Please wait a minute...
Journal of Arid Land  2025, Vol. 17 Issue (1): 112-129    DOI: 10.1007/s40333-025-0001-2     CSTR: 32276.14.JAL.02500012
Research article     
Spatiotemporal variations of tenebrionid beetles (Coleoptera: Tenebrionidae) in the Gobi desert, Northwest China
REN Jialong1,2, ZHAO Wenzhi2, HE Zhibin2, WANG Yongzhen2, FENG Yilin3, NIU Yiping4, XIN Weidong1, PAN Chengchen2, LIU Jiliang2,*()
1College of Geographic Sciences, Shanxi Normal University, Taiyuan 030031, China
2Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Linze Inland River Basin Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
3Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
4Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Baoding 071002, China
Download: HTML     PDF(1086KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Tenebrionid beetles represent a crucial arthropod taxon in the Gobi desert ecosystems owing to their species richness and high biomass, both of which are essential for maintaining ecosystem health and stability. However, the spatiotemporal variations of tenebrionid beetle assemblages in the Gobi desert remain poorly understood. In this study, the monthly dynamics of tenebrionid beetles in the central part of the Hexi Corridor, Northwest China, a representative area of the Gobi desert ecosystems, were monitored using pitfall trapping during 2015-2020. The following results were showed: (1) monthly activity of tenebrionid beetles was observed from March to October, with monthly activity peaking in spring and summer, and monthly activity periods and peak of tenebrionid beetle species exhibited interspecific differences that varied from year to year; (2) spatial distribution of tenebrionid beetle community was influenced by structural factors. Specifically, at a spatial scale of 24.00 m, tenebrionid beetle community was strongly and positively correlated with the dominant species, with distinct spatial distribution patterns observed for Blaps gobiensis and Microdera kraatzi alashanica; (3) abundance of tenebrionid beetles was positively correlated with monthly mean precipitation and monthly mean temperature, whereas monthly abundance of B. gobiensis and M. kraatzi alashanica was positively correlated with monthly mean precipitation; and (4) the cover of Reaumuria soongarica (Pall.) Maxim. and Nitraria sphaerocarpa Maxim. had a positive influence on the number of tenebrionid beetles captured. In conclusion, monthly variation in precipitation significantly influences the community dynamic of tenebrionid beetles, with precipitation and shrub cover jointly determining the spatial distribution pattern of these beetles in the Gobi desert ecosystems.



Key wordsGobi desert      precipitation change      tenebrionid beetles      temporal dynamics      spatial pattern     
Received: 18 June 2024      Published: 31 January 2025
Corresponding Authors: *LIU Jiliang (E-mail: liujl707@lzb.ac.cn)
Cite this article:

REN Jialong, ZHAO Wenzhi, HE Zhibin, WANG Yongzhen, FENG Yilin, NIU Yiping, XIN Weidong, PAN Chengchen, LIU Jiliang. Spatiotemporal variations of tenebrionid beetles (Coleoptera: Tenebrionidae) in the Gobi desert, Northwest China. Journal of Arid Land, 2025, 17(1): 112-129.

URL:

http://jal.xjegi.com/10.1007/s40333-025-0001-2     OR     http://jal.xjegi.com/Y2025/V17/I1/112

Fig. 1 Monthly mean precipitation (MAP) and monthly mean temperature (MAT) changes in the Gobi desert from January to December during 2011-2020
Tenebrionid beetles Number of individuals Relative abundance (%) Feeding type Body size Period of activity
Anatolica potanini 82 0.69 Omnivore Middle Day
Anatolica sternalis 1108 9.28 Omnivore Middle Day
Blaps gobiensis 4566 38.24 Omnivore Large Night
Cyphogenia chinensis 193 1.62 Omnivore Large Night
Microdera kraatzi alashanica 4743 39.72 Omnivore Small Night
Platyope victori 2 0.02 Omnivore Middle Day
Pterocoma loczyi 875 7.33 Omnivore Middle Day
Sternotrigon kraatzi 372 3.12 Omnivore Large Night
Table 1 Number of individuals and species composition of tenebrionid beetles captured during 2015-2020 in the Gobi desert, Northwest China
Fig. 2 Abundance of 8 tenebrionid beetle species captured from March 2015 to October 2020 in the Gobi desert, Northwest China. (a), Anatolica sternalis; (b), Anatolica potanini; (c), Blaps gobiensis; (d), Cyphogenia chinensis; (e), Platyope victori; (f), Pterocoma loczyi; (g), Microdera kraatzi alashanica; (h), Sternotrigon kraatzi. Bars are standard errors.
