Please wait a minute...
Journal of Arid Land  2022, Vol. 14 Issue (11): 1293-1316    DOI: 10.1007/s40333-022-0029-5     CSTR: 32276.14.s40333-022-0029-5
Research article     
Non-negligible factors in low-pressure sprinkler irrigation: droplet impact angle and shear stress
HUI Xin1, ZHENG Yudong1, MUHAMMAD Rizwan Shoukat1, TAN Haibin2, YAN Haijun1,3,*()
1College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
2Semi-arid Agriculture Engineering & Technology Research Center of China, Shijiazhuang 050051, China
3Engineering Research Center of Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, China
Download: HTML     PDF(3771KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Droplet shear stress is considered as an important indicator that reflects soil erosion in sprinkler irrigation more accurately than kinetic energy, and the effect of droplet impact angle on the shear stress cannot be ignored. In this study, radial distribution of droplet impact angles, velocities, and shear stresses were investigated using a two-dimensional video disdrometer with three types of low-pressure sprinkler (Nelson D3000, R3000, and Komet KPT) under two operating pressures (103 and 138 kPa) and three nozzle diameters (3.97, 5.95, and 7.94 mm). Furthermore, the relationships among these characteristical parameters of droplet were analyzed, and their influencing factors were comprehensively evaluated. For various types of sprinkler, operating pressures, and nozzle diameters, the smaller impact angles and larger velocities of droplets were found to occur closer to the sprinkler, resulting in relatively low droplet shear stresses. The increase in distance from the sprinkler caused the droplet impact angle to decrease and velocity to increase, which contributed to a significant increase in the shear stress that reached the peak value at the end of the jet. Therefore, the end of the jet was the most prone to soil erosion in the radial direction, and the soil erosion in sprinkler irrigation could not only be attributed to the droplet kinetic energy, but also needed to be combined with the analysis of its shear stress. Through comparing the radial distributions of average droplet shear stresses among the three types of sprinklers, D3000 exhibited the largest value (26.94-3313.51 N/m2), followed by R3000 (33.34-2650.80 N/m2), and KPT (16.15-2485.69 N/m2). From the perspective of minimizing the risk of soil erosion, KPT sprinkler was more suitable for low-pressure sprinkler irrigation than D3000 and R3000 sprinklers. In addition to selecting the appropriate sprinkler type to reduce the droplet shear stress, a suitable sprinkler spacing could also provide acceptable results, because the distance from the sprinkler exhibited a highly significant (P<0.01) effect on the shear stress. This study results provide a new reference for the design of low-pressure sprinkler irrigation system.



Key wordscenter pivot irrigation system      water droplet      universal model      soil erosion      water-saving irrigation     
Received: 13 May 2022      Published: 30 November 2022
Corresponding Authors: *YAN Haijun (E-mail: yanhj@cau.edu.cn)
Cite this article:

HUI Xin, ZHENG Yudong, MUHAMMAD Rizwan Shoukat, TAN Haibin, YAN Haijun. Non-negligible factors in low-pressure sprinkler irrigation: droplet impact angle and shear stress. Journal of Arid Land, 2022, 14(11): 1293-1316.

URL:

http://jal.xjegi.com/10.1007/s40333-022-0029-5     OR     http://jal.xjegi.com/Y2022/V14/I11/1293

Fig. 1 Test for the droplet of low-pressure sprinkler. (a), scenario of test; (b), schematic of test.
Fig. 2 2DVD instrument for measuring droplets. (a), composition of 2DVD; (b), schematic of measuring planes of 2DVD.
Sprinkler type Operating pressure (kPa) Nozzle diameter (mm) Flow rate (m3/h)
D3000 103 3.97 0.61
5.95 1.38
7.94 2.46
138 3.97 0.70
5.95 1.59
7.94 2.84
R3000 103 3.97 0.61
5.95 1.38
7.94 2.46
138 3.97 0.70
5.95 1.59
7.94 2.84
KPT 103 3.97 0.64
5.95 1.43
7.94 2.47
138 3.97 0.74
5.95 1.66
7.94 2.86
Table 1 Working parameters and corresponding flow rates of the three types of low-pressure sprinkler
Fig. 3 Relative frequency distributions of droplet impact angles along the spray direction for the three types of sprinkler and three nozzle diameters at an operating pressure of 103 kPa. (a-c), D3000; (d-f), R3000; (g-i), KPT.
