Current Issue

06 March 2013, Volume 5 Issue 1 Previous Issue    Next Issue
For Selected: View Abstracts Toggle Thumbnails
Research Articles
Drought changes and the mechanism analysis for the North American Prairie
Ge YU, Dave SAUCHYN, YongFei LI
Journal of Arid Land. 2013, 5 (1): 1-14.   DOI: 10.1007/s40333-013-0136-4
Abstract ( 2426 )     PDF (597KB) ( 2451 )  
The worst droughts in the central part of the North American Prairie in the past several hundred years have been reconstructed from tree-ring chronologies, suggesting that some drought years have exceeded the se-verity shown by the gauge record. A general circulation model of the Geophysical Fluid Dynamics Laboratory (GFDL) has simulated climate changes for the area during the past 250 years driven by climatic forces, providing scenarios of extreme climate that can further diagnose the mechanisms. This study refined the drought signals from the tree ring data and GFDL modeling at inter-annual and decadal time scales and analyzed the potential mecha-nisms driving the droughts. Results showed that drought years with summer precipitation lower than the 10th per-centiles occurred during 1777–1789, 1847–1861 and 1886–1879 AD in the area. Both tree rings and model re-vealed that the frequency of droughts has been relatively consistent in a similar timing and frequency with climate change. Monte Carlo analysis have detected that the tree ring chronologies have recorded drought years with probabilities of 9.3%–12.8%, and the model has simulated the droughts with probabilities 5.7%–17.8%. Under CO2 and aerosol forcing, the GFDL modeled the drought recurrences of 13 years and 25 years, which are very syn-chronous changes with tree rings and consistent with gauge records. The 20-a and 10-a time scale reoccurrences of droughts are very consistent with solar radiation cycles, and similar to the length of cycles in oceanic records, suggesting that terrestrial precipitation modeling is properly driven from sun-land-sea dynamics. Detected severity, variability and return periods of droughts from the present study make potential improvements in drought predictions and constructing scenarios for climate impacts and adaptation strategies.
Changes in terrestrial surface dry and wet conditions on the Loess Plateau (China) during the last half century
YuBi YAO, RunYuan WANG, JinHu YANG, Ping YUE, DengRong LU, GuoJu XIAO, Yang WANG, LinChun LIU
Journal of Arid Land. 2013, 5 (1): 15-24.   DOI: 10.1007/s40333-013-0137-3
Abstract ( 2750 )     PDF (455KB) ( 2569 )  
This paper, using a revised Penman-Monteith model, computed the terrestrial surface humidity index of the Loess Plateau (China) based on climatic factors of monthly mean temperature, maximum temperature, minimum temperature, relative humidity, precipitation, wind speed and sunshine duration observed on the plateau from 1961 to 2008. The temporal-spatial distribution, anomaly distribution and sub-regional temporal variations of the terrestrial surface dry and wet conditions were analyzed as well. The results showed a decreasing trend in the annual average surface humidity from the southeast to the northwest in the research area. Over the period of 1961–2008, an aridification tendency appeared sharply in the central interior region of the Loess Plateau, and less sharply in the middle part of the region. The border region showed the weakest tendency of aridification. It is clear that aridification diffused in all directions from the interior region. The spatial anomaly distribution of the terrestrial surface dry and wet conditions on the Loess Plateau can be divided into three key areas: the southern, western and eastern regions. The terrestrial annual humidity index displayed a significantly descending trend and showed remarkable abrupt changes from wet to dry in the years 1967, 1977 and 1979. In the above mentioned three key areas for dry and wet conditions, the terrestrial annual humidity index exhibited a fluctuation period of 3–4 years, while in the southern region, a fluctuation period of 7–8 years existed at the same time.