Group Model Nugget Sill Range (m) SH (%)
Tenebrionid beetle community
2015 Gau 0.08 2.15 11.78 96.20
2016 Exp 0.04 0.42 19.08 89.30
2017 Exp 0.02 0.34 16.41 92.40
2018 Exp 0.00 0.16 21.27 99.10
2019 Sph 0.01 0.11 9.54 96.50
2020 Gau 0.01 0.16 11.76 91.30
Tenebrionid beetle species
Blaps gobiensis
2015 Sph 0.10 2.59 12.18 96.30
2016 Exp 0.75 2.63 22.26 71.50
2017 Sph 0.00 1.54 12.75 100.00
2018 Sph 0.10 0.79 12.68 87.60
2019 Sph 0.08 1.15 14.41 93.10
2020 Exp 0.09 0.70 13.98 87.80
Microdera kraatzi alashanica
2015 Sph 0.00 1.51 9.54 100.00
2016 Sph 0.00 1.50 9.54 100.00
2017 Exp 0.12 2.69 13.14 95.50
2018 Exp 0.10 0.82 25.50 88.20
2019 Exp 0.19 1.59 8.76 88.20
2020 Exp 0.10 1.11 12.48 90.70
Table 2 Results of semi-variance analysis on the community abundance and dominant species of tenebrionid beetles during 2015-2020 in the Gobi desert, Northwest China
Fig. 3 Kriging map of annual abundance of tenebrionid beetles during 2015-2020 in the Gobi desert, Northwest China. (a), 2015; (b), 2016; (c), 2017; (d), 2018; (e), 2019; (f), 2020.
Fig. 4 Moran's I value of annual abundance of tenebrionid beetles during 2015-2020 in the Gobi desert, Northwest China. (a), 2015; (b), 2016; (c), 2017; (d), 2018; (e), 2019; (f), 2020. *, P<0.05 level; **, P<0.01 level. Bars are standard errors.
Index Mean precipitation Mean temperature
Annual Monthly Annual Monthly
r P r P r P r P
Tenebrionid beetle community
Activity density 0.66 0.156 0.31 0.031 -0.16 0.763 0.47 <0.001
Species richness 0.00 1.000 0.25 0.082 -0.15 0.781 0.43 0.002
Tenebrionid beetle species
B. gobiensis 0.59 0.216 -0.49 <0.001 -0.09 0.872 0.46 <0.001
M. kraatzi alashanica 0.39 0.445 0.28 0.054 0.01 0.992 0.54 <0.001
Table 3 Correlations of activity density, species richness, and tenebrionid beetles with mean precipitation and mean temperature at annual and monthly levels during 2015-2020
Index R. soongarica N. sphaerocarpa
r P r P
2015
Tenebrionid beetle community
Activity density -0.09 0.465 0.17 0.146
Species richness 0.02 0.844 0.17 0.156
Tenebrionid beetle species
B. gobiensis -0.16 0.191 0.01 0.998
M. kraatzi alashanica 0.08 0.525 0.25 0.033
2016
Tenebrionid beetle community
Activity density 0.12 0.300 0.33 0.005
Species richness 0.23 0.052 0.25 0.037
Tenebrionid beetle species
B. gobiensis 0.14 0.232 0.27 0.024
M. kraatzi alashanica 0.05 0.678 0.20 0.091
2017
Tenebrionid beetle community
Activity density 0.13 0.284 0.30 0.009
Species richness -0.08 0.494 0.12 0.315
Tenebrionid beetle species
B. gobiensis 0.14 0.250 0.31 0.008
M. kraatzi alashanica 0.08 0.482 0.14 0.256
2018
Tenebrionid beetle community
Activity density 0.31 0.007 0.05 0.689
Species richness 0.34 0.004 0.28 0.016
Tenebrionid beetle species
B. gobiensis 0.12 0.299 0.01 0.960
M. kraatzi alashanica 0.13 0.289 -0.04 0.763
2019
Tenebrionid beetle community