Fig. 4 Relative frequency distributions of droplet impact angles along the spray direction for the three types of sprinkler and three nozzle diameters at an operating pressure of 138 kPa. (a-c), D3000; (d-f), R3000; (g-i), KPT.
Sprinkler type Operating pressure (kPa) Nozzle diameter (mm) Coefficient of variation (%)
1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 m
D3000 103 3.97 4.70 8.40 9.01 11.91 23.54 - - - -
5.95 9.37 9.78 10.58 18.53 19.21 20.13 23.44 - -
7.94 6.46 7.03 10.03 17.46 18.74 26.59 30.55 - -
138 3.97 6.24 8.88 9.17 9.56 19.38 28.17 - - -
5.95 9.33 9.72 10.33 11.64 15.64 18.25 23.97 25.71 -
7.94 8.86 10.21 10.39 11.31 17.94 18.09 21.68 31.19 -
R3000 103 3.97 6.34 7.73 9.69 10.15 13.67 16.02 16.05 17.49 -
5.95 6.15 8.15 10.96 11.53 12.82 15.72 19.90 20.68 -
7.94 8.38 10.94 11.61 11.89 18.28 24.42 28.24 28.74 -
138 3.97 6.71 7.36 7.53 10.18 12.16 13.42 18.10 18.35 -
5.95 6.92 7.88 8.20 11.12 11.89 17.56 22.92 24.03 24.12
7.94 8.68 8.73 11.16 12.06 14.28 15.78 16.32 18.08 19.33
KPT 103 3.97 2.74 3.6 3.67 14.56 17.96 19.92 21.59 - -
5.95 5.67 5.93 7.40 15.45 21.89 23.47 24.08 - -
7.94 6.68 7.26 7.94 13.75 18.32 20.68 23.16 - -
138 3.97 5.66 5.67 5.93 11.19 17.87 20.77 23.31 - -
5.95 6.29 6.39 6.52 9.51 15.65 20.06 23.09 - -
7.94 6.54 6.62 7.71 8.80 15.43 17.29 18.02 19.77 -
Table 2 Coefficients of variation of droplet impact angles along the spray direction under the three types of sprinkler, three nozzle diameters, and two operating pressures
Fig. 5 Average droplet impact angles along the spray direction under the three types of sprinkler, three nozzle diameters, and two operating pressures. (a-c), 103 kPa; (d-f), 138 kPa.
Sprinkler type Operating pressure (kPa) Nozzle diameter (mm) Fitting coefficient R2
α β
D3000 103 3.97 91.308 -0.053 0.866
5.95 88.431 -0.050 0.957
7.94 93.852 -0.056 0.922
138 3.97 91.614 -0.053 0.923
5.95 89.594 -0.048 0.984
7.94 88.654 -0.043 0.967
R3000 103 3.97 92.199 -0.048 0.965
5.95 89.344 -0.044 0.985
7.94 89.361 -0.049 0.920
138 3.97 89.615 -0.043 0.955
5.95 87.980 -0.040 0.938
7.94 89.780 -0.043 0.960
KPT 103 3.97 95.355 -0.056 0.949
5.95 92.484 -0.050 0.959
7.94 87.231 -0.031 0.915
138 3.97 89.979 -0.032 0.913
5.95 88.765 -0.029 0.909
7.94 88.273 -0.031 0.952
Table 3 Regression equations between average droplet impact angle and distance from sprinkler under the three types of sprinkler, three nozzle diameters, and two operating pressures
Fig. 6 Comparison between simulated and measured average droplet impact angles obtained by using Equation 4
Fig. 7 Relationships between droplet velocities and impact angles along the spray direction for the three types of sprinkler and three nozzle diameters at an operating pressure of 103 kPa. (a-c), D3000; (d-f), R3000; (g-i), KPT.
Fig. 8 Relationships between droplet velocities and impact angles along the spray direction for the three types of sprinkler and three nozzle diameters at an operating pressure of 138 kPa. (a-c), D3000; (d-f), R3000; (g-i), KPT.
