Please wait a minute...
Journal of Arid Land  2021, Vol. 13 Issue (4): 350-374    DOI: 10.1007/s40333-021-0055-8
Research article     
Source identification of nitrate in the upper aquifer system of the Wadi Shueib catchment area in Jordan based on stable isotope composition
Mutawakil OBEIDAT1,*(), Muheeb AWAWDEH2, Noor AL-KHARABSHEH3, Ahmad AL-AJLOUNI1
1Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
2Laboratory of Applied Geoinformatics, Department of Earth and Environmental Sciences, Yarmouk University, Irbid 21163, Jordan
3Department of Water Resources and Environmental Management, Al-Balqa Applied University, Al-Salt 19117, Jordan
Download: HTML     PDF(1114KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Groundwater forms the main freshwater supply in arid and semi-arid areas, and contamination of this precious resource is complicated by the slow rate of recharge in these areas. Nitrate contamination of groundwater is a global water quality problem, as it entails threat to human health as well as aquatic ecosystems. Source identification of contamination is the cornerstone and a prerequisite for any effective management program of water quality. Stable isotope composition of the dissolved nitrate (δ15N-NO3- and δ 18O-NO3-) has been applied to identify NO3- sources and the main transformation processes in the upper aquifer system (A1/2, A4, and B2/A7 aquifers) in the Wadi Shueib catchment area, Jordan. Moreover, the stable isotope compositions of the groundwater (δ2H-H2O and δ18O-H2O) in conjunction with the groundwater hydrochemistry were integrated to investigate the origin and evolution of the groundwater. Results revealed that groundwater in the study area is fresh and hard-very hard water, and mainly a Ca-Mg-Cl type. NO3- concentration was in the range of 7.0-74.0 mg/L with an average of 37.0 mg/L. Most of the samples showed concentration higher than the natural background concentration of NO3- (5.0-10.0 mg/L). The δ 2H-H2O and δ18O-H2O values indicated that the groundwater is meteoric, and of Mediterranean origin, with a strong evaporation effect. The δ15N-NO3- values ranged between 6.0‰ and 11.3‰ with an average of 8.7‰, and the δ18O-NO3- values ranged between 1.6‰ and 5.9‰ with an average of 3.4‰. These values are in conformity with the stable isotope composition of nitrate derived the nitrification of wastewater/manure, and soil NH4. Nitrification and denitrification are the main transformation processes affecting nitrogen species. Statistical analysis revealed no significant differences in the δ2H-H2O and δ18O-H2O values, and δ15N-NO3- and δ 18O-NO3- values for the three aquifers (A1/2, A4, and B2/A7), indicating that the groundwater of these aquifers has the same origin, and a common source of pollution.



Key wordsδ15N-NO3-      δ18O-NO3-      nitrate sources      pollution      meteoric origin      aquifer      Jordan     
Received: 23 February 2020      Published: 10 April 2021
Corresponding Authors:
About author: * Mutawakil OBEIDAT (E-mail: mobeidat@just.edu.jo)
Cite this article:

Mutawakil OBEIDAT, Muheeb AWAWDEH, Noor AL-KHARABSHEH, Ahmad AL-AJLOUNI. Source identification of nitrate in the upper aquifer system of the Wadi Shueib catchment area in Jordan based on stable isotope composition. Journal of Arid Land, 2021, 13(4): 350-374.

URL:

http://jal.xjegi.com/10.1007/s40333-021-0055-8     OR     http://jal.xjegi.com/Y2021/V13/I4/350

Fig. 1 Location of the study area in Jordan (a) and distribution of the meteorological stations in the study area (b)
Fig. 2 Geological map of the study area
Hydrogeological unit Aquifer potentiality Thickness (m) Hydraulic conductivity (m/d)
B2/A7 Aquifer 140-265 2
A5/6 Aquitard 50-60 1×10-4
A4 Aquifer 40-65 2
A3 Aquitard 50-80 1×10-4
A1/2 Aquifer 86-200 1
Kurnub Aquifer 150-50 3
Table 1 Hydraulic properties of the hydrogeological system in the study area (Margane et al., 2009)
Fig. 3 Distribution of the land cover in the study area (Jawarneh and Biradar, 2017). Sample locations are also shown.