Relationship between thermal anomalies in Tibetan Plateau and summer dust storm frequency over Tarim Basin, China
Yong ZHAO, HongJun LI, AnNing HUANG, Qing HE, Wen HUO, MinZhong WANG
Journal of Arid Land. 2013, 5 (1): 25-31.   DOI: 10.1007/s40333-013-0138-2
Abstract ( 2359 )     PDF (500KB) ( 1930 )  
The dust storm is the most important and frequent meteorological disaster over Tarim Basin, which causes huge damages on local social economics. How to predict the springtime and summertime dust storm oc-currence has become a hot issue for meteorologists. This paper employed the data of dust storm frequency and 10-m wind velocity at 35 stations over Tarim Basin and the reanalysis data from the National Center for Environ-mental Prediction and the National Center for Atmospheric Research (NCEP/NCAR) during 1961–2007 to study the relationship between dust storm frequency (DSF) in summer over Tarim Basin and the thermal anomalies in Tibetan Plateau in May by using the statistical methods, such as Empirical Orthogonal Function (EOF), correlation and binomial moving average. The results show when negative anomalies in Tibetan Plateau and positive anomalies in its southern region are present along 30°N (the second mode of surface temperature anomalies by EOF decomposition) in May, the time coefficient (PC2) plays an important role in summer DSF variation and has a close relation with the summer DSF at both inter-annual and decadal time scales. When negative anomalies in Tibetan Plateau and positive anomalies are present in its southern region (PC2 in positive phase), there is an anomalous anticyclone in North China, which weakens the northwest wind and is not beneficial for cold air moving from high latitude to the Tarim Basin, and the circulation pattern is hard to result in dust storm weather. Furthermore, the sea level pressure (SLP) increased over Tarim Basin and the direction of SLP gradient reversed, which resulted in the 10-m wind velocity slowing down, so the DSF decreased. From above all, it can be conclude that the thermal anomalies in Tibetan Plateau in May has important effects on the summertime dust storm frequency over Tarim Basin and the PC2 can be used as a prediction factor for the summertime dust storm occurrence.
Observation of saltation activity at Tazhong area in Taklimakan Desert, China
XingHua YANG, Ali MAMTIMIN, Qing HE, XinChun LIU, Wen HUO
Journal of Arid Land. 2013, 5 (1): 32-41.   DOI: 10.1007/s40333-013-0139-1
Abstract ( 2828 )     PDF (489KB) ( 2021 )  
A two-year field observation of saltation activity was carried out at Tazhong area, the hinterland area of the Taklimakan Desert with highly frequent dust storms. From 1 September 2008 to 31 August 2010, a piezoelectric saltation sensor (Sensit) was used to continuously collect the data on saltation activity at a level sand surface. Analysis on the data suggests that saltation activity can occur at any time of the year when conditions are favorable; however, the necessary conditions are rarely satisfied in most time. In the daytime of spring or summer, saltation activity can persist even over a continuous one-hour-or-so period. It is found that, from 1 September 2008 to 31 August 2010, saltation activity accounts for more than 3% of the total yearly time, and it tends to peak in spring and summer months with strong winds. During winter months when winds are weak, however, it is often at a minimum. It seems that precipitation does not appear to be significant in reducing saltation activity in arid regions like Tazhong.
Soil exchangeable base cations along a chronosequence of Caragana microphylla plantation in a semi-arid sandy land, China
Journal of Arid Land. 2013, 5 (1): 42-50.   DOI: 10.1007/s40333-013-0140-8
Abstract ( 2634 )     PDF (245KB) ( 3138 )  
As a pioneer leguminous shrub species for vegetation re-establishment, Caragana microphylla is widely distributed in the semi-fixed and fixed sandy lands of the Horqin region, North China. C. microphylla planta-tions modify organic carbon (SOC), nitrogen (N) and phosphorus dynamics, bulk density and water-holding capacity, and biological activities in soils, but little is known with regard to soil exchange properties. Variation in soil ex-changeable base cations was examined under C. microphylla plantations with an age sequence of 0, 5, 10, and 22 years in the Horqin Sandy Land, and at the depth of 0–10, 10–20, and 20–30 cm, respectively. C. microphylla has been planted on the non-vegetated sand dunes with similar physical-chemical soil properties. The results showed that exchangeable calcium (Ca), magnesium (Mg), and potassium (K), and cation exchange capacity (CEC) were significantly increased, and Ca saturation tended to decrease, while Mg and K saturations were increased with the plantation years. No difference was observed for exchangeable sodium (Na) neither with plantation years nor at soil depths. Of all the base cations and soil layers, exchangeable K at the depth of 0–10 cm accumulated most quickly, and it increased by 1.76, 3.16, and 4.25 times, respectively after C. microphylla was planted for 5, 10, and 22 years. Exchangeable Ca, Mg, and K, and CEC were significantly (P<0.001) and positively correlated with SOC, total N, pH, and electrical conductivity (EC). Soil pH and SOC are regarded as the main factors influencing the variation in ex-changeable cations, and the preferential absorption of cations by plants and different leaching rates of base cations that modify cation saturations under C. microphylla plantation. It is concluded that as a nitrogen-fixation species, C. microphylla plantation is beneficial to increasing exchangeable base cations and CEC in soils, and therefore can improve soil fertility and create favorable microenvironments for plants and creatures in the semi-arid sandy land ecosystems.