Activity density -0.22 0.065 0.10 0.386
Species richness -0.15 0.206 0.06 0.605
Tenebrionid beetle species
B. gobiensis 0.08 0.482 0.35 0.002
M. kraatzi alashanica -0.24 0.041 -0.12 0.321
2020
Tenebrionid beetle community
Activity density -0.12 0.313 0.14 0.256
Species richness -0.15 0.217 0.02 0.859
Tenebrionid beetle species
B. gobiensis 0.07 0.563 0.15 0.217
M. kraatzi alashanica -0.06 0.599 0.01 0.940
Table 4 Correlations of activity density, species richness, and tenebrionid beetles with covers of Reaumuria soongarica (Pall.) Maxim. and Nitraria sphaerocarpa Maxim. during 2015-2020
Tenebrionid beetles 2015 2016 2017 2018 2019 2020
NI RD (%) NI RD (%) NI RD (%) NI RD (%) NI RD (%) NI RD (%)
Anatolica potanini 12 0.80 14 0.80 18 0.80 9 0.70 18 0.70 11 0.40
Anatolica sternalis 328 21.80 138 8.20 178 7.80 76 6.00 138 5.30 250 9.70
Blaps gobiensis 804 53.40 608 36.10 1434 62.70 408 32.10 703 27.00 609 23.50
Cyphogenia chinensis 24 1.60 38 2.30 28 1.20 17 1.30 13 0.50 73 2.80
Microdera kraatzi alashanica 252 16.70 492 29.20 570 24.90 639 50.20 1592 61.20 1198 46.30
Platyope victori 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 2 0.10
Pterocoma loczyi 78 5.20 278 16.50 32 1.40 74 5.80 97 3.70 316 12.20
Sternotrigon kraatzi 8 0.50 118 7.00 28 1.20 50 3.90 39 1.50 129 5.00
Total individuals 1506 1686 2288 1273 2600 2588
Total species 7 7 7 7 7 8
Table S1 Number of individuals and relative abundance of tenebrionid beetles during 2015-2020 in the Gobi desert, Northwest China
Fig.S1 Comparison of abundance (a) and species richness (b) of tenebrionid beetles during 2015-2020 in the Gobi desert, Northwest China. Different lowercase letters within different years indicate significant differences at P<0.05 level. Bars are standard errors.
Fig. S2 Comparison of abundance of 8 species of tenebrionid beetles during 2015-2020 in the Gobi desert, Northwest China. (a), Anatolica sternalis; (b), Anatolica potanini; (c), Blaps gobiensis; (d), Cyphogenia chinensis; (e), Platyope victori; (f), Pterocoma loczyi; (g), Microdera kraatzi alashanica; (h), Sternotrigon kraatzi. Different lowercase letters within different years indicate significant differences at P<0.05 level. Bars are standard errors.
[1]   Aldryhim Y N, Mills III C W, Aldawood A S. 1992. Ecological distribution and seasonality of darkling beetles (Coleoptera: Tenebrionidae) in the central region of Saudi Arabia. Journal of Arid Environments, 23(4): 415-422.
[2]   Barrows C. 2012. Temporal patterns of abundance of arthropods on sand dunes. The Southwestern Naturalist, 57: 262-266.
[3]   Bartholomew A, El Moghrabi J. 2018. Seasonal preference of darkling beetles (Tenebrionidae) for shrub vegetation due to high temperatures, not predation or food availability. Journal of Arid Environments, 156: 34-40.