Parameter Minimum Maximum Mean Maximum permissible concentration recommended by WHO (2011) Standard deviation Coefficient of variation (%)
NO3- (mg/L) 7.1 74.4 37.0 50.0 18.0 47
Cl- (mg/L) 33.0 156.0 87.0 600.0 38.0 43
SO42- (mg/L) 22.0 118.0 51.0 600.0 29.0 57
HCO3- (mg/L) 104.0 180.0 158.0 600.0 17.0 11
Na+ (mg/L) 22.0 81.0 47.0 200.0 22.0 46
K+ (mg/L) 1.0 14.0 4.0 200.0 4.0 107
Mg2+ (mg/L) 12.0 40.0 24.0 500.0 7.0 31
Ca2+ (mg/L) 62.0 137.0 92.0 200.0 18.0 20
EC (μS/cm) 498.0 892.0 687.0 - 140.0 20
TDS (mg/L) 309.0 558.0 428.0 1500.0 90.0 21
pH 6.4 7.1 6.6 8.5 0.2 3
TH (mg/L) 257.0 415.0 326.0 500.0 41.0 13
CAI -0.1 0.4 0.1 - 0.1 1
SI-calcite -0.7 -0.2 -0.4 0.1 30
SI-dolomite -1.8 -0.8 -1.0 0.3 25
SI-gypsum -2.3 -1.3 -1.9 0.3 13
SI-halite -7.7 -6.5 -7.0 0.4 5
δ18O-H2O (‰) -6.3 -4.8 -5.5 0.5 9
δ2H-H2O (‰) -28.7 -20.7 -24.7 2.0 10
δ15N-NO3- (‰) 6.0 11.3 8.7 2.0 20
δ18O-NO3- (‰) 1.6 5.9 3.4 1.0 41
Table 2 Descriptive statistics of the hydrochemical parameters of the groundwater samples
Fig. 4 Spatial distribution of electrical conductivity (EC) (a) and nitrate (NO3-) concentration (b)
Parameter NO3- Cl- SO42- HCO3- Na+ K+ Mg2+ Ca2+ EC pH TH 18O-H2O 2H-H2O 15N-NO3- 18O-NO3-
NO3- 1.0 0.5 0.4 0.0 0.6 0.7 0.0 0.3 0.6 -0.3 0.3 0.7 0.6 0.5 -0.1
Cl- 0.5 1.0 0.7 0.3 1.0 0.6 0.5 0.3 0.9 -0.4 0.7 0.7 0.8 0.7 0.2
SO42- 0.4 0.7 1.0 0.4 0.8 0.7 0.2 0.6 0.9 -0.6 0.8 0.8 0.8 0.7 0.2
HCO3- 0.0 0.3 0.4 1.0 0.3 0.2 0.3 0.3 0.4 -0.1 0.5 0.1 0.1 0.5 0.3
Na+ 0.6 1.0 0.8 0.3 1.0 0.8 0.5 0.3 1.0 -0.4 0.7 0.8 0.9 0.7 0.1
K+ 0.7 0.6 0.7 0.2 0.8 1.0 0.2 0.3 0.7 -0.4 0.5 0.7 0.7 0.5 -0.2
Mg2+ 0.0 0.5 0.2 0.3 0.5 0.2 1.0 -0.5 0.4 -0.2 0.2 0.1 0.1 0.1 0.2
Ca2+ 0.3 0.3 0.6 0.3 0.3 0.3 -0.5 1.0 0.5 -0.4 0.8 0.4 0.4 0.7 0.2
EC 0.6 0.9 0.9 0.4 1.0 0.7 0.4 0.5 1.0 -0.5 0.9 0.8 0.8 0.8 0.2
pH -0.3 -0.4 -0.6 -0.1 -0.4 -0.4 -0.2 -0.4 -0.5 1.0 -0.5 -0.4 -0.4 -0.4 -0.1
TH 0.3 0.7 0.8 0.5 0.7 0.5 0.2 0.8 0.9 -0.5 1.0 0.6 0.5 0.8 0.4
18O-H2O 0.7 0.7 0.8 0.1 0.8 0.7 0.1 0.4 0.8 -0.4 0.6 1.0 1.0 0.6 -0.1
2H-H2O 0.6 0.8 0.8 0.1 0.9 0.7 0.1 0.4 0.8 -0.4 0.5 1.0 1.0 0.6 0.0
15N-NO3- 0.5 0.7 0.7 0.5 0.7 0.5 0.1 0.7 0.8 -0.4 0.8 0.6 0.6 1.0 0.6
18O-NO3- -0.1 0.2 0.2 0.3 0.1 -0.2 0.2 0.2 0.2 -0.1 0.4 -0.1 0.0 0.6 1.0
Table 3 Bivariate statistics of the hydrochemical parameters of the groundwater samples
Fig. 5 Piper diagram of the groundwater samples in the study area. A1/2, Na'ur aquifer; A4, Hummar aquifer; B2/A7, Amman/Wadi Wadi Es Sir aquifer.
Fig. 6 Plots of Cl- vs. Na+/Cl- ratio (a), Cl- vs. HCO3-/Cl- ratio (b), Cl- vs Ca2+/Na+ ratio (c), and Cl- vs. Ca2+/HCO3- ratio (d). The green solid line indicates the molar ratio of calcite dissolution.
Fig. 7 Plots of SI-calcite vs. HCO3- (a), SI-dolomite vs. HCO3- (b), SI-gypsum vs. SO42- (c), and SI-halite vs. Cl- (d). SI-calcite, SI-dolomite, SI-gypsum, and SI-halite represent the saturation indices of calcite, dolomite, gypsum, and halite, respectively.
Fig. 8 Plots of CAI vs. Cl- (a), and (Na++K+)-Cl- vs. (Ca2++Mg2+)-(SO42-+HCO3-) (b). The black solid line separates the two types of ion exchange (reverse ion exchange and base ion exchange).
Fig. 9 Plot of δ18O-VSMOW vs. δ2H-VSMOW values of the groundwater samples. VSMOW, Vienna Standard Mean Ocean Water; MMWL, the Eastern Mediterranean Meteoric Water Line; LMWL, the Local Meteoric Water Line; LEL, the local evaporation line; GMWL, the Global Meteoric Water Line.
Fig. 10 Plots of δ18O-VSMOW vs. Cl- (a) and δ18O-VSMOW vs. deuterium excess (d-parameter) (b)
Fig. 11 Plot of δ15N-atmospheric air vs. δ18O-VSMOW of the groundwater samples in the study area. The stable isotopic composition of nitrate in wastewater in the study area is also presented.
Fig. 12 Plots of δ15N-atmospheric air vs. Cl- (a), δ15N-atmospheric air vs. δ18O-VSMOW (b), and δ15N-atmospheric air vs. NO3- (c). The regression line and correlation coefficient are also presented.