Effects of emitter discharge rates on soil salinity distribution and cotton (Gossypium hirsutum L.) yield under drip irrigation with plastic mulch in an arid region of Northwest China
Journal of Arid Land. 2013, 5 (1): 51-59.   DOI: 10.1007/s40333-013-0141-7
Abstract ( 3876 )     PDF (661KB) ( 3264 )  
 A field experiment was carried out to investigate the effects of different emitter discharge rates under drip irrigation on soil salinity distribution and cotton yield in an extreme arid region of Tarim River catchment in Northwest China. Four treatments of emitter discharge rates, i.e. 1.8, 2.2, 2.6 and 3.2 L/h, were designed under drip irrigation with plastic mulch in this paper. The salt distribution in the range of 70-cm horizontal distance and 100-cm vertical distance from the emitter was measured and analyzed during the cotton growing season. The soil salinity is expressed in terms of electrical conductivity (dS/m) of the saturated soil extract (ECe), which was measured using Time Domain Reflector (TDR) 20 times a year, including 5 irrigation events and 4 measured times before/after an irrigation event. All the treatments were repeated 3 times. The groundwater depth was observed by SEBA MDS Dipper 3 automatically at three experimental sites. The results showed that the order of reduction in averaged soil salinity was 2.6 L/h > 2.2 L/h > 1.8 L/h > 3.2 L/h after the completion of irrigation for the 3-year cotton growing season. Therefore, the choice of emitter discharge rate is considerably important in arid silt loam. Usually, the ideal emitter discharge rate is 2.4–3.0 L/h for soil desalinization with plastic mulch, which is advisable mainly because of the favorable salt leaching of silt loam and the climatic conditions in the studied arid area. Maximum cotton yield was achieved at the emitter discharge rate of 2.6 L/h under drip irrigation with plastic mulch in silty soil at the study site. Hence, the emitter discharge rate of 2.6 L/h is recommended for drip irrigation with plastic mulch applied in silty soil in arid regions.
Soil water and salt distribution under furrow irrigation of saline water with plastic mulch on ridge
Journal of Arid Land. 2013, 5 (1): 60-70.   DOI: 10.1007/s40333-013-0142-6
Abstract ( 2868 )     PDF (613KB) ( 3782 )  
Furrow irrigation when combined with plastic mulch on ridge is one of the current uppermost wa-ter-saving irrigation technologies for arid regions. The present paper studies the dynamics of soil water-salt trans-portation and its spatial distribution characteristics under irrigation with saline water in a maize field experiment. The mathematical relationships for soil salinity, irrigation amount and water salinity are also established to evaluate the contribution of the irrigation amount and the salinity of saline water to soil salt accumulation. The result showed that irrigation with water of high salinity could effectively increase soil water content, but the increment is limited com-paring with the influence from irrigation amount. The soil water content in furrows was higher than that in ridges at the same soil layers, with increments of 12.87% and 13.70% for MMF9 (the treatment with the highest water salinity and the largest amount of irrigation water) and MMF1 (the treatment with the lowest water salinity and the least amount of irrigation water) on 27 June, respectively. The increment for MMF9 was gradually reduced while that for MMF1 increased along with growth stages, the values for 17 August being 2.40% and 19.92%, respectively. Soil water content in the ridge for MMF9 reduced gradually from the surface layer to deeper layers while the surface soil water content for MMF1 was smaller than the contents below 20 cm at the early growing stage. Soil salinities for the treatments with the same amount of irrigation water but different water salinity increased with the water salinity. When water salinity was 6.04 dS/m, the less water resulted in more salt accumulation in topsoil and less in deep layers. When water salinity was 2.89 dS/m, however, the less water resulted in less salt accumulation in topsoil and salinity remained basically stable in deep layers. The salt accumulation in the ridge surface was much smaller than that in the furrow bottom under this technology, which was quite different from traditional furrow irrigation. The soil salinities for MMF7, MMF8 and MMF9 in the ridge surface were 0.191, 0.355 and 0.427 dS/m, respectively, whereas those in the furrow bottom were 0.316, 0.521 and 0.631 dS/m, respectively. The result of correlation analysis indicated that compared with irrigation amount, the irrigation water salinity was still the main factor influ-encing soil salinity in furrow irrigation with plastic mulch on ridge.