Sprinkler type Distance from sprinkler (m) Droplet velocity (m/s) Droplet impact angle (°)
Maximum Minimum Maximum Minimum
D3000 1 4.74 0.56 90 60.75
2 4.77 0.55 90 61.92
3 5.07 0.57 90 63.57
4 6.05 0.59 90 59.72
5 6.20 0.63 90 55.48
6 6.38 0.62 90 51.21
7 6.83 0.62 90 50.02
8 7.00 0.62 90 50.03
R3000 1 5.91 0.62 90 53.53
2 5.95 0.63 90 57.29
3 6.47 0.63 90 59.73
4 7.29 0.62 90 53.92
5 8.02 0.62 90 51.57
6 7.85 0.62 90 50.10
7 8.67 0.62 90 50.04
8 8.76 0.62 90 50.19
KPT 1 5.39 0.62 90 65.38
2 5.39 0.63 90 67.77
3 5.71 0.62 90 68.20
4 6.12 0.62 90 60.58
5 6.83 0.62 90 52.05
6 7.41 0.62 90 51.63
7 8.33 0.62 90 50.08
8 7.46 0.62 90 50.03
Table 4 Droplet velocity and impact angle range at different distances from sprinkler for the three types of sprinkler with three nozzle diameters and two operating pressures
Sprinkler type Operating
pressure (kPa)
Nozzle diameter (mm) Fitting coefficient R2
γ δ ε
D3000 103 3.97 -3.848 20.741 52.391 0.722
5.95 -1.289 4.918 70.501 0.614
7.94 -1.992 9.935 65.232 0.680
138 3.97 -2.457 12.763 61.068 0.670
5.95 -1.313 5.430 69.781 0.577
7.94 -1.458 6.643 67.636 0.624
R3000 103 3.97 -1.656 10.763 62.163 0.314
5.95 -1.384 7.713 66.693 0.338
7.94 -2.015 10.180 63.037 0.433
138 3.97 -1.778 10.877 62.652 0.404
5.95 -1.625 8.143 67.441 0.599
7.94 -1.676 10.686 59.410 0.351
KPT 103 3.97 -1.634 9.265 68.780 0.784
5.95 -1.583 8.607 69.527 0.789
7.94 -1.985 11.591 63.516 0.720
138 3.97 -1.730 10.125 67.158 0.785
5.95 -1.855 11.073 64.842 0.727
7.94 -1.619 9.590 65.924 0.685
Table 5 Regression analysis between droplet velocity and impact angle along the spray direction for the three types of sprinkler with three nozzle diameters and two operating pressures
Fig. 9 Comparison between simulated and measured droplet impact angles using Equation 5
Fig. 10 Relationships between droplet impact angles and shear stresses along the spray direction for the three types of sprinkler and three nozzle diameters at an operating pressure of 103 kPa. (a-c), D3000; (d-f), R3000; (g-i), KPT.
Fig. 11 Relationships between droplet impact angles and shear stresses along the spray direction for the three types of sprinkler and three nozzle diameters at an operating pressure of 138 kPa. (a-c), D3000; (d-f), R3000; (g-i), KPT.
