Please wait a minute...
Journal of Arid Land  2012, Vol. 4 Issue (4): 378-389    DOI: 10.3724/SP.J.1227.2012.00378     CSTR: 32276.14.SP.J.1227.2012.00378
Research Articles     
Using the concept of ecological groundwater level to evaluate shallow groundwater resources in hyperarid desert regions
Qi FENG1,2,3, JiaZhong PENG1,3, JianGuo LI1,3, HaiYang XI1,3, JianHua SI1,3
1 Alashan Desert Eco-hydrology Experimental Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
2 Department of Geography, Shaanxi Normal University, Xi’an 710062, China;
3 Gansu Hydrology and Water Resources Engineering Center, Lanzhou 730000, China
Download:   PDF(813KB)
Export: BibTeX | EndNote (RIS)      

Abstract  This paper, based on the analysis and calculation of the groundwater resources in an arid region from 1980 to 2001, put forward the concept of ecological groundwater level threshold for either salinity control or the determination of ecological warning. The surveys suggest that soil moisture and soil salinity are the most important environmental factors in determining the distribution and changes in vegetation. The groundwater level threshold of ecological warning can be determined by using a network of groundwater depth observation sites that monitor the environmental moisture gradient as reflected by plant physiological characteristics. According to long-term field observations within the Ejin oases, the groundwater level threshold for salinity control varied between 0.5 m and 1.5 m, and the ecological warning threshold varied between 3.5 m and 4.0 m. The quantity of groundwater re-sources (renewable water resources, ecological water resources, and exploitable water resources) in arid areas can be calculated from regional groundwater level information, without localized hydrogeological data. The concept of groundwater level threshold of ecological warning was established according to water development and water re-sources supply, and available groundwater resources were calculated. The concept not only enriches and broadens the content of groundwater studies, but also helps in predicting the prospects for water resources development.

Key words ecological migration      migration project      migrant farmer families      questionnaire      Tianchi Scenic Area      Xinjiang     
Received: 23 February 2012      Published: 15 December 2012
Fund:  

The National Natural Science Foun¬dation of China (91025002; 30970492), the Fundamental Research Funds for the Central Universities (GK201101002), the Key Project of the Chinese Academy of Sciences (KZZD- EW-04-05), and the National Key Technology R & D Pro-gram (2012BAC08B05).

Corresponding Authors:
Cite this article:

Qi FENG, JiaZhong PENG, JianGuo LI, HaiYang XI, JianHua SI. Using the concept of ecological groundwater level to evaluate shallow groundwater resources in hyperarid desert regions. Journal of Arid Land, 2012, 4(4): 378-389.

URL:

http://jal.xjegi.com/10.3724/SP.J.1227.2012.00378     OR     http://jal.xjegi.com/Y2012/V4/I4/378

Al Aasm I S. 1990. Stable isotope analysis of multiple carbonate sam-ples using selective acid extraction. Chemical Geology, 80: 119–125.

Asbjornsen H, Mora G, Helmers M J. 2007. Variation in water uptake dynamics among contrasting agricultural and native plant commu-nities in the Midwestern US. Agriculture, Ecosystems and Envi-ronment, 121(4): 343–356.

Bouyoucos G H. 1951. A recalibration of the hydrometer method for making mechanical analysis of soils. Agronomy Journal, 43: 434–438.

Bresler E, Kemper W D, Hanks R J. 1969. Infiltration, redistribution, and subsequent evaporation of water from soil as affected by wetting rate and hysteresis. Soil Science Society of America Journal, 33: 832–840.

Brewer R. 1964. Fabric and Mineral Analysis of Soils. New York: Wiley, 53–55.

Briggs L J, Shantz H L. 1921. The relative wilting coefficient for dif-ferent plants. Botanical Gazette, 53: 229–245.

Bushev M. 1994. Synergetics: Chaos, Order, Self-organization. Singa-pore: World Scientific, 56–59.

Cao S X, Feng Q. 2012. Asian medicine: exploitation of plant. Science, 335: 1168–1169.

Charney J, Stone P H, Quirk W J. 1975. Drought in the Sahara: a bio-geophysical feedback mechanism. Science, 187: 434–435.

Chen Z Y, Nie Z L, Zhang G H, et al. 2006. Environmental isotopic study on the recharge and residence time of groundwater in the Heihe River Basin, northwestern China. Hydrogeology Journal, 14: 1635–1651.