Land cover changes and the effects of cultivation on soil properties in Shelihu wetland, Horqin Sandy Land, Northern China
Jie LIAN, XueYong ZHAO, XiaoAn ZUO, ShaoKun WANG, XinYuan WANG, YongQing LUO
Journal of Arid Land. 2013, 5 (1): 71-79.   DOI: 10.1007/s40333-013-0143-5
Abstract ( 2488 )     PDF (274KB) ( 3086 )  
 Land cover change plays an essential role in the alternation of soils properties. By field investigation and applying satellite images, land cover information in the Shelihu wetland was carried out in an area of 2,819 hm2 in 1985, 1995, 2000, 2005, 2010 and 2011, respectively, in Horqin Sandy Land. A total of 57 soil sampling sites across Shelihu were chosen in wet meadow (CL0), cropland (CL) and sandy land (SL) according to the spatial characteristics of water body change. Soil texture, organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP) contents, electrical conductivity (EC) and pH were measured at the soil depths of 0–10, 10–20 and 20–40 cm to examine the influence of agricultural conversion and continuous cultivation on soil properties. The results showed that the study area was covered by water body in 1985, which gradually declined afterwards and then reclaimed rapidly at a mean annual rate of 132.1 hm2/a from wet meadow to cropland since 1995. In 2011, water body was drained and the area was occupied by 10.8% of CL0, 76.9% of CL and 12.3% of SL. Large amounts of SOC, TN and TP were accumulated in the above depths in CL0. Soil in CL0 also had higher EC and silt and clay fractions, lower pH than in SL and CL. Soil in SL was seriously degraded with lower contents of SOC, TN and TP than in CL and CL0. SOC, TN content and EC in CL decreased with the increase of cultivation age, while pH showed a reverse trend with significance at plough horizon. The agricultural conversion in Shelihu was driven by the comprehensive factors of precipitation reduction, economic development and intense competitions for irrigation water. Continuous cultivation in this process is not sustainable because of SOC degradation and nutrient content reduction. The key point is that conventional tillage and removal of residuals induced further land degradation. Wetland reclamation for immediate economic interests led to greater costs in the long-term environmental restoration in Horqin Sandy Land.
Spatial heterogeneity of plant species on the windward slope of active sand dunes in a semi-arid region of China
DeMing JIANG, ChunPing MIAO, XueHua LI, XiaoLan LI, ALAMUSA, QuanLai ZHOU
Journal of Arid Land. 2013, 5 (1): 80-88.   DOI: 10.1007/s40333-013-0144-4
Abstract ( 2654 )     PDF (366KB) ( 1800 )  
Species richness and abundance are two important species diversity variables that have attracted par-ticular attention because of their significance in determining present and future species composition conditions. This paper aims to explain the qualitative and quantitative relationships between species diversity pattern and grain size (i.e. size of the sampling unit), and species diversity pattern and sampling area, and to analyze species diversity variability on active sand dunes in the Horqin Sandy Land, northeastern Inner Mongolia, China. A 50 m×50 m sampling plot was selected on the windward slope, where the dominant species was annual herb Agriophyllum squarrosum. Species composition and abundance at five grain sizes were recorded, and the species-area curves were produced for thirteen grain sizes. The range of values for species abundance tended to increase with in-creasing grain size in the study area, whereas, generally, species richness did not follow this rule because of poor species richness on the windward slope of active sand dunes. However, the homogeneity of species richness in-creased significantly. With the increase in sampling area, species abundance increased linearly, but richness in-creased logarithmically. Furthermore, variograms showed that species diversity on the windward slope of active sand dunes was weakly anisotropic and the distribution pattern was random, according to the Moran Coefficient. The results also showed that species richness was low, with a random distribution pattern. This conflicts with the results of previous studies that showed spatial aggregation in lower richness in a sampling area within a community and inferred that the physical processes play a more important role in species diversity than distribution pattern on active sand dunes. Further research into different diversity patterns and mechanisms between active sand dunes and interdune lowlands should be conducted to better understand biodiversity conservation in sand dune fields.