[1]   Abdalla F. 2016. Ionic ratios as tracers to assess seawater intrusion and to identify salinity sources in Jazan coastal aquifer, Saudi Arabia. Arabian Journal of Geoscience, 9(1):40, doi: 10.1007/s12517-015-2065-3.
doi: 10.1007/s12517-015-2065-3
[2]   Abu-alnaeem M F, Yusoff I, Ng T F, et al. 2018. Assessment of groundwater salinity and quality in Gaza coastal aquifer, Gaza Strip, Palestine: An integrated statistical, geostatistical and hydrogeochemical approaches study. Science of the Total Environment, 615:972-989.
doi: 10.1016/j.scitotenv.2017.09.320
[3]   Adebowale T, Surapaneni A, Faulkner D, et al. 2019. Delineation of contaminant sources and denitrification using isotopes of nitrate near a wastewater treatment plant in peri-urban settings. Science of the Total Environment, 651:2701-2711.
doi: 10.1016/j.scitotenv.2018.10.146 pmid: WOS:000450551600100
[4]   Al-Kharabsheh N M, Al-Kharabsheh A A. 2014. Influence of urbanization on water quality deterioration of northern wadi shu'eib catchment area springs, Jordan. The Jordan Journal of Earth and Environmental Sciences, 6(1):29-35.
[5]   Anornu G, Gibrilla A, Adomako D. 2017. Tracking nitrate sources in groundwater and associated health risk for rural communities in the White Volta River basin of Ghana using isotopic approach (δ15N, δ 18O-NO3 and3H). Science of the Total Environment, 603-604:687-698.
[6]   APHA (American Public Health Association). 1998. Standard Methods for the Examination of Water and Wastewater (20th ed.). Washington: American Public Health Association, 1-1214.
[7]   Aravinthasamy P, Karunanidhi D, Subramani T, et al. 2019. Fluoride contamination in groundwater of the Shanmuganadhi River basin (South India) and its association with other chemical constituents using geographical information system and multivariate statistics. Geochemistry, 80(4), 125555, doi: 10.1016/j.chemer.2019.125555.
doi: 10.1016/j.chemer.2019.125555
[8]   Archana A, Thibodeau B, Geeraert N, et al. 2018. Nitrogen sources and cycling revealed by dual isotopes of nitrate in a complex urbanized environment. Water Research, 142:459-470.
doi: S0043-1354(18)30448-2 pmid: 29913387
[9]   Argamasilla M, Barber J A, Andreo B. 2017. Factors controlling groundwater salinization and hydrogeochemical processes in coastal aquifers from southern Spain. Science of the Total Environment, 580:50-68.
doi: 10.1016/j.scitotenv.2016.11.173
[10]   Awawdeh M, Al-Kharbsheh N, Obeidat M, et al. 2020. Groundwater vulnerability assessment using modified SINTACS model in Wadi Shueib, Jordan. Annals of GIS, doi: 10.1080/19475683.2020.1773535.
doi: 10.1080/19475683.2020.1773535
[11]   Ayadi R, Trabelsi R, Zouari K, et al. 2018. Hydrogeological and hydrochemical investigation of groundwater using environmental isotopes (18O, 2H, 3H, 14C) and chemical tracers: a case study of the intermediate aquifer, Sfax, southeastern Tunisia. Hydrogeology Journal, 26:983-1007.
doi: 10.1007/s10040-017-1702-1
[12]   Baily A, Rock L, Watson C J, et al. 2011. Spatial and temporal variations in groundwater nitrate at an intensive dairy farm in south-east Ireland: Insights from stable isotope data. Agriculture, Ecosystems and Environment, 144(1):308-318.
doi: 10.1016/j.agee.2011.09.007
[13]   Bajjali W. 2012. Spatial variability of environmental isotope and chemical content of precipitation in Jordan and evidence of slight change in climate. Applied Water Science, 2:271-283.
doi: 10.1007/s13201-012-0046-1
[14]   Basins C R, Geo J E. 2004. Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, Southern India. Environmental Geology, 46:47-60.
doi: 10.1007/s00254-004-1012-5
[15]   Biddau R, Cidu R, Da Pelo S, et al. 2019. Source and fate of nitrate in contaminated groundwater systems: Assessing spatial and temporal variations by hydrogeochemistry and multiple stable isotope tools. Science of the Total Environment, 647:1121-1136.
doi: 10.1016/j.scitotenv.2018.08.007 pmid: WOS:000447090400114
[16]   Bodrud-Doza Md, Bhuiyan M A H, Didar-Ul Islam S M, et al. 2019. Hydrogeochemical investigation of groundwater in Dhaka City of Bangladesh using GIS and multivariate statistical techniques. Groundwater for Sustainable Development, 8:226-244.
[17]   Chang C C, Kendall C, Silva S R, et al. 2003. Nitrate stable isotopes: tools for determining nitrate sources among different land uses in the Mississippi River Basin. Canadian Journal Fisheries and Aquatic Sciences, 59(12):1874-1885.
[18]   Chen N, Peng B, Hong H, et al. 2013. Nutrient enrichment and N: P ratio decline in a coastal bay-river system in southeast China: The need for a dual nutrient (N and P) management strategy. Ocean and Coastal Management, 81:7-13.
[19]   Choi J D, Jang S O, Choi B Y, et al. 2000. Monitoring study on groundwater quality of an alluvial plane in the north Han River basin. Journal of Korea of Water Quality, 16:283-294.
[20]   Clague J C, Stenger R, Clough T J. 2015. Evaluation of the stable isotope signature of nitrate to detect denitrification in a shallow groundwater system in New Zealand. Agriculture, Ecosystems and Environment, 202:188-197.
[21]   Clark I D, Fritz P. 2013. Environmental Isotopes in Hydrogeology. Boca Raton: CRC Press, 1-352.
[22]   Czekaj J, Jakobczyk-Karpierz S, Rubin H, et al. 2016. Identification of nitrate sources in groundwater and potential impact on drinking water reservoir (Goczalkowice reservoir, Poland). Physics and Chemistry of the Earth, 94:35-46.
[23]   Danni S O, Bouchaou L, Elmouden A, et al. 2019. Assessment of water quality and nitrate source in the Massa catchment (Morocco) using δ 15N and δ 18O tracers . Applied Radiation and Isotopes, 154:108859, doi: 10.1016/j.apradiso.2019.108859.
doi: 10.1016/j.apradiso.2019.108859
[24]   Davis S N, De Wiest J M. 1967. Hydrogeology. New York: John Wiley and Sons, 1-463.