Cheng L H, Qu Y G. 1992. Rational Development and Use of Water and Land Resources in Hexi Region. Beijing: Science Press, 45–49.

Corwin D L, Rhoades J D. 1982. An improved technique for determining soil electrical conductivity depth relations from above ground elec-tromagnetic measurements. Soil Science Society of America Journal, 46: 517–520.

Dalton F N, Herklerath W N, Rawlins D S, et al. 1984. Time domain reflectrometry: simultaneous measurement of the soil water content and electrical conductivity with a single probe. Science, 224: 989–990.

Dong Y X, Liu Y Z, Liu Y H. 1995. Study on Several Problems of Desertification. Xi’an: Map Publishing House, 78–89.

Drimmine R J, Heemskerk A R, Paiion M E. 1992. 13C and 18O in Car-bonates. In: Environmental Isotope Laboratory. Technical Procedure 11.0, Rev 01: University of Waterloo, 10–12.

Enrico F L, Laura G V, Woldu Z H. 2002. Evaluation of environmental degradation in Northern Ethiopia using GIS to integrate vegetation, geomorphologic, erosion and socio-economic factors. Agriculture, Ecosystems and Environment, 91: 313–325.

Feng Q, Cheng G D. 1998. Relation between vegetation growth and ecological groundwater table in desert oasis. Journal of Desert Re-search (Suppl.), 18(1): 34–41.

Feng Q. 1999. Sustainable utilization of water resources in Gansu province. Chinese Journal of Arid Land Research, 11: 293–299.

Feng Q, Cheng G D, Endo K H. 2001. Water content variations and respective ecosystems of sandy land in China. Environmental Ge-ology, 40(9): 1075–1083.

Feng Q, Cheng G D, Endo K H. 2002. Towards sustainable development of the environmentally degraded river Heihe Basin, China. Hydro-logical Science Journal, 46(5): 647–658.

Feng Q, Liu W. 2003. Water resources management and rehabilitation in China. Journal of Experimental Botany, 54: 23–28.

Feng Q, Liu W, Su Y H, et al. 2004. Distribution and evolution of water chemistry in Heihe River basin. Environmental Geology, 45: 947–956.

Feng Q, Liu W, Xi H Y. 2009. Relationship between soil physiochem-istry and land degradation in the lower Heihe River basin of north-western China. Frontiers of Earth Science in China, 3(4): 490–499.

Guo Q L, Feng Q, Li J L. 2009. Environmental changes after ecological water conveyance in the lower reaches of Heihe River, Northwest China. Environmental Geology, 58: 1387–1396.

Gao Q Z, Li F X. 1991. Rational Use of Water Resources in the Heihe River Basin. Lanzhou: Gansu Scientific and Technological Press, 134–154.

Hillel D.1974. Methods of Laboratory and Field Investigation of Physical Properties of Soils. In: Transepts of the 10th International Soil Science Congress, vol 1, Moscow, 302–308.

Hillel D. 1982. Negev: Land, Water and Life in a Desert Environment. New York: Praeger, 58–89.

Holmes J W. 1956. Calibration and field use of the neutron scattering method of measuring soil water content. Australian Journal of Applied Science, 7: 45–58.

Ji C M. 1983. Several problems on water resources survey methods in America and Japan. Hydrogeology and Engineering Geology, 4.

Jin X M, Hu G C, Li W M. 2008. Hysteresis effect of runoff of the Heihe River on vegetation cover in the Ejin oasis in Northwestern China. Earth Science Frontiers, 15: 198–203.

Kang S Z, Shi P, Pan Y. 2000. Soil water distribution, uniformity and water-use efficiency under alternate furrow irrigation in arid areas. Irrigation Science, 19(4): 181–190.

Liu X H, Zhang C X. 2002. Status and protection of vegetation in Ejin oasis. Forestry Survey and Design of Inner Mongolia, 25(4): 34–35.

Ma J Z, Qian J. 1997. The Optimal Exploitation and Utilization of Water Resources in Heihe River Basin. Journal of Lanzhou Uni-versity (Nature Sciences), 33(2): 92–97 (2).

Ma J Z, Gao Q Z. 1998. A DDP model of optimal multicrop allocation of agricultural irrigation water in arid NW China. Journal of Lanzhou University (Nature Sciences), 34(3): 145–150.

Rhoades J D. 1976. Measuring, mapping, and monitoring field salinity and water table depths with soil resistance measurements. FAO Soils Bulletin, 31:159–186.