Sprinkler type Distance from
sprinkler (m)
Droplet shear stress (N/m2)
Maximum Minimum
D3000 1 1223.65 0.00
2 1740.05 0.00
3 1513.85 0.00
4 2202.85 0.00
5 4317.32 0.00
6 6902.65 0.00
7 9233.80 0.00
8 9720.36 0.00
R3000 1 3153.58 0.00
2 4082.97 0.00
3 3861.14 0.00
4 5444.54 0.00
5 6289.79 0.00
6 8506.57 0.00
7 9285.09 0.00
8 14,532.66 0.00
KPT 1 1101.42 0.00
2 1122.19 0.00
3 1866.53 0.00
4 4313.97 0.00
5 8145.64 0.00
6 9681.45 0.00
7 11,820.66 0.00
8 11,748.69 0.00
Table 6 Droplet shear stress ranges at different distances from sprinkler for the three types of sprinkler with three nozzle diameters and two operating pressures
Sprinkler type Operating
pressure (kPa)
Nozzle diameter (mm) Fitting coefficient R2
ζ η λ
D3000 103 3.97 4.744 -807.248 34,272.713 0.933
5.95 7.182 -1182.318 48,335.269 0.909
7.94 7.139 -1186.014 48,995.740 0.920
138 3.97 5.733 -963.945 40,382.961 0.938
5.95 7.045 -1164.314 47,827.132 0.888
7.94 7.614 -1254.291 51,337.901 0.912
R3000 103 3.97 6.724 -1128.915 47,204.564 0.838
5.95 7.735 -1293.528 53,843.836 0.830
7.94 6.003 -991.281 40,701.654 0.841
138 3.97 7.772 -1302.684 54,395.948 0.879
5.95 7.837 -1295.341 53,283.154 0.896
7.94 8.387 -1392.267 57,456.475 0.853
KPT 103 3.97 8.198 -1397.036 59,382.962 0.961
5.95 8.454 -1429.439 60,260.384 0.962
7.94 8.104 -1360.900 56,963.905 0.941
138 3.97 7.995 -1362.728 57,952.841 0.955
5.95 7.835 -1328.225 56,164.646 0.926
7.94 9.194 -1540.344 64,294.587 0.918
Table 7 Regression analysis between droplet impact angle and shear stress along the spray direction for the three types of sprinkler with three nozzle diameters and two operating pressures
Fig. 12 Comparison between simulated and measured droplet shear stresses obtained using Equation 6
Fig. 13 Distributions of average droplet shear stresses along spray direction for the three types of sprinkler with three nozzle diameters and two operating pressures. (a-c), 103 kPa; (d-f), 138 kPa.
Sprinkler type Operating
pressure (kPa)
Nozzle diameter (mm) Fitting coefficient R2
μ φ
D3000 103 3.97 9.449 1.045 0.992
5.95 165.550 0.367 0.899
7.94 74.574 0.497 0.938
138 3.97 18.912 0.818 0.978
5.95 34.461 0.576 0.919
7.94 69.058 0.481 0.986
R3000 103 3.97 118.394 0.286 0.869
5.95 101.120 0.317 0.911
7.94 85.905 0.397 0.951
138 3.97 60.009 0.415 0.986
5.95 107.010 0.359 0.938
7.94 181.426 0.228 0.898
KPT 103 3.97 103.809 0.407 0.879
5.95 136.601 0.436 0.906
7.94 137.424 0.397 0.872
138 3.97 67.035 0.518 0.962
5.95 53.602 0.554 0.968
7.94 137.830 0.345 0.871
Table 8 Regression analysis between average droplet shear stress and distance from sprinkler under the three types of sprinkler with three nozzle diameters and two operating pressures
Fig. 14 Comparison between simulated and measured average droplet shear stresses obtained by using Equation 7
Parameter of droplet Influence factor Sum of square of deviation Degrees of freedom Mean square deviation F
value
P
value
Droplet impact angle Sprinkler type 266.922 2 133.461 31.409 0.000**
Operating pressure 36.262 1 36.262 8.534 0.004**
Nozzle diameter 12.930 2 6.465 1.522 0.223
Distance from sprinkler 6881.943 8 860.243 202.453 0.000**
Droplet velocity Sprinkler type 2.821 2 1.411 10.040 0.000**
Operating pressure 0.740 1 0.740 5.266 0.023*
Nozzle diameter 0.402 2 0.201 1.430 0.243
Distance from sprinkler 38.601 8 4.825 34.340 0.000**
Droplet shear stress Sprinkler type 4,421,401.309 2 2,210,700.654 20.833 0.000**
Operating pressure 18,777.088 1 18,777.088 0.177 0.675
Nozzle diameter 138,761.362 2 69,380.681 0.654 0.522
Distance from sprinkler 64,615,904.728 8 8,076,988.091 76.116 0.000**
Table 9 Analysis of variance for effects of four influencing factors on three parameters of droplet
[1]   Al-Kayssi A W, Mustafa S H. 2016. Modeling gypsifereous soil infiltration rate under different sprinkler application rates and successive irrigation events. Agricultural Water Management, 163: 66-74.
doi: 10.1016/j.agwat.2015.09.006
[2]   Baiamonte G, Provenzano G, Iovino M, et al. 2021. Hydraulic design of the center-pivot irrigation system for gradually decreasing sprinkler spacing. Journal of Irrigation and Drainage Engineering, 147(7): 04021027, doi: 10.1061/(ASCE)IR.1943-4774.0001568.