[4]   Chen L Y, Sun X, Shen X T, et al. 2024. Ecological response of ciliate protozoa to soil agglomerates in the desert Gobi region: A case study in the central Hexi Corridor. Acta Ecologica Sinica, 44 (18): 8434-8445.
[5]   Cloudsley-Thompson J L. 2021. Thermal and water relations of desert beetles. Naturwissenschaften, 88: 447-460.
[6]   De Los Santos A, Ferrer F, De Nicolas J P, et al. 2006. Thermal habitat and life history of two congeneric species of darkling beetles (Coleoptera: Tenebrionidae) on Tenerife (Canary Islands). Journal of Arid Environments, 65(3): 363-385.
[7]   Decaëns T. 2010. Macroecological patterns in soil communities. Global Ecology and Biogeography, 19(3): 287-302.
[8]   Fallaci M, Aloia A, Colombini I, et al. 2002. Population dynamics and life history of two Phaleria species (Coleoptera, Tenebrionidae) living on the Tyrrhenian sandy coast of central Italy. Acta Oecologica, 23(2): 69-79.
[9]   Feng Y L, Wang Y Z, Lin Y Y, et al. 2022. Effects of ant nest microhabitats on the diversity of soil macrofauna in Gobi ecosystems. Biodiversity Science, 30(12): 22282, doi: 10.17520/biods.2022282. (in Chinese)
[10]   Gao M X, Zhang C, Qiao Z H, et al. 2018. Metacommunity patterns of ground-beetle assemblages in two mixed broad-leaved Korean pine (Pinus koraiensis) forests in the Xiao Xing'an Mountains. Acta Ecologica Sinica, 38(16): 5636-5648. (in Chinese)
[11]   Gao M X, Ye Y Y, Sun J H, et al. 2023. Species diversity and its spatial variability of ground-dwelling carrion beetle (Coleoptera, Silphidae) community in broad-leaved Korean pine forests in Northeast China. Acta Ecologica Sinica, 43(18): 7536-7552. (in Chinese)
[12]   Gibb H, Grossman B F, Dickman C R, et al. 2019. Long-term responses of desert ant assemblages to climate. Journal of Animal Ecology, 88(10): 1549-1563.
doi: 10.1111/1365-2656.13052 pmid: 31310340
[13]   Gibb H, Wardle G M, Greenville A C, et al. 2022. Top-down response to spatial variation in productivity and bottom-up response to temporal variation in productivity in a long-term study of desert ants. Biology Letters, 18(9): 20220314, doi: 10.1098/rsbl.2022.0314.
[14]   Groner E, Ayal Y. 2001. The interaction between bird predation and plant cover in determining habitat occupancy of darkling beetles. Oikos, 93(1): 22-31.
[15]   Henschel J R. 2021. Long-term population dynamics of Namib Desert tenebrionid beetles reveal complex relationships to pulse-reserve conditions. Insects, 12(9): 804, doi: 10.3390/insects12090804.
[16]   Hu Y Y, Zhu J Y, Yan L, et al. 2018. Analysis of the dynamic spatial pattern of adult Coleoptera communities at fine scale in a temperate deciduous broad-leaved forest. Acta Ecologica Sinica, 38(5): 1841-1851. (in Chinese)
[17]   Ilsøe S K, Kissling W D, Fjeldså J, et al. 2017. Global variation in woodpecker species richness shaped by tree availability. Journal of Biogeography, 44(8): 1824-1835.
[18]   Ingimarsdóttir M, Caruso T, Ripa J, et al. 2012. Primary assembly of soil communities: Disentangling the effect of dispersal and local environment. Oecologia, 170: 745-754.
doi: 10.1007/s00442-012-2334-8 pmid: 22534694
[19]   Krasnov B, Ayal B. 1995. Seasonal changes in darkling beetle communities (Coleoptera: Tenebrionidae) in the Ramon erosion cirque, Negev Highlands, Israel. Journal of Arid Environments, 31(3): 335-347.