Rhoades J D. 1978. Monitoring soil salinity: a review of methods. In: Everett L G, Schmidt K D. Establishment of Water Quality Moni-toring Programs. American Water Research Association, 150–165.

Rhoades J D. 1980. Predicting bulk soil electrical conductivity versus saturation paste electrical conductivity calibrations from soil properties. Soil Science Society of America Journal, 45: 42–44.

Rhoades J D, Corwin D L. 1980. Determining soil electrical conduc-tivity-depth relations using an inductive electromagnetic soil conductivity meter. Soil Science Society of America Journal, 45: 255–260.

Rhoades J D. 1984. Principles and methods of monitoring soil salinity. In: Shainberg I, Shalhevet J. Soil salinity under Irriga-tion—processes and Management. Berlin Heidelberg New York: Springer, 130–142.

Romanek C S, Grossman E L, More J W. 1996. Carbon isotopic fractionation in synthetic aragonite and calcite: effects of tem-perature and precipitation rate. Geochim Cosmochim Acta, 56: 419–430.

Second Geology Investigation Team of Northwest China. 1975, 1990, 1995, 2008. Groundwater Resources in Northwest China. Beijing: Geology Press.

Shu J M, Wang J J, Zheng B H. 1998. Eco-environment deterioration state and its rehabilitation suggestions. Study of Environment Sci-ence, 11(4): 55–61.

Si J H, Feng Q, Xi H Y, et al. 2008. Ejin desert oasis: a fragile “eco-logical screen” in inland region of Northwest China. The 2nd In-ternational Conference on Bioinformatics and Biomedical Engi-neering (iCBBE 2008). Shanghai: IEEE Press.

Soil Conservation Service. 1967. Soil survey laboratory methods and procedures for collecting soil samples. Washington: Soil Survey Investigation Report no 1, USDA, 34–78.

Tarutani T, Clayton R N, Mayeda T K. 1969. The effect of polymor-phism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim Cosmochim Acta, 33: 987–996.

Umar A, Umar R A, Hmad M S. 2001. Hydrogeological and hydro-chemical framework of regional aquifer system in KaliGanga sub-basin, India. Environmental Geology, 40(4–5): 602–611.

Van Stempvoort D R, Krouse H R. 1994. Controls of δ18O in sulfate: review of experimental data and application to specific environ-ments. In: Alpers C N, Blowes D W. Environmental Geochemistry of Sulfide Oxidation: American Chemical Society Symposium Series 550, 446–480.

Wang X Z, Wang L X, Xie B Y. 2003. Eco-environment construction issues in the Heihe River Basin. Journal of Water and Soil Con-servation, 17(1): 33–36.

Wang Y B, Feng Q, Si J H, et al. 2011. The changes of vegetation cover in Ejin Oasis based on water resources redistribution in Heihe River. Environmental Earth Sciences, 64: 1965–1973.

Wu X, Shi S, Li Z H. 2002. The study of the aquifer system in the lower reaches of Heihe River Ejina Basin, Northwest China (II). Hydrology and Engineering Geology, 2:30–33.

Wu Y, Wen X, Zang Y. 2004. Analysis of the exchange of ground-water and river water by using Radon-222 in the middle Heihe Basin of northwestern China. Environmental Geology, 45: 647–653.

Xi H Y, Feng Q, Si J H. 2010. Impacts of river recharge on ground-water level and hydrochemistry in the lower reaches of Heihe River Watershed, northwestern China. Hydrogeology Journal, 18: 791–801.

Yuan S L. 1985. Dynamical characteristics of groundwater at Eastern desert margin in the Heihe River basin, Groundwater, 4.

Zhu G F, Su Y H, Hang C L. 2010. Hydrogeochemical processes in the groundwater environment of Heihe River Basin, Northwest China. Environmental Earth Sciences, 60(1): 139–153.