doi: 10.1061/(ASCE)IR.1943-4774.0001568
[3]   Bautista-Capetillo C, Zavala M, Playán E. 2012. Kinetic energy in sprinkler irrigation: different sources of drop diameter and velocity. Irrigation Science, 30(1): 29-41.
doi: 10.1007/s00271-010-0259-8
[4]   Carrión P, Tarjuelo J, Montero J. 2001. SIRIAS: a simulation model for sprinkler irrigation. Irrigation Science, 20(2): 73-84.
doi: 10.1007/s002710000031
[5]   Chang W J, Hills D J. 1993a. Sprinkler droplet effects on infiltration. II: laboratory study. Journal of Irrigation and Drainage Engineering, 119(1): 157-169.
doi: 10.1061/(ASCE)0733-9437(1993)119:1(157)
[6]   Chang W J, Hills D J. 1993b. Sprinkler droplet effects on infiltration. I: impact simulation. Journal of Irrigation and Drainage Engineering, 119(1): 142-156.
doi: 10.1061/(ASCE)0733-9437(1993)119:1(142)
[7]   Chen R, Li H, Wang J, et al. 2020. Effects of pressure and nozzle size on the spray characteristics of low-pressure rotating sprinklers. Water, 12(10): 2904, doi: 10.3390/w12102904.
doi: 10.3390/w12102904
[8]   De Jong S M, Addink E A, Van Beek L P H, et al. 2011. Physical characterization, spectral response and remotely sensed mapping of Mediterranean soil surface crusts. CATENA, 86(1): 24-35.
doi: 10.1016/j.catena.2011.01.018
[9]   Etikala B, Adimalla N, Madhav S, et al. 2021. Salinity problems in groundwater and management strategies in arid and semi‐arid regions. Groundwater Geochemistry: Pollution and Remediation Methods, 42-56.
[10]   Faci J M, Salvador R, Playán E, et al. 2001. Comparison of fixed and rotating spray plate sprinklers. Journal of Irrigation and Drainage Engineering, 127(4): 224-233.
doi: 10.1061/(ASCE)0733-9437(2001)127:4(224)
[11]   Ferreira A G, Larock B E, Singer M J. 1985. Computer simulation of water drop impact in a 9.6-mm deep pool. Soil Science Society of America Journal, 49(6): 1502-1507.
doi: 10.2136/sssaj1985.03615995004900060034x
[12]   Ge M, Wu P, Zhu D, et al. 2015. Effect of jets interaction on spray characteristics between adjacent sprinklers. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 31(9): 100-106. (in Chinese)
[13]   Ge M, Wu P, Zhu D, et al. 2018. Analysis of kinetic energy distribution of big gun sprinkler applied to continuous moving horse-drawn traveler. Agricultural Water Management, 201: 118-132.
doi: 10.1016/j.agwat.2017.12.009
[14]   Ge M, Wu P, Zhu D, et al. 2020. Comparisons of spray characteristics between vertical impact and turbine drive sprinklers-A case study of the 50PYC and HY 50 big gun-type sprinklers. Agricultural Water Management, 228: 105847, doi: 10.1016/j.agwat.2017.12.009.
doi: 10.1016/j.agwat.2017.12.009
[15]   Ghadiri H, Payne D. 1986. The risk of leaving the soil surface unprotected against falling rain. Soil & Tillage Research, 8: 119-130.
[16]   Ghadiri H, Payne D. 2010. The formation and characteristics of splash following raindrop impact on soil. European Journal of Soil Science, 39(4): 563-575.
[17]   Huang C, Bradford J M, Cushman J H. 1982. A numerical study of raindrop impact phenomena: the rigid case1. Soil Science Society of America Journal, 46(1): 14-19.
doi: 10.2136/sssaj1982.03615995004600010003x
[18]   Huang G, Bringi V N, Cifelli R, et al. 2010. A methodology to derive radar reflectivity-liquid equivalent snow rate relations using C-band radar and a 2D video disdrometer. Journal of Atmospheric & Oceanic Technology, 27(4): 637-651.