[25]   Durka W, Schulze E D, Gebauer G, et al. 1994. Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature, 372:765-767.
doi: 10.1038/372765a0
[26]   El-Sayed S A, Morsy S M, Zakaria K M. 2018. Recharge sources and geochemical evolution of groundwater in the Quaternary aquifer at Atfih area, the northeastern Nile Valley, Egypt. Journal of African Earth Sciences, 142:82-92.
[27]   Garcia G, Hidalgo V, Blesa A. 2001. Geochemistry of groundwater in the alluvial plain of Tucuman province, Argentina. Hydrogeology Journal, 9:597-610.
[28]   Geyh M A, Rimawi O, Udluft P, et al. 1986. Environmental isotope study in the Hamad region. Natural water groups and their origin of the shallow aquifers complex in Azraq-depression, Jordan. The Hydrodynamic Pattern of the Central Part of Jordan. Geologisches Jahrbuch Reihe C, Band C38, 1-53.
[29]   Gold A J, DeRagon W R, Sullivan W M, et al. 1990. Nitrate-nitrogen losses to groundwater from rural and suburban land uses. Journal of Soil and Water Conservation, 45(2):305-310.
[30]   Grimmeisen F, Lehmann M F, Liesch T, et al. 2017. Isotopic constraints on water source mixing, network leakage and contamination in an urban groundwater system. Science of the Total Environment, 583:202-213.
[31]   GTZ (German Technical Cooperation). 1977. National Water Master Plan of Jordan: Groundwater Resources (Vol. 4). Groundwater Resources. Hanover: Federal Institute for Geosciences and Natural Resources.
[32]   Guo Z, Yan C, Wang Z, et al. 2020. Quantitative identification of nitrate sources in a coastal peri-urban watershed using hydrogeochemical indicators and dual isotopes together with the statistical approaches. Chemosphere, 243:125364, doi: 10.1016/j.chemosphere.2019.125364.
doi: 10.1016/j.chemosphere.2019.125364
[33]   Gutierrez M, Biagioni R N, Alarcon-Herrera M T, et al. 2018. An overview of nitrate sources and operating processes in arid and semiarid aquifer systems. Science of the Total Environment, 624:1513-1522.
[34]   Halim M A, Majumder R K, Nessa S A, et al. 2010. Evaluation of processes controlling the geochemical constituents in deep groundwater in Bangladesh: Spatial variability on arsenic and boron enrichment. Journal Hazardous Materials, 180(1-3):50-62.
[35]   Hoefs J. 2009. Stable Isotope Geochemistry. Berlin: Springer, 1-285.
[36]   Hu M M, Wang Y C, Du P C, et al. 2019. Tracing the sources of nitrate in the rivers and lakes of the southern areas of the Tibetan Plateau using dual nitrate isotopes. Science of the Total Environment, 658:132-140.
[37]   Huan H, Hu L, Yang Y, et al. 2020. Groundwater nitrate pollution risk assessment of the groundwater source field based on the integrated numerical simulations in the unsaturated zone and saturated aquifer. Environmental International, 137:105532, doi: 10.1016/j.envint.2020.105532.
doi: 10.1016/j.envint.2020.105532
[38]   Huang G, Sun J, Zhang Y, et al. 2013. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, south China. Science of the Total Environment, 463-464:209-221.
[39]   Islam A R M T Shen S, Haque M A, et al. 2018. Assessing groundwater quality and its sustainability in Joypurhat district of Bangladesh using GIS and multivariate statistical approaches. Environment,Development and Sustainability, 20:1935-1959.
[40]   Jakobczyk-Karpierz S, Sitek S, Jakobsen R, et al. 2017. Geochemical and isotopic study to determine sources and processes affecting nitrate and sulphate in groundwater influenced by intensive human activity-carbonate aquifer Gliwice (southern Poland). Applied Geochemistry, 76:168-181.
[41]   Jankowski K, Schnidler D E, Holtgrieve G W. 2012. Assessing nonpoint-source nitrogen loading and nitrogen fixation in lakes using delta N-15 and nutrient stoichiometry. Limnology and Oceanography, 57(3):671-683.
[42]   Jawarneh R, Biradar C. 2017. Decadal national land cover database for Jordan at 30 m resolution. Arabian Journal of Geosciences, 10(22):483, doi: 10.1007/s12517-017-3266-8.
doi: 10.1007/s12517-017-3266-8
[43]   Jeon C H. 2001. Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. Journal of Hydrology, 25(1-4):194-210.
[44]   Jia H, Howard K, Qian H. 2020. Use of multiple isotopic and chemical tracers to identify sources of nitrate in shallow groundwaters along the northern slope of the Qinling Mountains, China. Applied Geochemistry, 113:104512, doi: 10.1016/j.apgeochem.2019.104512.
doi: 10.1016/j.apgeochem.2019.104512
[45]   Jiang W, Wang G, Sheng Y, et al. 2016. Enrichment and sources of nitrogen in groundwater in the Turpan-Hami area, northwestern China. Exposure and Health, 8:389-400.
[46]   Johannsen A, Dähnke K, Emeis K. 2008. Isotopic composition of nitrate in five German rivers discharging into the North Sea. Organic Geochemistry, 39(12):1678-1689.
[47]   Kaown D, Koh D C, Mayer B, et al. 2009. Identification of nitrate and sulfate sources in groundwater using dual stable isotope approaches for an agricultural area with different land use (Chuncheon, mid-eastern Korea). Agriculture, Ecosystems and Environment, 132(3-4):223-231.