Zhu Z D, Wang T. 1993. Trends of desertification and its rehabilitation in China. Desertification Control Bulletin, 22: 27–30.
[1] XU Wenjie, DING Jianli, BAO Qingling, WANG Jinjie, XU Kun. Improving the accuracy of precipitation estimates in a typical inland arid area of China using a dynamic Bayesian model averaging approach[J]. Journal of Arid Land, 2024, 16(3): 331-354.
[2] ZHANG Mingyu, CAO Yu, ZHANG Zhengyong, ZHANG Xueying, LIU Lin, CHEN Hongjin, GAO Yu, YU Fengchen, LIU Xinyi. Spatiotemporal variation of land surface temperature and its driving factors in Xinjiang, China[J]. Journal of Arid Land, 2024, 16(3): 373-395.
[3] CHEN Yiyang, ZHANG Li, YAN Min, WU Yin, DONG Yuqi, SHAO Wei, ZHANG Qinglan. Spatiotemporal evolution and future simulation of land use/land cover in the Turpan-Hami Basin, China[J]. Journal of Arid Land, 2024, 16(10): 1303-1326.
[4] YUAN Shuai, LIU Yongqiang, QIN Yan, ZHANG Kun. Spatiotemporal variation of surface albedo and its influencing factors in northern Xinjiang, China[J]. Journal of Arid Land, 2023, 15(11): 1315-1339.
[5] LI Feng, LI Yaoming, ZHOU Xuewen, YIN Zun, LIU Tie, XIN Qinchuan. Modeling and analyzing supply-demand relationships of water resources in Xinjiang from a perspective of ecosystem services[J]. Journal of Arid Land, 2022, 14(2): 115-138.
[6] WANG Jinjie, DING Jianli, GE Xiangyu, QIN Shaofeng, ZHANG Zhe. Assessment of ecological quality in Northwest China (2000-2020) using the Google Earth Engine platform: Climate factors and land use/land cover contribute to ecological quality[J]. Journal of Arid Land, 2022, 14(11): 1196-1211.
[7] JIA Hao, WANG Zhenhua, ZHANG Jinzhu, LI Wenhao, REN Zuoli, JIA Zhecheng, WANG Qin. Effects of biodegradable mulch on soil water and heat conditions, yield and quality of processing tomatoes by drip irrigation[J]. Journal of Arid Land, 2020, 12(5): 819-836.
[8] YANG Yuling, LI Minfei, MA Jingjing, CHENG Junhui, LIU Yunhua, JIA Hongtao, LI Ning, WU Hongqi, SUN Zongjiu, FAN Yanmin, SHENG Jiandong, JIANG Ping'an. Changes in the relationship between species richness and belowground biomass among grassland types and along environmental gradients in Xinjiang, Northwest China[J]. Journal of Arid Land, 2019, 11(6): 855-865.
[9] Tao WANG, Jianjun QU, Yuquan LING, Shengbo XIE, Jianhua XIAO. Wind tunnel test on the effect of metal net fences on sand flux in a Gobi Desert, China[J]. Journal of Arid Land, 2017, 9(6): 888-899.
[10] Jinling LYU, Hua LIU, Xihe WANG, OLAVE Rodrigo, Changyan TIAN, Xuejun LIU. Crop yields and soil organic carbon dynamics in a long-term fertilization experiment in an extremely arid region of northern Xinjiang, China[J]. Journal of Arid Land, 2017, 9(3): 345-354.
[11] XIA Yong, Paul HOLT, WANG Yaotian, GOU Jun, CAI Xinbin, WANG Chuanbo, DING Peng, LIN Xuanlong. Glaucous gull (Larus hyperboreus): a new bird record in Xinjiang, China[J]. Journal of Arid Land, 2016, 8(5): 815-818.
[12] WEN Bin, ZHANG Xiaolei, YANG Zhaoping, XIONG Heigang, QIU Yang. Influence of tourist disturbance on soil properties, plant communities, and surface water quality in the Tianchi scenic area of Xinjiang, China[J]. Journal of Arid Land, 2016, 8(2): 304-313.
[13] WU Yanfeng, Batur BAKE, ZHANG Jusong, Hamid RASULOV. Spatio-temporal patterns of drought in North Xinjiang, China, 1961–2012 based on meteorological drought index[J]. Journal of Arid Land, 2015, 7(4): 527-543.
[14] YaoBin LIU, YuanMing ZHANG, Robert S NOWAK, Liliya DIMEYEVA. Diaspore characteristics and ecological adaptation of Bromus tectorum L. from different distribution regions [J]. Journal of Arid Land, 2013, 5(3): 310-323.
[15] Ke ZHANG, ChunJian LI, ZhongShao LI, FuHai ZHANG, ZhenYong ZHAO, ChangYan TIAN. Characteristics of mineral elements in shoots of three annual halophytes in a saline desert, Northern Xinjiang[J]. Journal of Arid Land, 2013, 5(2): 244-254.