[19]   Hui X, Lin X, Zhao Y, et al. 2022a. Assessing water distribution characteristics of a variable-rate irrigation system. Agricultural Water Management, 260: 107276, doi: 10.1016/j.agwat.2021.107276.
doi: 10.1016/j.agwat.2021.107276
[20]   Hui X, Zheng Y, Meng F, et al. 2022b. Comprehensively evaluating and modelling droplet diameters and kinetic energies of low‐pressure sprinklers. Irrigation and Drainage, 71(4): 829-854.
doi: 10.1002/ird.2706
[21]   Hui X, Zheng Y, Yan H. 2021b. Water distributions of low-pressure sprinklers as affected by the maize canopy under a centre pivot irrigation system. Agricultural Water Management, 245: 106646, doi: 10.1016/j.agwat.2020.106646.
doi: 10.1016/j.agwat.2020.106646
[22]   Jiang Y, Liu J, Li H, et al. 2021. Droplet distribution characteristics of impact sprinklers with circular and noncircular nozzles: Effect of nozzle aspect ratios and equivalent diameters. Biosystems Engineering, 212: 200-214.
doi: 10.1016/j.biosystemseng.2021.10.013
[23]   King B A, Bjorneberg D L. 2011. Evaluation of potential runoff and erosion of four center pivot irrigation sprinklers. Applied Engineering in Agriculture, 27(1): 75-85.
doi: 10.13031/2013.36226
[24]   King B A, Bjorneberg D L. 2012a. Transient soil surface sealing and infiltration model for bare soil under droplet impact. Transactions of the ASABE, 55(3): 937-945.
doi: 10.13031/2013.41525
[25]   King B A, Bjorneberg D L. 2012b. Droplet kinetic energy of moving spray-plate center-pivot irrigation sprinklers. Transactions of the ASABE, 55(2): 505-512.
doi: 10.13031/2013.41386
[26]   Kruger A, Krajewski W F. 2002. Two-dimensional video disdrometer: A description. Journal of Atmospheric & Oceanic Technology, 19(5): 602-617.
[27]   Lu J, Zheng F, Li G, et al. 2016. The effects of raindrop impact and runoff detachment on hillslope soil erosion and soil aggregate loss in the Mollisol region of Northeast China. Soil and Tillage Research, 161: 79-85.
doi: 10.1016/j.still.2016.04.002
[28]   Manke E B, Norenberg B G, Faria L C, et al. 2019. Wind drift and evaporation losses of a mechanical lateral-move irrigation system: oscillating plate versus fixed spray plate sprinklers. Agricultural Water Management, 225: 105759, doi: 10.1016/j.agwat.2019.105759.
doi: 10.1016/j.agwat.2019.105759
[29]   Osman M, Hassan S B, Yusof K. 2015. Effect of combination factors of operating pressure, nozzle diameter and riser height on sprinkler irrigation uniformity. Applied Mechanics & Materials, 695: 380-383.
[30]   Robles O,. Playán E, Cavero J, et al. 2017. Assessing low-pressure solid-set sprinkler irrigation in maize. Agricultural Water Management, 191: 37-49.
doi: 10.1016/j.agwat.2017.06.001
[31]   Robles O, Zapata N, Burguete J, et al. 2019. Characterization and simulation of a low-pressure rotator spray plate sprinkler used in center pivot irrigation systems. Water, 11(8): 1684, doi: 10.3390/w11081684.
doi: 10.3390/w11081684
[32]   Sayyadi H, Nazemi A H, Sadraddini A A, et al. 2014. Characterising droplets and precipitation profiles of a fixed spray-plate sprinkler. Biosystems Engineering, 119: 13-24.
doi: 10.1016/j.biosystemseng.2013.12.011
[33]   Silva L L. 2006. The effect of spray head sprinklers with different deflector plates on irrigation uniformity, runoff and sediment yield in a Mediterranean soil. Agricultural Water Management, 85(3): 243-252.
doi: 10.1016/j.agwat.2006.05.006
[34]   Silva L L. 2007. Fitting infiltration equations to centre-pivot irrigation data in a Mediterranean soil. Agricultural Water Management, 94(1-3): 83-92.