[48]   Kapelewska J, Kotowska U, Karpinska J, et al. 2019. Water pollution indicators and chemometric expertise for the assessment of the impact of municipal solid waste landfills on groundwater located in their area. Chemical Engineering Journal, 359:790-800.
[49]   Karroum M, Elgettafi M, Elmandour A. 2017. Geochemical processes controlling groundwater quality under semi-arid environment: A case study in central Morocco. Science of the Total Environment, 609:1140-1151.
[50]   Kattan Z. 2019. Factors controlling stable isotopes variability in precipitation in Syria: Statistical analysis approach. Journal of Earth System Science, 128:151, doi: 10.1007/s12040-019-1142-5.
doi: 10.1007/s12040-019-1142-5
[51]   Kaushal S S, Groffman P M, Band L E. 2011. Tracking nonpoint source nitrogen pollution in human-impacted watersheds. Environmental Science and Technology, 45:8225-8232.
[52]   Kendall C, Elliott E M, Wankel S D. 2007. Tracing anthropogenic inputs of nitrogen to ecosystems. In: Michener R H, Lajtha K. Stable Isotopes in Ecology and Environmental Science (2nd ed.). Oxford: Blackwell Publishing, 375-449.
[53]   Koh D C, Mayer B, Lee K S, et al. 2010. Land-use controls on sources and fate of nitrate in shallow groundwater of an agricultural area revealed by multiple environmental tracers. Journal of Contaminant Hydrology, 118(1-2):62-78.
[54]   Kreitler C W. 1979. Nitrogen-isotope ratio studies of soils and groundwater nitrate from alluvial fan aquifers in Texas. Journal of Hydrology, 42(7):147-170.
[55]   Kruk M K, Mayer B, Nightingale H, et al. 2020. Tracing nitrate sources with a combined isotope approach (δ15NNO3, δ18ONO3 and δ11B) in a large mixed-use watershed in southern Alberta, Canada . Science of the Total Environment, 703:135043, doi: 10.1016/j.scitotenv.2019.135043.
doi: 10.1016/j.scitotenv.2019.135043
[56]   Kuntz D. 2003. Soils in the Wadi Shueib catchment area and their protective potential for the Groundwater-Salt area. MSc Thesis. Karlsruhe: University of Karlsruhe.
[57]   Lee C M, Hamm S Y, Cheong J Y, et al. 2020. Contribution of nitrate-nitrogen concentration in groundwater to stream water in an agricultural head watershed. Environmental Research, 184:109313, doi: 10.1016/j.envres.2020.109313.
doi: 10.1016/j.envres.2020.109313
[58]   Lee K S, Bong Y S, Lee D, et al. 2008. Tracing the sources of nitrate in the Han River watershed in Korea, using δ 15N-NO3 and δ18O-NO3 values. Science of the Total Environment, 395(2-3):117-124.
[59]   Lehmann M F, Simona M, Wyss S, et al. 2015. Powering up the "biogeochemical engine": the impact of exceptional ventilation of a deep meromictic lake on the lacustrine redox, nutrient, and methane balances. Frontier in Earth Science, 3:45, doi: 10.3389/feart.2015.00045.
doi: 10.3389/feart.2015.00045
[60]   Levy Y, Shapira R H, Chefetz B, et al. 2017. Modeling nitrate from land surface to wells' perforations under agricultural land: success, failure, and future scenarios in a Mediterranean case study. Hydrology and Earth System Sciences, 21:3811-3825.
[61]   Li C, Li S L, Yue F J, et al. 2020. Nitrate sources and formation of rainwater constrained by dual isotopes in Southeast Asia: Example from Singapore. Chemosphere, 241:125024, doi: 10.1016/j.chemosphere.2019.125024.
doi: 10.1016/j.chemosphere.2019.125024
[62]   Ligavha-Mbelengwa L, Gomo M. 2020. Investigation of factors influencing groundwater quality in a typical Karoo aquifer in Beaufort West town of South Africa. Environmental Earth Sciences, 79:196, doi: 10.1007/s12665-020-08936-1.
doi: 10.1007/s12665-020-08936-1
[63]   MacDonald S M. 1965. East Bank Water Resources (Vol. 1-6). Amman: Central Water Authority.
[64]   Machiwal D, Cloutier V, Güler C, et al. 2018. A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection. Environmental Earth Sciences, 77(19):681, doi: 10.1007/s12665-018-7872-x.
doi: 10.1007/s12665-018-7872-x
[65]   Margane A, Subah A, Hamdan I, et al. 2009. Delineation of groundwater protection zones for the springs in wadi shuayb. In: Technical Report No. 14. Amman, Jordan.
[66]   Margane A, Subah A, Hamdan I, et al. 2010. Delineation of groundwater protection zones for the Wadi Shuayb springs. Technical Cooperation Project 'Groundwater Resources Management'. In: Technical Report No. 14. Amman, Jordan.
[67]   Martinelli G, Dadomo A, De Luca D A, et al. 2018. Nitrate sources, accumulation and reduction in groundwater from Northern Italy: Insights provided by a nitrate and boron isotopic database. Applied Geochemistry, 91:23-35.
[68]   Masoud A A. 2014. Groundwater quality assessment of the shallow aquifers west of the Nile Delta (Egypt) using multivariate statistical and geostatistical techniques. Journal of African Earth Sciences, 95:123-137.
[69]   Masri M. 1963. Report on the geology of the Amman, Zerqa area. Amman: Central Water Authority, 74.
[70]   Matiatos I. 2016. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece). Science of the Total Environment, 541:802-814.
[71]   Mattern S, Fasbender D, Vanclooster M. 2009. Discriminating sources of nitrate pollution in an unconfined sandy aquifer. Journal of Hydrology, 376(1-2):275-284.
[72]   Mayer B, Boyer E W, Goodale C, et al. 2002. Sources of nitrate in rivers draining sixteen watersheds in the northeastern U.S.: Isotopic constraints. Biogeochemistry, 57-58:171-197.
