Scientific Reports, 13: 708, doi: 10.1038/s41598-023-27905-9.
pmid: 36639545
[46]   Tian L, Yao T, MacClune K, et al. 2007. Stable isotopic variations in west China: A consideration of moisture sources. Journal of Geophysical Research: Atmospheres, 112(D10): 12, doi: 10.1029/2006JD007718.
[47]   Trenberth K E. 1998. Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Climatic Change, 39: 667-694.
doi: 10.1023/A:1005319109110
[48]   Vishwakarma V, Pattnaik S, Baisya H. 2024. Decadal variability of precipitation and moisture source attribution over India. International Journal of Climatology, 4(2): 703-719.
[49]   Wang Q Y. 2014. MeteoInfo: GIS software for meteorological data visualization and analysis. Meteorological Applications, 21(2): 360-368.
doi: 10.1002/met.2014.21.issue-2
[50]   Wang S J, Zhang M J, Crawford J, et al. 2017. The effect of moisture source and synoptic conditions on precipitation isotopes in arid central Asia. Journal of Geophysical Research: Atmospheres, 122(5): 2667-2682.
doi: 10.1002/jgrd.v122.5
[51]   Wang S J, Lei S J, Zhang M J, et al. 2022. Spatial and seasonal isotope variability in precipitation across China: Monthly isoscapes based on regionalized fuzzy clustering. Journal of Climate, 35(11): 3411-3425.
doi: 10.1175/JCLI-D-21-0451.1
[52]   Worden J, Noone D, Bowman K. 2007. Importance of rain evaporation and continental convection in the tropical water cycle. Nature, 445: 528-532.
doi: 10.1038/nature05508
[53]   Wu S Y, Bedaso Z. 2022. Quantifying the effect of moisture source and transport on the precipitation isotopic variations in northwest Ethiopian Highland. Journal of Hydrology, 605: 127322, doi: 10.1016/j.jhydrol.2021.127322.
[54]   Wu X X, Chen F L, Liu X Y, et al. 2021. The significance of hydrogen and oxygen stable isotopes in the water vapor source in Dingxi Area. Water, 13(17): 2374, doi: 10.3390/w13172374.
[55]   Xie C, Zhao L J, Eastoe C J, et al. 2022. Precipitation stable isotope composition, moisture sources, and controlling factors in Xi'an, Northwest China. Atmospheric Research, 280: 106428, doi: 10.1016/j.atmosres.2022.106428.
[56]   Xie X X, Liu X D. 2023. Contributions of terrestrial and oceanic moisture sources to orbital-scale precipitation variations over the northern East Asian monsoon region. Global and Planetary Change, 229: 104244, doi: 10.1016/j.gloplacha.2023.104244.
[57]   Yang Q C, Mu H K, Guo J C, et al. 2019. Temperature and rainfall amount effects on hydrogen and oxygen stable isotope in precipitation. Quaternary International, 519: 25-31.
doi: 10.1016/j.quaint.2019.01.027
[58]   Yao T D, Masson-Delmotte V, Gao J, et al. 2013. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Reviews of Geophysics, 51(4): 525-548.
doi: 10.1002/rog.v51.4
[59]   Zannoni D, Steen-Larsen H C, Rampazzo G, et al. 2019. The atmospheric water cycle of a coastal lagoon: An isotope study of the interactions between water vapor, precipitation and surface waters. Journal of Hydrology, 572: 630-644.
doi: 10.1016/j.jhydrol.2019.03.033
[60]   Zeng D, Wu J K, Li H Y, et al. 2020. Progress of hydrogen and oxygen isotope studies in precipitation in the Northwest Arid Zone. Arid Zone Research, 37(4): 857-869. (in Chinese)
[61]   Zeng Y, Hopke P K. 1989. A study of the sources of acid precipitation in Ontario, Canada. Atmospheric Environment, 23(7): 1499-1509.