[20]   Kwok A B C, Wardle G M, Greenville A C, et al. 2016. Long-term patterns of invertebrate abundance and relationships to environmental factors in arid Australia. Austral Ecology, 41(5): 480-491.
[21]   Lescano M N, Elizalde L, Werenkraut V, et al. 2017. Ant and tenebrionid beetle assemblages in arid lands: Their associations with vegetation types in the Patagonian steppe. Journal of Arid Environments, 138: 51-57.
[22]   Lin Y Y, Wang Y Z, Zhao W Z, et al. 2022. Community dynamics of mammals and birds monitored with infrared triggered cameras in desert ecosystem in the Hexi Corridor, China. Journal of Desert Research, 42(3): 159-169. (in Chinese)
[23]   Liu J L, Li F R, Liu Q J, et al. 2010. Seasonal variation of ground dwelling arthropod communities in an arid desert of the middle Heihe River basin. Acta Prataculture Sinica, 19(5): 161-169. (in Chinese)
[24]   Liu J L, Li F R, Liu C A, et al. 2012. Influences of shrub vegetation on distribution and diversity of a ground beetle community in a Gobi desert ecosystem. Biodiversity and Conservation, 21(10): 2601-2619.
[25]   Liu J L, Zhao W Z, Li F R. 2015. Effects of shrub presence and shrub species on ground beetle assemblages (Carabidae, Curculionidae and Tenebrionidae) in a sandy desert, northwestern China. Journal of Arid Land, 7(1): 110-121.
[26]   Lou Q Z, Xu Y C, Ma J H, et al. 2011. Diversity of ground-dwelling beetles within the southern Gurbantunggut Desert and its relationship with environmental factors. Biodiversity Science, 19(4): 441-452. (in Chinese)
[27]   Maeno K O, Nakamura S, Babah M A O. 2014. Nocturnal and sheltering behaviours of the desert darkling beetle, Pimelia senegalensis (Coleoptera: Tenebrionidae), in the Sahara Desert. African Entomology, 22(3): 499-504.
[28]   Mazía C N, Chaneton E J, Kitzberger T. 2006. Small-scale habitat use and assemblage structure of ground-dwelling beetles in a Patagonian shrub steppe. Journal of Arid Environments, 67(2): 177-194.
[29]   Parker A, Lawrence C. 2001. Water capture by a desert beetle. Nature, 414: 33-34.
[30]   Polis G. 1991. Complex trophic interactions in deserts: An empirical critique of food-web theory. The American Naturalist, 138(1): 123-155.
[31]   Ragionieri L, Zúñiga-Reinoso Á, Bläser M, et al. 2023. Phylogenomics of darkling beetles (Coleoptera: Tenebrionidae) from the Atacama Desert. PeerJ, 11: e14848, doi: 10.7717/peerj.14848.
[32]   Ren G D, Ba Y B. 2010. Fauna of Soil Darking Beetle in China. Beijing: Science Press. (in Chinese)
[33]   Ren G D. 2016. Fauna Sinica Insecta (Vol. 63). Coleoptera Tenebrionidae (Ⅰ). Beijing: Science Press. (in Chinese)
[34]   Ren J L, Liu J L, Wang Y Z, et al. 2024a. Response of ground arthropod assemblages to precipitation and temperature changes in the Gobi desert. Journal of Desert Research, 44(2): 207-219. (in Chinese)
[35]   Ren J L, Wang Y Z, Feng Y L, et al. 2024b. Beetle data set collected by pitfall trapping in the Gobi desert of the Hexi Corridor. Biodiversity Science, 32(2): 23375, doi: 10.17520/biods.2023375. (in Chinese)
[36]   Sackmann P, Flores G E. 2009. Temporal and spatial patterns of tenebrionid beetle diversity in NW Patagonia, Argentina. Journal of Arid Environments, 73(12): 1095-1102.
[37]   Sagi N, Hawlena D. 2021. Arthropods as the engine of nutrient cycling in Arid Ecosystems. Insects, 12(8): 726, doi: 10.3390/insects12080726.