[73]   Mcilvin M, Altabet M. 2005. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Analytical Chemistry, 77(17):5589-5595.
[74]   Megdal S B, Gerlak A K, Huang L Y, et al. 2017. Innovative approaches to collaborative groundwater governance in the United States: Case studies from three high-growth regions in the Sun Belt. Environmental Management, 59(5):718-735.
[75]   Mercado A. 1985. Use of hydrogeochemical patterns in carbonate, sand and sandstone aquifers to identify intrusion and flushing saline water. Groundwater, 23(5):635-645.
[76]   Mikbel S, Zacher W. 1981. The Wadi Shueib structure in Jordan. Neues Jahrbuch fűr Geologie und Paläontologie, Monatshefte, 9:571-576.
[77]   Moore K B, Ekwurzel B, Esser B K, et al. 2006. Sources of groundwater nitrate revealed using residence time and isotope methods. Applied Geochemistry, 21(6):1016-1029.
[78]   Nigro A, Sappa G, Barbieri M. 2017. Strontium isotope as tracers of groundwater contamination. Procedia Earth Planetary Science, 17:352-355.
[79]   Nixon S W. 2009. Eutrophication and the macroscope. Hydrobiologia, 629:5-19.
[80]   Nyam F M E A Yomba A E Y, Tchikangoua A N, et al. 2020. Assessment and characterization of groundwater quality under domestic distribution using hydrochemical and multivariate statistical methods in Bafia, Cameroon. Groundwater for Sustainable Development, 10:100347, doi: 10.1016/j.gsd.2020.100347.
doi: 10.1016/j.gsd.2020.100347
[81]   Obeidat M M, Massadeh A M, Al-Ajlouni A M, et al. 2007. Analysis and evaluation of nitrate levels in groundwater at Al-Hashimiya area, Jordan. Environmental Monitoring and Assessment, 135:475-486.
[82]   Obeidat M M, Awawdeh M, Al-Rub F A, et al. 2012. An innovative nitrate pollution index and multivariate statistical investigations of groundwater chemical quality of Umm Rijam Aquifer (B4), North Yarmouk River Basin, Jordan. In: Vouddouris K, Voutsa D. Water Quality Monitoring and Assessment. Croatia: InTech, 169-188.
[83]   Obeidat M M, Awawdeh M, Matiatos I, et al. 2020. Identification and apportionment of nitrate sources in the phreatic aquifers in Northern Jordan using a dual isotope method (δ15N and δ 18O of NO3-). Groundwater for Sustainable Development, 100505, doi: 10.1016./j.gsd.2020.100505.
doi: 10.1016./j.gsd.2020.100505
[84]   Panagopoulos G, Lambrakis N, Katagas C, et al. 2005. Water-rock interaction induced by contaminated groundwater in a karst aquifer, Greece. Environmental Geology, 49:300-313.
[85]   Panno S, Kelly W, Martinsek A, et al. 2006. Estimating background and threshold nitrate concentrations using probability graphs. Ground Water, 44(5):697-709.
[86]   Parkhurst D L, Appelo T. 1999. User's guide to PHREEQC (version 3): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Denver, Colorado: USGS (United States Geological Survey).
[87]   Parnell A C, Inger R, Bearhop S, et al. 2010. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE, 5(3):e9672, doi: 10.1371/journal.pone.0009672.
doi: 10.1371/journal.pone.0009672
[88]   Popescu R, Mimmo T, Dinca O R, et al. 2015. Using stable isotopes in tracing contaminant sources in an industrial area: A case study on the hydrological basin of the Olt River, Romania. Science of the Total Environment, 533:17-23.
[89]   Powell J. 1989. Stratigraphy and sedimentation of the phanerozoic rocks in Central and South Jordan. Kurnub, Ajlun and Belqa Groups. Amman: The Natural Resources Authority Bulletin.
[90]   Qin R, Wu Y, Xu Z, et al. 2013. Assessing the impact of natural and anthropogenic activities on groundwater quality in coastal alluvial aquifers of the lower Liaohe River Plain, NE China. Applied Geochemistry, 31:142-158.
[91]   Rashid A, Khttab S A, Alim L, et al. 2019. Geochemical profile and source identification of surface and groundwater pollution of District Chitral, Northern Pakistan. Microchemical Journal, 145:1058-1065.
[92]   Re V, Sacchi E. 2017. Tackling the salinity-pollution nexus in coastal aquifers from arid regions using nitrate and boron isotopes. Environmental Science and Pollution Research, 24:13247-13261.
[93]   Re V, Sacchi E, Kammoun S, et al. 2017. Integrated socio-hydrogeological approach to tackle nitrate contamination in groundwater resources: The case of Grombalia Basin (Tunisia). Science of the Total Environment, 593-594:664-676.
[94]   Riepl D. 2013. Knowledge-based decision support for integrated water resources management with an application for Wadi Shueib, Jordan. PhD Dissertation. Karlsruhe: University of Karlsruhe.
[95]   Rubasinghe R, Mukherjee R, Chandrajith R. 2015. Geochemical characteristics of groundwater in different climatic zones of Sri Lanka. Environmental Earth Science, 74:3067-3076.
[96]   Sawyer C N, McCarty P L. 1967. Chemistry for sanitary engineers (2nd ed.). New York: McGraw-Hill, 518.
[97]   Schoeller H. 1967. Qualitative evaluation of ground water resources. In: Schoeller, H. Methods and Techniques of Groundwater Investigation and Development, Water Resource Series No. 33. Paris: UNESCO, 44-52.