Vegetation fractional coverage change in a typical oasis region in Tarim River Watershed based on remote sensing
Fei ZHANG, Tashpolat TIYIP, JianLi DING, Mamat SAWUT, Verner Carl JOHNSON, Nigara TASHPOLAT, DongWei GUI
Journal of Arid Land. 2013, 5 (1): 89-101.   DOI: 10.1007/s40333-013-0145-3
Abstract ( 2938 )     PDF (843KB) ( 2597 )  
 Vegetation fractional coverage (VFC) is an important index to describe and evaluate the ecological system. The vegetation index is widely used to monitor vegetation coverage in the field of remote sensing (RS). In this paper, the author conducted a case study of the delta oasis of Weigan and Kuqa rivers, which is a typical saline area in the Tarim River Watershed. The current study was based on the TM/ETM+ images of 1989, 2001, and 2006, and supported by Geographic Information System (GIS) spatial analysis, vegetation index, and dimidiate pixel model. In addition, VBSI (vegetation, bare soil and shadow indices) suitable for TM/ETM+ images, constructed with FCD (forest canopy density) model principle and put forward by ITTO (International Tropical Timber Organization), was used, and it was applied to estimate the VFC. The estimation accuracy was later proven to be up to 83.52%. Further, the study analyzed and appraised the changes in vegetation patterns and revealed a pattern of spatial change in the vegetation coverage of the study area by producing the map of VFC levels in the delta oasis. Forest, grassland, and farmland were the three main land-use types with high and extremely-high coverage, and they played an important role in maintaining the vegetation. The forest area determined the changes of the coverage area, whereas the other two land types affected the directions of change. Therefore, planting trees, protecting grasslands, reclaiming farmlands, and controlling unused lands should be included in a long-term program because of their importance in keeping regional vegetation coverage. Finally, the dynamic variation of VFC in the study area was evaluated according to the quantity and spatial distribution rendered by plant cover digital images to deeply analyze the reason behind the variation.
A spatial-explicit dynamic vegetation model that couples carbon, water, and nitrogen processes for arid and semi-arid ecosystems
Chi ZHANG, ChaoFan LI, Xi CHEN, GePing LUO, LongHui LI, XiaoYu LI, Yan YAN, Hua SHAO
Journal of Arid Land. 2013, 5 (1): 102-117.   DOI: 10.1007/s40333-013-0146-2
Abstract ( 2976 )     PDF (1107KB) ( 3284 )  
Arid and semiarid ecosystems, or dryland, are important to global biogeochemical cycles. Dryland’s community structure and vegetation dynamics as well as biogeochemical cycles are sensitive to changes in climate and atmospheric composition. Vegetation dynamic models has been applied in global change studies, but the com-plex interactions among the carbon (C), water, and nitrogen (N) cycles have not been adequately addressed in the current models. In this study, a process-based vegetation dynamic model was developed to study the responses of dryland ecosystems to environmental changes, emphasizing on the interactions among the C, water, and N proc-esses. To address the interactions between the C and water processes, it not only considers the effects of annual precipitation on vegetation distribution and soil moisture on organic matter (SOM) decomposition, but also explicitly models root competition for water and the water compensation processes. To address the interactions between C and N processes, it models the soil inorganic mater processes, such as N mineralization/immobilization, denitrifica-tion/nitrification, and N leaching, as well as the root competition for soil N. The model was parameterized for major plant functional types and evaluated against field observations.
A system dynamics approach for water resources policy analysis in arid land: a model for Manas River Basin
ShanShan DAI, LanHai LI, HongGang XU, XiangLiang PAN, XueMei LI
Journal of Arid Land. 2013, 5 (1): 118-131.   DOI: 10.1007/s40333-013-0147-1
Abstract ( 3060 )     PDF (310KB) ( 3133 )  
The Manas River Basin in Xinjiang Uygur autonomous region, similar to other arid regions, is facing water constraints which challenge decision-makers as to how to rationally allocate the available water resources to meet the demands from industries and natural ecosystems. Policies which integrate the supply and demand are needed to address the water stress issues. An object-oriented system dynamics model was developed to capture the interrelationships between water availability and increasing water demands from the growth of industries, agri-cultural production and the population through modeling the decision-making process of the water exploration ex-plicitly, in which water stress is used as a major indicator. The model is composed of four sectors: 1) natural surface and groundwater resources; 2) water demand; 3) the water exploitation process, including the decision to build reservoirs, canals and pumps; 4) water stress to which political and social systems respond through increasing the supply, limiting the growth or improving the water use efficiency. The model was calibrated using data from 1949 to 2009 for population growth, irrigated land area, industry output, perceived water stress, groundwater resources availability and the drying-out process of Manas River; and simulations were carried out from 2010 to 2050 on an annual time step. The comparison of results from calibration and observation showed that the model corresponds to observed behavior, and the simulated values fit the observed data and trends accurately. Sensitivity analysis showed that the model is robust to changes in model parameters related to population growth, land reclamation, pumping capacity and capital contribution to industry development capacity. Six scenarios were designed to inves-tigate the effectiveness of policy options in the area of reservoir relocation, urban water recycling, water demand control and groundwater pumping control. The simulation runs demonstrated that the technical solutions for im-proving water availability and water use efficiency are not sustainable. Acknowledging the carrying capacity of water resources and eliminating a growth-orientated value system are crucial for the sustainability of the Manas River Basin.