[38]   Shelef O, Groner E. 2011. Linking landscape and species: Effect of shrubs on patch preference of beetles in arid and semi-arid ecosystems. Journal of Arid Environments, 75(10): 960-967.
[39]   Stapp P. 1997. Microhabitat use and community structure of darkling beetles (Coleoptera: Tenebrionidae) in Shortgrass Prairie: Effects of season, shrub cover and soil type. The American Midland Naturalist, 137(2): 298-311.
[40]   Sun J H, Liu D, Zhu J Q, et al. 2022. Spatial distribution pattern of soil mite community and body size in wheat-maize rotation farmland. Biodiversity Science, 30(12): 22292, doi: 10.17520/biods.2022292. (in Chinese)
[41]   Thomas D B. 1979. Patterns in the abundance of some tenebrionid beetles in the Mojave Deseret. Environmental Entomology, 8(3): 568-574.
[42]   Twardowski J P, Pastuszko K, Hurej M, et al. 2017. Effect of different management practices on ground beetle (Coleoptera: Carabidae) assemblages of uphill grasslands. Polish Journal of Ecology, 65(3): 400-409.
[43]   Valdez J W. 2020. Arthropods as vertebrate predators: A review of global patterns. Global Ecology and Biogeography, 29(10): 1691-1703.
[44]   Vonshak M, Dayan T, Kronfeld-Schor N. 2009. Arthropods as a prey resource: Patterns of diel, seasonal, and spatial availability. Journal of Arid Environments, 73(4-5): 458-462.
[45]   Wang H, Ren S, Hao Z, et al. 2016. Quantitative evaluation and uncertainty assessment on geostatistical simulation of soil salinity using electromagnetic induction technique. EnviroProtect, 7: 844-854.
[46]   Wang M, Li X Y, Yang Y C, et al. 2020. Communities biodiversity of ground-dwelling beetle and its relations with environmental factors in Helan Mountains, northwestern China. Journal of Arid Land Resources and Environment, 34(4): 154-161. (in Chinese)
[47]   Whitford W G. 1993. Animal feedbacks in desertification: An overview. Revista Chilena de Historia Natural, 66(3): 243-251.
[48]   Yang G J, He H M, Wang X P. 2012. The time structure and population dynamics of the desert-steppe darkling beetle community in Yanchi, Ningxia, China. Chinese Journal of Applied Entomology, 49(6): 1610-1617. (in Chinese)
[49]   Yang G J, Wang M, Yang Y C, et al. 2019. Distribution patterns and environmental interpretation of beetle species richness in Helan Mountain of northern China. Biodiversity Science, 27(12): 1309-1319. (in Chinese)
doi: 10.17520/biods.2019184
[50]   Zajicek P, Welti E A R, Baker N J, et al. 2021. Long-term data reveal unimodal responses of ground beetle abundance to precipitation and land use but no changes in taxonomic and functional diversity. Scientific Report, 11: 17468, doi: 10.1038/S41598-021-96910-7.
[51]   Zheng L Y, Gui H. 1999. Insect Classification. Nanjing: Nanjing Normal University Press (in Chinese).
[52]   Zhu J Y, Li J K, Gao M X, et al. 2017. Spatially heterogeneous dynamics of adult Coleoptera communities at a small scale in a Pinus koraiensis plantation on Maoer Mountain. Acta Ecologica Sinica, 37(6): 1975-1986. (in Chinese)
[53]   Zotov V A. 2017. Daily activity rhythm of desert omni-seasonal Tenebrionid beetles, Trigonoscelis gigas and T. sublaevicollis (Coleoptera, Tenebrionidae) in constant darkness and under alternating 1-hour pulses of light and darkness. Entomological Review, 97: 17-19.
[1] MA Xinshu, XIN Cunlin, CHEN Ning, XIN Shunjie, CHEN Hongxiang, ZHANG Bo, KANG Ligang, WANG Yu, JIAO Jirong. Land use/cover change and ecological network in Gansu Province, China during 2000-2020 and their simulations in 2050[J]. Journal of Arid Land, 2025, 17(1): 43-57.