[98]   Selvam S, Venkatramanan S, Chung S Y, et al. 2016. Identification of groundwater contamination sources in Dindugal district of Tamil Nadu, India using GIS and multivariate statistical analyses. Arabian Journal of Geosciences, 9(5):407, doi: 10.1007/s12517-016-2417-7.
doi: 10.1007/s12517-016-2417-7
[99]   Senarathne S L, Jayawardana J M C K, Edirisinghe E A N V, et al. 2019. Characterization of groundwater in Malala Oya river basin, Sri Lanka using geochemical and isotope signatures. Groundwater for Sustainable Development, 9:100225, doi: 10.1016/j.gsd.2019.100225.
doi: 10.1016/j.gsd.2019.100225
[100]   Shalev N, Burg A, Gavrieli I, et al. 2015. Nitrate contamination sources in aquifers underlying cultivated fields in an arid region-The Arava Valley, Israel. Applied Geochemistry, 63:322-323.
[101]   Soldatova E, Guseva N, Sun Z, et al. 2017. Sources and behaviour of nitrogen compounds in the shallow groundwater of agricultural areas (Poyang Lake basin, China). Journal Contaminant Hydrology, 202:59-69.
[102]   Stuyfzand P J. 2008. Base exchange indices as indicators of salinization or freshening of (coastal) aquifers. In: 20th Salt Water Intrusion Meeting. Naples, Florida, USA.
[103]   Sui Y, Ou Y, Yan B, et al. 2020. A dual isotopic framework for identifying nitrate sources in surface runoff in a small agricultural watershed, Northeast China. Journal of Cleaner Production, 246:119074, doi: 10.1016/j.jclepro.2019.119074.
doi: 10.1016/j.jclepro.2019.119074
[104]   Ta'any R. 1992. Hydrological and hydrochemical study of the major springs in Wadi Shu'eib catchment area. MSc Thesis. Jordan: Yarmouk University.
[105]   Tarawneh M S M, Janardhana M R, Ahmed M M. 2019. Hydrochemical processes and groundwater quality assessment in North eastern region of Jordan valley, Jordan. HydroResearch, 2:129-145.
[106]   Tesoriero A J, Saad D A, Burow K R, et al. 2007. Linking ground-water age and chemistry data along flow paths: implications for trends and transformations of nitrate and pesticides. Journal of Contaminant Hydrology, 94(1-2):139-155.
[107]   Thibodeau B, Hélie J F, Lehmann M F. 2013. Variations of the nitrate isotopic composition in the St. Lawrence River caused by seasonal changes in atmospheric nitrogen inputs. Biochemistry, 115(1-3):287-298.
[108]   Thilakerathne A, Schuth C, Chandrajith R. 2015. The impact of hydrogeological settings on geochemical evolution of groundwater in karstified limestone aquifer basin in Northwest Sri Lanka. Environmental Earth Sciences, 73:8061-8073.
[109]   Tiwari A K, Pisciotta A, De Maio M. 2019. Evaluation of groundwater salinization and pollution level on Favignana Island, Italy. Environmental Pollution, 249:969-981.
doi: 10.1016/j.envpol.2019.03.016
[110]   Venkiteswaran J J, Boeckx P, Gooddy D C. 2019. Towards a global interpretation of dual nitrate isotopes in surface waters. Journal of Hydrology, 4:100037, doi: 10.1016/j.hydroa.2019.100037.
doi: 10.1016/j.hydroa.2019.100037
[111]   Vitoria L, Soler A, Canals A, et al. 2008. Environmental isotopes (N, S, C, O, D) to determine natural attenuation processes in nitrate contaminated waters: Example of Osona (NE Spain). Applied Geochemistry, 23(12):3597-3611.
[112]   Wakida T F, Lerner D N. 2005. Non-agricultural sources of groundwater nitrate: A review and case study. Water Research, 39(1):3-16.
[113]   Werz H. 2006. The use of remote sensing imagery for groundwater risk intensity mapping in the Wadi Shueib, Jordan. PhD Dissertation. Karlsruhe: University of Karlsruhe.
[114]   WHO (World Health Organization). 2011. Guidelines for Drinking Water Quality (4th ed.). Geneva: WHO.
[115]   Widory D, Kloppmann W, Chery L, et al. 2004. Nitrate in groundwater: An isotopic multi-tracer approach. Journal of Contaminant Hydrology, 72(1-4):165-188.
[116]   Widory D, Petelet-Giraud E, Brenot A, et al. 2013. Improving the management of nitrate pollution in water by the use of isotope monitoring: the δ 15N, δ 18O and δ 11B triptych. Isotopes in Environmental and Health Studies, 49(1):29-47.
[117]   WSPSP (Water Sector Planning Support Project). 2004. National Water Master Plan. Amman: Ministry of Water and Irrigation, and Bonn: German Technical Cooperation, 97.
[118]   Xia Y Q, Li Y F, Zhang X Y, et al. 2017. Nitrate source apportionment using a combined dual isotope, chemical and bacterial property, and Bayesian model approach in river systems. Journal of Geophysical Research: Biogeosciences, 122(1):2-14.
[119]   Xue D, Botte J, De Baets B, et al. 2009. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Research, 43(5):1159-1170.
[120]   Yang X, Liu Q, Fu G, et al. 2016. Spatiotemporal patterns and source attribution of nitrogen load in a river basin with complex pollution sources. Water Research, 94:187-199.
[121]   Yu L, Zheng T, Zhen X, et al. 2020. Nitrate source apportionment in groundwater using Bayesian isotope mixing model based on nitrogen isotope fractionation. Science of the Total Environment, 718:137242, doi: 10.1016/j.scitotenv.2020.137242.
doi: 10.1016/j.scitotenv.2020.137242
[122]   Zaidi F K, Nazzal Y, Jafri M K, et al. 2015. Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: A case study from northwestern Saudi Arabia. Environmental Monitoring and Assessment, 187:607, doi: 10.1007/s10661-015-4828-4.
doi: 10.1007/s10661-015-4828-4
[123]   Zemann M, Wol L, Grimmeise F, et al. 2015. Tracking changing X-ray contrast media application to an urban-influenced karst aquifer in the Wadi Shueib, Jordan. Environmental Pollution, 198:133-143.