doi: 10.1016/j.agwat.2007.08.003
[35]   Stambouli T, Martínez-Cob A, Faci J M, et al. 2013. Sprinkler evaporation losses in alfalfa during solid-set sprinkler irrigation in semiarid areas. Irrigation science, 31(5): 1075-1089.
doi: 10.1007/s00271-012-0389-2
[36]   Vaezi A R, Ahmadi M, Cerdà A. 2017. Contribution of raindrop impact to the change of soil physical properties and water erosion under semi-arid rainfalls. Science of the Total Environment, 583: 382-392.
doi: 10.1016/j.scitotenv.2017.01.078
[37]   Yan H, Jin H, Qian Y. 2010. Characterizing center pivot irrigation with fixed spray plate sprinklers. Science China Technological Sciences, 53(5): 1398-1405.
doi: 10.1007/s11431-010-0090-8
[38]   Yan H, Bai G, He J, et al. 2011. Influence of droplet kinetic energy flux density from fixed spray-plate sprinklers on soil infiltration, runoff and sediment yield. Biosystems Engineering, 110(2): 213-221.
doi: 10.1016/j.biosystemseng.2011.08.010
[39]   Yan H, Hui X, Li M, et al. 2020. Development in sprinkler irrigation technology in China. Irrigation and Drainage, 69(52): 78-87.
[1] SUN Hui, ZHAO Yunge, GAO Liqian, XU Mingxiang. Reasonable grazing may balance the conflict between grassland utilization and soil conservation in the semi-arid hilly areas, China[J]. Journal of Arid Land, 2024, 16(8): 1130-1146.
[2] YANG Wenqian, ZHANG Gangfeng, YANG Huimin, LIN Degen, SHI Peijun. Review and prospect of soil compound erosion[J]. Journal of Arid Land, 2023, 15(9): 1007-1022.
[3] Olfa TERWAYET BAYOULI, ZHANG Wanchang, Houssem TERWAYET BAYOULI. Combining RUSLE model and the vegetation health index to unravel the relationship between soil erosion and droughts in southeastern Tunisia[J]. Journal of Arid Land, 2023, 15(11): 1269-1289.
[4] LI Panpan, WANG Bing, YANG Yanfen, LIU Guobin. Effects of vegetation near-soil-surface factors on runoff and sediment reduction in typical grasslands on the Loess Plateau, China[J]. Journal of Arid Land, 2022, 14(3): 325-340.
[5] KANG Yongde, HUANG Miansong, HOU Jingming, TONG Yu, PAN Zhanpeng. Two-dimensional hydrodynamic robust numerical model of soil erosion based on slopes and river basins[J]. Journal of Arid Land, 2021, 13(10): 995-1014.
[6] HE Qian, DAI Xiao'ai, CHEN Shiqi. Assessing the effects of vegetation and precipitation on soil erosion in the Three-River Headwaters Region of the Qinghai-Tibet Plateau, China[J]. Journal of Arid Land, 2020, 12(5): 865-886.
[7] LIU Qianjin, MA Liang, ZHANG Hanyu. Applying seepage modeling to improve sediment yield predictions in contour ridge systems[J]. Journal of Arid Land, 2020, 12(4): 676-689.
[8] LUO Zhidong, LIU Erjia, QI Shi, ZHAO Nan, SUN Yun. Flow regime changes in three catchments with different landforms following ecological restoration in the Chinese Loess Plateau[J]. Journal of Arid Land, 2020, 12(1): 44-57.
[9] Linhua WANG, Yafeng WANG, SASKIA Keesstra, ARTEMI Cerdà, Bo MA, Faqi WU. Effect of soil management on soil erosion on sloping farmland during crop growth stages under a large-scale rainfall simulation experiment[J]. Journal of Arid Land, 2018, 10(6): 921-931.
[10] Mingming GUO, Wenlong WANG, Hongliang KANG, Bo YANG. Changes in soil properties and erodibility of gully heads induced by vegetation restoration on the Loess Plateau, China[J]. Journal of Arid Land, 2018, 10(5): 712-725.
[11] ChaoBo ZHANG, LiHua CHEN, Jing JIANG. Vertical root distribution and root cohesion of typical tree species on the Loess Plateau, China[J]. Journal of Arid Land, 2014, 6(5): 601-611.