[2] LIU Yaxuan, ZENG Yong, YANG Yuhui, WANG Ning, LIANG Yuejia. Competition, spatial pattern, and regeneration of Haloxylon ammodendron and Haloxylon persicum communities in the Gurbantunggut Desert, Northwest China[J]. Journal of Arid Land, 2022, 14(10): 1138-1158.
[3] Batjargal BUYANTOGTOKH, Yasunori KUROSAKI, Atsushi TSUNEKAWA, Mitsuru TSUBO, Batdelger GANTSETSEG, Amarsaikhan DAVAADORJ, Masahide ISHIZUKA, Tsuyoshi T SEKIYAMA, Taichu Y TANAKA, Takashi MAKI. Effect of stones on the sand saltation threshold during natural sand and dust storms in a stony desert in Tsogt-Ovoo in the Gobi Desert, Mongolia[J]. Journal of Arid Land, 2021, 13(7): 653-673.
[4] LI Xinhui, LEI Shaogang, CHENG Wei, LIU Feng, WANG Weizhong. Spatio-temporal dynamics of vegetation in Jungar Banner of China during 2000-2017[J]. Journal of Arid Land, 2019, 11(6): 837-854.
[5] Boqian DONG, Kuangji ZHAO, Zhibin WANG, Zhongkui JIA, Lvyi MA, Xinli XIA. Forest recovery after clear-cutting in Chinese pine (Pinus tabuliformis) plantations of North China[J]. Journal of Arid Land, 2018, 10(2): 233-248.
[6] Yuling HU, Shigong WANG, Xuping SONG, Jiaxin WANG. Precipitation changes in the mid-latitudes of the Chinese mainland during 1960-2014[J]. Journal of Arid Land, 2017, 9(6): 924-937.
[7] Tao WANG, Jianjun QU, Yuquan LING, Shengbo XIE, Jianhua XIAO. Wind tunnel test on the effect of metal net fences on sand flux in a Gobi Desert, China[J]. Journal of Arid Land, 2017, 9(6): 888-899.
[8] Pingping ZHANG, Ming’an SHAO, Xingchang ZHANG. Spatial pattern of plant species diversity and the influencing factors in a Gobi Desert within the Heihe River Basin, Northwest China[J]. Journal of Arid Land, 2017, 9(3): 379-393.
[9] Di KANG, Jian DENG, Xiaowei QIN, Fei HAO, Shujuan GUO, Xinhui HAN, Gaihe YANG. Effect of competition on spatial patterns of oak forests on the Chinese Loess Plateau[J]. Journal of Arid Land, 2017, 9(1): 122-131.
[10] GUO Bing, ZHOU Yi, ZHU Jinfeng, LIU Wenliang, WANG Futao, WANG Litao, YAN Fuli, WANG Feng, YANG Guang, LUO Wei, JIANG Lin. Spatial patterns of ecosystem vulnerability changes during 2001–2011 in the three-river source region of the Qinghai-Tibetan Plateau, China[J]. Journal of Arid Land, 2016, 8(1): 23-35.
[11] WeiJun ZHAO, Yan ZHANG, QingKe ZHU, Wei QIN, ShuZhen PENG, Ping LI, YanMin ZHAO, Huan MA, Yu WANG. Effects of microtopography on spatial point pattern of forest stands on the semi-arid Loess Plateau, China[J]. Journal of Arid Land, 2015, 7(3): 370-380.
[12] YanYun LUO, TingXi LIU, XiXi WANG, LiMin DUAN. Influences of landform as a confounding variable on SOM-NDVI association in semiarid Ordos Plateau[J]. Journal of Arid Land, 2012, 4(4): 450-456.
[13] BaoLin LI, QiMing ZHOU. Spatial pattern of land cover change in China’s semiarid environment[J]. Journal of Arid Land, 2009, 1(1): 16-25.