[124]   Zendehbad M, Cepuder P, Loiskandl W, et al. 2019. Source identification of nitrate contamination in the urban aquifer of Mashhad, Iran. Journal of Hydrology: Regional Studies, 25:100618, doi: 10.1016/j.ejrh.2019.100618.
doi: 10.1016/j.ejrh.2019.100618
[125]   Zhang Q, Wang X, Sun F, et al. 2015. Assessment of temporal and spatial differences of source apportionment of nitrate in an urban river in China, using δ 15N and δ 18O values and an isotope mixing model. Environmental Science and Pollution Research, 22:20226-20233.
[126]   Zhang Q, Wang H. 2020. Assessment of sources and transformation of nitrate in the alluvial-pluvial fan region of North China using a multi-isotope approach. Journal of Environmental Sciences, 89:9-22.
[127]   Zhang Y, Shi P, Li F, et al. 2018. Quantification of nitrate sources and fates in rivers in an irrigated agricultural area using environmental isotopes and a Bayesian isotope mixing model. Chemosphere, 208:493-501.
[128]   Zhao Y, Zheng B, Jia H, et al. 2019. Determination sources of nitrates into the Three Gorges Reservoir using nitrogen and oxygen isotopes. Science of the Total Environment, 687:128-136.
[129]   Zhu G F, Su Y H, Huang C L, et al. 2010. Hydrogeochemical processes in the groundwater environment of Heihe River Basin, Northwest China. Environmental Earth Sciences, 60:139-153.
[1] Sarra HECHMI, Samira MELKI, Mohamed-Naceur KHELIL, Rim GHRIB, Moncef GUEDDARI, Naceur JEDIDI. Potential risk of soil irrigation with treated wastewater over 40 years: a field experiment under semi-arid conditions in northeastern Tunisia[J]. Journal of Arid Land, 2023, 15(4): 407-423.
[2] Mutawakil OBEIDAT, Ahmad AL-AJLOUNI, Eman BANI-KHALED, Muheeb AWAWDEH, Muna ABU-DALO. Integrating stable isotopes and factor analysis to delineate the groundwater provenance and pollution sources in the northwestern part of the Amman-Al Zarqa Basin, Jordan[J]. Journal of Arid Land, 2023, 15(12): 1490-1509.
[3] XIE Shicheng, LAN Tian, XING An, CHEN Chen, MENG Chang, WANG Shuiping, XU Mingming, HONG Mei. Spatial distribution and ecological risk of heavy metals and their source apportionment in soils from a typical mining area, Inner Mongolia, China[J]. Journal of Arid Land, 2023, 15(10): 1196-1215.
[4] YANG Xiaoju, WU Fasi, XU Ruihong, LI Na, ZHANG Zhengmo, XUE Ping, WANG Wanfu, ZHAO Xueyong. Concentrations, sources, and influential factors of water- soluble ions of atmospheric particles in Dunhuang Mogao Grottoes, a world heritage site in China[J]. Journal of Arid Land, 2022, 14(12): 1395-1412.
[5] WANG Zhao, WEI Junjie, PENG Wenbin, ZHANG Rui, ZHANG Haobo. Contents and spatial distribution patterns of heavy metals in the hinterland of the Tengger Desert, China[J]. Journal of Arid Land, 2022, 14(10): 1086-1098.
[6] EL-RAWY Mustafa, AL-MAKTOUMI Ali, ZEKRI Slim, ABDALLA Osman, AL-ABRI Rashid. Hydrological and economic feasibility of mitigating a stressed coastal aquifer using managed aquifer recharge: a case study of Jamma aquifer, Oman[J]. Journal of Arid Land, 2019, 11(1): 148-159.
[7] Jingxin LI, Shigong WANG, Jinhua CHU, Jiaxin WANG, Xu LI, Man YUE, Kezheng SHANG. Characteristics of air pollution events over Hotan Prefecture at the southwestern edge of Taklimakan Desert, China[J]. Journal of Arid Land, 2018, 10(5): 686-700.
[8] LIU Jieyun, ZHANG Ying, LIU Xuejun, TANG Aohan, QIU Husen, ZHANG Fusuo. Concentrations and isotopic characteristics of atmospheric reactive nitrogen around typical sources in Beijing, China[J]. Journal of Arid Land, 2016, 8(6): 910-920.
[9] WANG Wei, LAI Yingshuai, MA Yuanyuan, LIU Zilong, WANG Shufen, HONG Chenglin. Heavy metal contamination of urban topsoil in a petrochemical industrial city in Xinjiang, China[J]. Journal of Arid Land, 2016, 8(6): 871-880.
[10] WANG Shengli, NAN Zhongren, Daniel PRETE . Protecting wild yak (Bos mutus) species and preventing its hybrid in China[J]. Journal of Arid Land, 2016, 8(5): 811-814.
[11] YaMing DONG, ChaoCheng ZHAO, Yun CAI, DongFeng ZHAO. Optimization of reed-specific degrading bacteria by response surfaces for remediation of crude oil-polluted soil in Xinjiang, China[J]. Journal of Arid Land, 2013, 5(3): 408-414.
[12] XinHu LI, ChengYi ZHAO, Bin WANG, Garry FENG. Regional partitioning of agricultural non-point source pollution in China using a projection pursuit cluster model[J]. Journal of Arid Land, 2011, 3(4): 278-284.
[13] Saimbulek Dosbergenov. Effect of crude oil pollution on organic carbon and humus content in grey-brown soils in Mangyshlak, Pre-Caspian Sea Region[J]. Journal of Arid Land, 2010, 2(2): 133-136.