[62]   Zhang M M, Jia W X, Zhu G F, et al. 2023. The effect of the seasonality of moisture sources on moisture flux and precipitation stable isotopes in the Shiyang River Basin. Theoretical and Applied Climatology, 151: 767-783.
doi: 10.1007/s00704-022-04290-3
[63]   Zhao N, Wu P, Manda A, et al. 2023. Moisture sources of the Tohoku heavy rainfalls in August 2022 and the influences of tropical storms. Geophysical Research Letters, 50(17): e2023GL104166, doi: 10.1029/2023GL104166.
[64]   Zhou H, Zhang X P, Yao T C, et al. 2019. Variation of δ18O in precipitation and its response to upstream atmospheric convection and rainout: A case study of Changsha station, south-central China. Science of the Total Environment, 659: 1199-1208.
doi: 10.1016/j.scitotenv.2018.12.396
[1] XIAO Yanqiong, WANG Liwei, WANG Shengjie, Kei YOSHIMURA, SHI Yudong, LI Xiaofei, Athanassios A ARGIRIOU, ZHANG Mingjun. Comparison of isotope-based linear and Bayesian mixing models in determining moisture recycling ratio[J]. Journal of Arid Land, 2024, 16(6): 739-751.
[2] XIE Yida, WANG Feiteng, LIU Shuangshuang. Oxygen and hydrogen isotope characteristics of different water bodies in the Burqin River Basin of the Altay Mountains, China[J]. Journal of Arid Land, 2024, 16(10): 1365-1379.
[3] Mutawakil OBEIDAT, Ahmad AL-AJLOUNI, Eman BANI-KHALED, Muheeb AWAWDEH, Muna ABU-DALO. Integrating stable isotopes and factor analysis to delineate the groundwater provenance and pollution sources in the northwestern part of the Amman-Al Zarqa Basin, Jordan[J]. Journal of Arid Land, 2023, 15(12): 1490-1509.
[4] CHEN Haiyan, CHEN Yaning, LI Dalong, LI Weihong, YANG Yuhui. Identifying water vapor sources of precipitation in forest and grassland in the north slope of the Tianshan Mountains, Central Asia[J]. Journal of Arid Land, 2022, 14(3): 297-309.
[5] Mutawakil OBEIDAT, Muheeb AWAWDEH, Noor AL-KHARABSHEH, Ahmad AL-AJLOUNI. Source identification of nitrate in the upper aquifer system of the Wadi Shueib catchment area in Jordan based on stable isotope composition[J]. Journal of Arid Land, 2021, 13(4): 350-374.
[6] ZHAO Wei, MA Jinzhu, GU Chunjie, QI Shi, ZHU Gaofeng, HE Jiahua. The distribution of isotopes and chemicals in precipitation in Shule River Basin, northwestern China: an implication for water cycle and groundwater recharge[J]. Journal of Arid Land, 2016, 8(6): 973-985.
[7] HU Wenfeng, WANG Nai’ang, ZHAO Liqiang, NING Kai, ZHANG Xunhe, SUN Jie. Surface energy and water vapor fluxes observed on a megadune in the Badain Jaran Desert, China[J]. Journal of Arid Land, 2015, 7(5): 579-589.
[8] Yu LI, NaiAng WANG, ChengQi ZHANG, Yue WANG. Early Holocene environment at a key location of the northwest boundary of the Asian summer monsoon: a synthesis on chronologies of Zhuye Lake, Northwest China[J]. Journal of Arid Land, 2014, 6(5): 511-528.
[9] Dieter OVERDIECK, Daniel ZICHE, RuiDe YU. Gas exchange of Populus euphratica leaves in a riparian zone[J]. Journal of Arid Land, 2013, 5(4): 531-541.
[10] Tserenpurev BAT-OYUN, Masato SHINODA, Mitsuru TSUBO. Effects of cloud, atmospheric water vapor, and dust on photosynthetically active radiation and total solar radiation in a Mongolian grassland[J]. Journal of Arid Land, 2012, 4(4): 349-356.